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Abstract

We are interested in the existence of positive bound solutions for the following fractional Choquard

equation  (−∆)su+ V (x)u =
(∫

Ω

|u(y)|2
∗
µ,s

|x− y|µ
dy

)
|u|2

∗
µ,s−2u, x ∈ Ω,

u = 0, x ∈ RN\Ω,

where Ω ⊂ RN is an unbounded exterior domain, ∂Ω ̸= ∅, RN\Ω is bounded, s ∈ (0, 1), N > 2s,

0 < µ < min{N, 4s}, 2∗µ,s =
2N−µ
N−2s is the fractional upper Hardy-Littlewood-Sobolev critical exponent,

and V ∈ L
N
2s (Ω) is a non-negative function. By combining variational methods and the Brouwer degree

theory, we investigate the existence of positive bound solutions to this equation when V (x) and the

hole RN\Ω are suitable small in some senses. The result obtained in this paper extend and improve

some recent works. Our result also holds true in the case Ω = RN , hence this paper can be viewed

as an extension of recent contributions on the Benci-Cerami problem for the fractional Choquard

equation.
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1 Introduction and main results

In this article, we are interested in the following fractional Choquard equation (−∆)su+ V (x)u =
( ∫

Ω
|u(y)|2

∗
µ,s

|x−y|µ dy
)
|u|2∗µ,s−2u, x ∈ Ω,

u = 0, x ∈ RN\Ω
(1.1)

where Ω ⊂ RN is an unbounded exterior domain, ∂Ω ̸= ∅, RN\Ω is bounded, s ∈ (0, 1), N > 2s,

0 < µ < min{N, 4s}, 2∗µ,s = 2N−µ
N−2s is the fractional upper Hardy-Littlewood-Sobolev critical exponent

and (−∆)s is the fractional Laplace operator. The fractional Laplace operator was first introduced in

the pioneering work by Laskin [26, 27], for more details about the fractional Laplacian and fractional

Sobolev spaces we refer the interested reader to the monograph [39].

On the one hand, equation (1.1) stems from the following Choquard equation or nonlinear Schrödinger-

Newton equation

−∆u+ u =
( 1

|x|
∗ |u|2

)
u, x ∈ R3. (1.2)

In the framework of quantum mechanics, equation (1.2) was elaborated by Pekar [46] in 1954. In

the approximation to Hartree-Fock theory of one component plasma, Choquard used equation (1.2) to

describe an electron trapped in its own hole. As an approximation of the Hartree-Fock theory, Bongers

also investigated equation (1.2) in [6]. It is remarked that, as a model of self gravitating matter and is

known in that context as the Schrödinger-Newton equation, this equation was studied by Penrose [47, 48].

To the best of our knowledge, Lieb [33] and Lions [36] first studied the existence and symmetry of positive

solutions to equation (1.2). Since then, many authors pay their much attentions to the studying of

existence, multiplicity and properties of the solutions of the nonlinear Choquard equations, and indeed,

many interesting results were obtained in the last decades. By using rearrangements technique, the

existence and uniqueness, up to translations, were investigated by Lieb and Lions in [35, 37]; Furthermore,

they proved the existence of a sequence of radially symmetric solutions by variational methods. In [52],

Wei and Winter first proved the non-degeneracy and uniqueness of the ground state, and then they

succeeded to obtain the multi-bump solutions for (1.2). Classification of solutions of (1.2) was first

studied by Ma and Zhao [38]. More recently, Moroz and Van Schaftingen [42] completely studied the

qualitative properties of solutions for the following Choquard equation

−∆u+ u = (Kα ∗ |u|p)|u|p−2u, x ∈ RN , (1.3)

where p > 1, N ∈ {1, 2, . . .} and Kα is a Riesz potential defined by

Kα(x) =
Γ(N−α

2 )

Γ(α2 )π
N/22α|x|N−α :=

Cα
|x|N−α .

Subsequently, Moroz and Van Schaftingen [43] gave a broad survey about Choquard equations. Espe-

cially, Gao et al. [15] and Guo et al. [17] independently studied positive high-energy solutions for the
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Benci-Cerami problem of Choquard equation

−∆u+ V (x)u = (Kα ∗ |u|2∗µ)|u|2∗µ−2u, u ∈ D1,2(RN ) (1.4)

when |V |N
2

is suitable small, where 0 < µ < N if N = 3 or N = 4, and N − 4 ≤ µ < N if N ≥ 5,

2∗µ = 2N−µ
N−2 is the upper Hardy-Littlewood-Sobolev critical exponent. Recently, Alves, Figueiredo and

Molle [2] considered the Choquard equation (1.4) with V (x) = λ + V0(x) and λ ≥ 0, V0 ∈ L
N
2 (RN ),

0 < µ < min{N, 4} and N ≥ 3, under V0 and λ are suitable small, they obtained the existence of two

positive solutions to equation (1.4). In fact, the results obtained in [2, 15, 17] extended the classical

results due to Benci and Cerami [5] for the Schrödinger equation to the Choquard equation.

Compared with classical Choquard equations, the studying of the existence and multiplicity of

solutions for fractional Choquard equations is not much in the literature. Especially, in the following,

some articles related to our topic must cite here. In [44], Mukherjee and Sreenadh studied the existence

of weak solutions of the following doubly nonlocal fractional elliptic problem: (−∆)su =
( ∫

Ω
|u|2

∗
µ,s

|x−y|µdy
)
|u|2∗µ,s−2u+ λu, in Ω,

u = 0, in RN\Ω,
(1.5)

where Ω ⊂ RN is a bounded domain with Lipschitz boundary, λ is a real parameter, 0 < µ < N

and N > 2s. They obtained some existence, nonexistence and regularity results for weak solution of the

above problem using variational methods. In [19], He and Rădulescu were concerned with the qualitative

analysis of positive solutions to the fractional Choquard equation (−∆)su+ V (x)u = (Iα ∗ |u|2∗α,s)|u|2∗α,s−2u, x ∈ RN ,

u ∈ Ds,2(RN ), u(x) > 0, x ∈ RN ,
(1.6)

where s ∈ (0, 1), 2s < N , 0 < α < min{N, 4s}, 2∗α,s = 2N−α
N−2s , Iα is a Riesz potential defined by

Iα(x) =
Γ(α2 )

Γ(N−α
2 )πN/22N−α|x|α

:=
Aα
|x|α

, (1.7)

and V (x) satisfies the following conditions:

(i) The function V is positive on a set of positive measure;

(ii) V ∈ Lq(RN ) for all q ∈ [p1, p2], where 1 < p1 <
2N−α
4s−α < p2 with p2 <

N
4s−N if 2s < N < 4s;

(iii) |V |N
2s
<

(
2

4s−α
2N−α − 1

)
S

(2s−N)[(N−α)(1−s)+2s]+(2N−α)2s
2s(N−α+2s)

s ,

where Ss is the best Sobolev constant for the embedding Ds,2(RN ) ↪→ L2∗s (RN ). By proving a version of

the global compactness result of Struwe [50] for the case of fractional operators in RN , they showed that
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equation (1.6) has at least one bound state solution. Subsequently, He, Zhao and Zou [20] also studied

positive solutions to the fractional Choquard equation (1.6) under following conditions:

(iv) V ≥ 0, ̸≡ 0, and V ∈ L
N
2s (RN );

(v) |V |N
2s
<

(
2

(4s−α)2

(2N−α)(N+2s−α) − 1
)
Ss.

It is noticed that the results obtained in [19, 20] are strongly dependent on the condition V ∈ L
N
2s (RN ),

which means that V (x) may vanish at the infinity. In [16], Guan, first and second author of this paper

obtained multiple bound state solutions for the fractional Choquard equation (1.6) when V (x) is a

positive potential bounded from below. In fact, the results obtained in [16] extended and improved some

works in [19, 20] in the case where the coefficient V (x) vanishes at infinity.

On the other hand, equation (1.1) is closely related to the following classic local problems in exterior

domain  −∆u+ λu = |u|p−2u, x ∈ D,

u = 0, x ∈ ∂D,
(1.8)

where D ⊂ RN (N ≥ 3) is an unbounded domain, ∂D ̸= ∅ is bounded, 2 < p < 2N
N−2 . In classical

paper due to Benci and Cerami [4], authors showed that (1.8) does not have any ground state solution.

So, they only find a bound state solution. For their purpose, the authors first analyzed the behavior

of Palais-Smale sequences and proved a precise estimate of the energy levels where the Palais-Smale

condition fails, then using variational method and Brouwer degree theory succeeded to obtain that the

problem (1.8) has at least one positive solution for λ sufficiently small or for RN\D small enough.

After this pioneer work, many local problems involving exterior domains were considered, we refer to

[3, 7, 8, 9, 11, 21, 25, 31, 32, 40, 41] and the references therein.

In recent years, some scholars have begun to extend the classic results obtained in [4] to some

nonlocal problems. Specifically, Alves et al. [1] and Correia et al. [12] independently extended results

obtained in [4] to the following fractional elliptic problems in exterior domain (−∆)su+ u = |u|p−2u, x ∈ D,

u = 0, x ∈ RN\D,
(1.9)

where D ⊂ RN is an exterior domain with smooth boundary such that RN\D is bounded, s ∈ (0, 1),

N > 2s, p ∈ (2, 2∗s) and 2∗s = 2N
N−2s is the fractional critical Sobolev exponent. In [1, 12], authors

first proved a version to the fractional operator in unbounded domain of the global compactness result

due to Struwe (see [50, 53]), then combining with Brouwer degree, barycentric functions and minimax

argument, they obtained the existence of positive solutions for equation (1.9) provided that RN\D is

contained in a small ball. Subsequently, Correia and Oliveira [13] investigated positive solution for a class

of fractional elliptic problems in exterior domains with small critical perturbation. In [10], Chen and
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Liu extended the classic results of [4] to Kirchhoff type nonlocal problem with N = 3. Soon afterwards,

Wang et al. [51] generalized the Kirchhoff type nonlocal problem with subcritical nonlinearity discussed

in [10] to Kirchhoff type nonlocal problem with small critical perturbation. In [23], Jia et al. studied

the existence of positive solutions for a class of Kirchhoff type problem in exterior domains with general

nonlinear term. Very recently, by establishing global compact lemma, combining variational method

with Brouwer degree, Jia et al. [24] obtained a positive solution for a class of Kirchhoff type nonlocal

problem with critical exponent and nonconstant potential function in exterior domains when the hole

suitable small. In [29], Ledesma and Miyagaki concerned with the existence of positive solutions for the

following fractional Choquard equation (−∆)su+ u =
( ∫

D
|u(y)|p

|x−y|N−αdy
)
|u|p−2u, x ∈ D,

u = 0, x ∈ RN\D
(1.10)

where N > 2s, s ∈ (0, 1), 0 < α < N , D ⊂ RN is an unbounded exterior domain with smooth boundary

∂D ̸= ∅ and p ∈ (2, 2∗s). Firstly, to overcome the loss of uniqueness, as in [49], authors investigated

limit profiles of ground states of limit problem of (1.10) as α sufficiently close to 0; Then, combined with

Splitting Lemma due to Struwe (see [50, 53]) and arguments used by Benci and Cerami [4], they succeed

to obtain a positive solution for (1.10) when RN\D small enough. In [30], Ledesma devoted to studying

the existence of a positive solution for the fractional Choquard equation (−∆)su+ u = |u|q−2u+ ε
( ∫

D
|u(y)|p
|x−y|αdy

)
|u|p−2u, x ∈ D,

u = 0, x ∈ RN\D
(1.11)

where ε > 0 is a parameter, s ∈ (0, 1), N > 2s, 0 < α < N , D ⊂ RN is an unbounded exterior

domain with smooth boundary ∂D ̸= ∅, q ∈ (2, 2∗s) and p ∈ (2N−α
N , 2N−α

N−2s ). In fact, equation (1.11)

could be viewed as a extension of fractional elliptic problems (1.9) with small Choquard type nonlocal

perturbation. Recently, Ye et al. [55] investigated the existence of positive solutions to the following

fractional Choquard equation (−∆)su+ u =
( ∫

D
|u(y)|p

|x−y|N−αdy
)
|u|p−2u+ ε

( ∫
D

|u(y)|2
∗
α,s

|x−y|N−αdy
)
|u|2∗α,s−2u, x ∈ D,

u = 0, x ∈ RN\D
(1.12)

where ε > 0 is a parameter, s ∈ (0, 1), N > 2s, 0 < α < N , D ⊂ RN is an unbounded exterior domain

with smooth boundary ∂D ̸= ∅, p ∈ (2, 2∗α,s) and 2∗α,s =
N+α
N−2s . Authors first obtained the limit profiles

and uniqueness of positive radial ground states for the limit equation of problems (1.12) without small

critical perturbations as α → N . Then, using variational method and Brouwer degree theory, they

obtained the existence of positive bound state solutions for equation (1.12) in case ε > 0 is sufficiently

small.
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Motivated by the above works, especially by [1, 4, 5, 12, 16, 19, 20, 24], in this paper, we are

interested in the existence of positive bound state solutions to Choquard equation (1.1) with nonconstant

potential function in exterior domain.

The main result, in the case of small perturbations from infinity of the indefinite potential, estab-

lishes the following existence property of bound states.

Theorem 1.1. Suppose that V satisfies the following conditions:

(V1) V ∈ L
N
2s (Ω), V (x) ≥ 0 and V (x) ̸≡ 0, x ∈ Ω.

(V2)

0 < |V |N
2s
<

(
2

4s−µ
2N−µ − 1

)
Ss.

Then there is a small λ > 0 such that if RN\Ω ⊂ Bλ(0), the equation (1.1) has at least one positive

bound state solution.

Remark 1.1. If V is a constant, it is obvious that V ̸∈ L
N
2s (RN ). However, the results about fractional

Choquard equation in exterior domains obtained in [29, 30] are strongly dependent on V is constant

potential function. So, the methods used in [29, 30] seem to be not valid for our case.

Remark 1.2. To the best of our knowledge, when discussing critical problems (local problems or nonlocal

problems) in exterior domain, the critical term is basically used as small critical perturbation except [24].

Inspired by [4, 5, 24], in the case of small perturbations from infinity of the indefinite potential and non

small critical perturbation, we obtain the existence of positive bound states of fractional Choquard equation

(1.1) in exterior domains. Since there are double nonlocal characteristics in our equation which come

from the nonlocal operator (−∆)s and the fractional Choquard nonlinear term, some refined estimates

for our problem are very necessary and delicate.

Remark 1.3. It is particularly worth noting that our result also holds true in the case Ω = RN , hence can
be viewed as a extension of a recent results for Benci-Cerami problem for the fractional Choquard equation

by X. He, V. D. Rădulescu, Small linear perturbations of fractional Choquard equations with critical

exponent, J. Differential Equations, 2021 (Specific details, please seen [19]) and X. He, X. Zhao, W.

Zou, The Benci-Cerami problem for the fractional Choquard equation with critical exponent, Manuscript

Math.,2023 (Specific details, please seen [20]). Furthermore, since it is known, but not completely trivial,

that (−∆)s reduces to the standard Laplacian −∆ as s→ 1−, our result also extend the results obtained

in [15, 17].

2 Preliminary results

Without any loss of generality, we may assume that 0 ∈ RN\Ω. As usual, for any s ∈ (0, 1), let

Hs,2(RN ) =
{
u ∈ L2(RN ) :

∫
RN

∫
RN

|u(x)− u(y)|2

|x− y|N+2s
dydx <∞

}
6



where the inner product and norm defined by

(u, v)Hs =

∫
RN

u(x)v(x)dx+

∫
RN

∫
RN

(u(x)− u(y))(v(x)− v(y))

|x− y|N+2s
dydx, ∥u∥2Hs = (u, u)Hs .

The norm of u in Lr(Ω) and Lr(RN ) are denoted by |u|r and |u|r,RN , 1 ≤ r <∞. For any s ∈ (0, 1),

defined

Ds,2(RN ) =
{
u ∈ L2∗s (RN ) :

∫
RN

∫
RN

|u(x)− u(y)|2

|x− y|N+2s
dydx <∞

}
with the Gagliardo seminorm

∥u∥2RN = (u, u)RN =

∫
RN

∫
RN

|u(x)− u(y)|2

|x− y|N+2s
dydx.

According to Propositions 3.4 and 3.6 of [45], by omitting the normalization constant we have

∥u∥2RN = |(−∆)
s
2u|22,RN =

∫
RN

∫
RN

|u(x)− u(y)|2

|x− y|N+2s
dydx.

Then set

Ds,2
0 (Ω) =

{
u ∈ Ds,2(RN ) : u = 0 a.e. in RN\Ω

}
with the norm

∥u∥2 = (u, u) =

∫
Q

|u(x)− u(y)|2

|x− y|N+2s
dydx,

where Q := (RN × RN )\(Ωc × Ωc), Ωc = RN\Ω. According to definition of Ds,2
0 (Ω), it is obvious that

Ds,2
0 (Ω) ⊂ Ds,2(RN ).

Proposition 2.1. ([34, 35]) Let t, r > 1 and 0 < µ < N with 1/t + µ/N + 1/r = 2, f ∈ Lt(RN ) and

h ∈ Lr(RN ). Then there exists a sharp constant C(t,N, µ, r) independent of f, h such that∣∣∣ ∫
RN

∫
RN

f(x)g(y)

|x− y|µ
dxdy

∣∣∣ ≤ C(t,N, µ, r)|f |t · |g|r. (2.1)

If t = r = 2N
2N−µ , then

C(t,N, µ, r) = C(N,µ) = π
µ
2
Γ(π−µ2 )

Γ(2N−µ
2 )

( Γ(π2 )

Γ(N)

)−1+ µ
N
.

In this case, the equality in (2.1) is achieved if and only if f ≡ (const.)g and

g(x) = A(γ2 + |x− a|2)−
2N−µ

2

for some A ∈ C, 0 ̸= γ ∈ R and a ∈ RN .

Lemma 2.1. ([53]) If N > 2s and a ∈ L
N
2s (RN ), ψ : Ds,2(RN ) → R, u 7→

∫
RN a(x)u

2dx is weakly

continuous.
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Let f = g = |u|q, then according to Proposition 2.1 we conclude that∫
RN

∫
RN

|u(x)u(y)|q

|x− y|µ
dydx

is well defined if |u|q ∈ Lt(R) for some t > 1 with 2
t +

µ
N = 2. Therefore, for u ∈ Ds,2(RN ), thanks to

Sobolev embedding theorems we have

2N − µ

N
≤ q ≤ 2N − µ

N − 2s
. (2.2)

Hence, for any u ∈ Ds,2(RN ), we get(∫
RN

(Iµ ∗ |u|2
∗
µ,s)|u|2∗µ,sdx

) 1
2∗µ,s ≤ (C(N,µ))

1
2∗µ,s |u|22∗µ,s ,

where C(N,µ) := AµC(N,µ).

From above arguments, the energy functional associated with equation (1.1) is defined by

J (u) =
1

2

∫
Q

|u(x)− u(y)|2

|x− y|N+2s
dydx+

1

2

∫
Ω
V (x)u2dx− 1

2 · 2∗µ,s

∫
Ω

∫
Ω

|u(x)|2∗µ,s |u(y)|2∗µ,s

|x− y|µ
dydx

=
1

2
∥u∥2 + 1

2

∫
Ω
V (x)u2dx− 1

2 · 2∗µ,s

∫
Ω

∫
Ω

|u(x)|2∗µ,s |u(y)|2∗µ,s
|x− y|µ

dydx, u ∈ Ds,2
0 (Ω).

Furthermore, J (u) ∈ C1(Ds,2
0 (Ω),R) and

⟨J ′(u), v⟩ = (u, v) +

∫
Ω
V (x)uvdx−

∫
Ω

∫
Ω

|u(y)|2∗µ,s |u(x)|2∗µ,s−2u(x)v(x)

|x− y|µ
dydx

for u, v ∈ Ds,2
0 (Ω).

Define the Nehari manifold as

N := {u ∈ Ds,2
0 (Ω))\{0} : G(u) = 0}, where G(u) := ⟨J ′(u), u⟩.

Moreover, we have the following results about N .

Lemma 2.2. Suppose that (V1) holds, then we have that

(a) N is a C1 regular manifold diffeomorphic to the unit sphere of Ds,2
0 (Ω);

(b) J has a positive bound from below on N ;

(c) u is a critical point of J if and only if u is a critical point of J constrained on N .

Proof. Choose u ∈ Ds,2
0 (Ω) with ∥u∥ = 1, defined fu(t) by

fu(t) =
t2

2
∥u∥2 + t2

2

∫
Ω
V (x)u2dx− t2·2

∗
µ,s

2 · 2∗µ,s

∫
Ω

∫
Ω

|u(x)|2∗µ,s |u(y)|2∗µ,s

|x− y|µ
dydx, t > 0.

Obviously, fu(0) and f
′
u(0) = 0. Thanks to V (x) ≥ 0, we have that

fu(t) > 0 for t > 0 small enough and fu(t) < 0 for t > 0 large enough.
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Hence, there exists tu > 0 such that fu(tu) = maxt≥0 fu(t) with f ′u(tu) = 0 and tuu ∈ N . It is easy to

see that tu is unique. Furthermore, we have f ′u(t) > 0 for 0 < t < tu, f
′
u(t) < 0 for t > tu.

Since J ∈ C2(Ds,2
0 (Ω),R), G is a C1 functional. For any u ∈ N , we have

⟨G′(u), v⟩ = 2∥u∥2 + 2

∫
Ω
V (x)u2dx− 2 · 2∗µ,s

∫
Ω

∫
Ω

|u(x)|2∗µ,s |u(y)|2∗µ,s

|x− y|µ
dydx

= (2− 2 · 2∗µ,s)
∫
Ω

∫
Ω

|u(x)|2∗µ,s |u(y)|2∗µ,s
|x− y|µ

dydx < 0,

(2.3)

which implies that (a) holds.

For any u ∈ N , since V (x) ≥ 0, using Sobolev inequality, there is C0 > 0 such that

0 = ∥u∥2 +
∫
Ω
V (x)u2dx−

∫
Ω

∫
Ω

|u(x)|2∗µ,s |u(y)|2∗µ,s

|x− y|µ
dydx ≥ ∥u∥2 − C0∥u∥2·2

∗
µ,s .

Then, there is C1 > 0 such that

∥u∥ ≥ C1 for any u ∈ N . (2.4)

Consequently, by (2.4) we conclude that

J (u) =
1

2
∥u∥2 + 1

2

∫
Ω
V (x)u2dx− 1

2 · 2∗µ,s

∫
Ω

∫
Ω

|u(x)|2∗µ,s |u(y)|2∗µ,s

|x− y|µ
dydx

=
(1
2
− 1

2 · 2∗µ,s

)
∥u∥2 >

(1
2
− 1

2 · 2∗µ,s

)
C1, for any u ∈ N ,

which shows that (b) is satisfied.

If u is a critical point of J with u ̸≡ 0, then J ′(u) = 0 and thus G(u) = 0. So u is a critical point

of J constrained on N . If u is a critical point of J constrained on N , then there is ς ∈ R satisfying

J ′(u) = ςG′(u). By u ∈ N , we have

⟨ςG′(u), u⟩ = ⟨J ′(u), u⟩ = 0.

Hence, due to (2.3), we get ς = 0. That is, J ′(u) = 0.

Let Sµ,s be the best constant

Sµ,s := inf
u∈Ds,2(RN )\{0}

∥u∥2RN( ∫
RN (Iµ ∗ |u|2

∗
µ,s)|u|2∗µ,sdx

) 1
2∗µ,s

,

where Iµ defined as in (1.7), and Ss be the best Sobolev constant for the embedding Ds,2(RN ) ↪→
L2∗s (RN ), that is,

Ss = inf
u∈Ds,2(RN )\{0}

∥u∥2RN

|u|2
2∗s ,RN

.
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It is well-known that Sµ,s and Ss are both achieved at u if and only if

u(x) = C(
ε

ε2 + |x− x0|
)
N−2s

2 , x ∈ RN

for some x0 ∈ RN , C > 0 and ε > 0 (see Theorem 2.15 of [14]). Furthermore,

Sµ,s =
Ss

(C(N,µ))
1

2∗µ,s

.

Let

Ψ =
ν1

(1 + |x|2)
N−2s

2

, where ν1 =
(S N

2s
s Γ(N)

π
N
2 Γ(N)

)
.

Then, from [45], we have that

Ss∥Ψ∥22∗s ,RN = ∥Ψ∥2RN , (2.5)

and

∥Ψ∥2RN = ∥Ψ∥2
∗
s

2∗s ,RN = S
N
2s
s .

Set

Ψ̃(x) = S
(N−µ)(2s−N)
4s(N−µ+2s)
s (C(N,µ))

2s−N
2(N−µ+2s)Ψ(x),

then Ψ̃(x) is the unique minimizer for Sµ,s and satisfies

∥Ψ̃∥2RN =

∫
RN

(Iµ ∗ |Ψ̃|2∗µ,s)|Ψ̃|2∗µ,sdx = S
2N−µ

N−µ+2s
µ,s . (2.6)

Let

φδ,z(x) = δ
2s−N

N Ψ̃(
x− z

δ
)

=
aµ,sδ

N−2s
2

(δ2 + |x− z|2)
N−2s

2

,∀δ > 0, z ∈ RN .
(2.7)

where aµ,s = S
(N−µ)(2s−N)
4s(N−µ+2s)
s (C(N,µ))

2s−N
2(N−µ+2s) ν1.

Now, we introduce the following equation

(−∆)su = (Iµ ∗ |u|2
∗
µ,s)|u|2∗µ,s−2u, in RN , (2.8)

and its energy functional J∞ : Ds,2(RN ) → R defined by

J∞(u) =
1

2
∥u∥2RN − 1

2 · 2∗µ,s

∫
RN

(Iµ ∗ |u|2
∗
µ,s)|u|2∗µ,sdx.

It follows from [28] that the positive solutions of equation (2.8) are unique. Furthermore, by the invariance

of the scaling, the function φδ,z defined as (2.7) solves equation (2.8) and satisfies (2.6).

Let

N∞ := {u ∈ Ds,2(RN )\{0} : ⟨J ′
∞(u), u⟩ = 0},
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and then we have that

J∞(φδ,z) = m∞ := min
u∈N∞

J∞(u) =
N − µ+ 2s

2(2N − µ)
S

2N−µ
N−µ+2s
µ,s .

Then a ground state solution of (2.8) is a nontrivial solution u ∈ Ds,2(RN ) satisfying

J∞(u) = m∞ and J ′
∞(u) = 0.

Furthermore, from [19, 20] we have the following result about nodal solution of equation (2.8).

Lemma 2.3. If u ∈ Ds,2(RN ) is a nodal solution of equation (2.8), then

J∞(u) ≥ 2
4s−µ

N−µ+2s
N − µ+ 2s

2(2N − µ)
S

2N−µ
N−µ+2s
µ,s = 2

4s−µ
N−µ+2sm∞.

The following proposition indicates that there is no ground state solution to the equation (1.1).

Proposition 2.2. Suppose that (V1) holds, then m := minu∈N J (u) = m∞ and m is not achieved.

Proof. Step 1: To prove m = m∞. For any u ∈ N , there is tu > 0 satisfying tuu ∈ N∞. So we conclude

that

m∞ ≤ J∞(tuu) =
1

2
∥tuu∥2RN − 1

2 · 2∗µ,s

∫
RN

(Iµ ∗ |tuu|2
∗
µ,s)|tuu|2

∗
µ,sdx

=
1

2
∥tuu∥2 −

1

2 · 2∗µ,s

∫
Ω

∫
Ω

|tuu(x)|2
∗
µ,s |tuu(y)|2

∗
µ,s

|x− y|µ
dydx

≤ 1

2
∥tuu∥2 +

1

2

∫
Ω
V (x)(tuu)

2dx− 1

2 · 2∗µ,s

∫
Ω

∫
Ω

|tuu(x)|2
∗
µ,s |tuu(y)|2

∗
µ,s

|x− y|µ
dydx

= J (tuu) ≤ J (u),

which shows that m ≥ m∞.

In the following, we prove that m ≤ m∞. Let ũn ⊂ Ds,2
0 (Ω) be defined by ũn := ζ(x)φ̃n, here

φ̃n(·) = φ(· − zn) and φ = φ1,0 ∈ Ds,2(RN ) defined in (2.7) is a positive solution of (2.8), {zn} ⊂ Ω with

|zn| → +∞ as n→ +∞, ζ : RN → [0, 1] is defined by

ζ(x) = ξ
( |x|
λ

)
, λ := inf{τ : RN\Ω ⊂ Bτ (0)},

where Bτ (x0) := {x ∈ RN : |x − x0| < τ} and ξ(t) : R+ ∪ {0} → [0, 1] is a non-decreasing function

satisfying

ξ(t) = 0, t ≤ 1 and ξ(t) = 1, t ≥ 2.

Firstly, we claim that

J (ũn) → m∞ and ⟨J ′(ũn), ũn⟩ → 0 as n→ +∞. (2.9)
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Obviously, ∥φ̃n∥RN = ∥φ∥RN and φ̃n ⇀ 0 in Ds,2(RN ) as n → +∞. Hence, it follows from Lemma 2.1

that ∫
Ω
V (x)(ũn)

2dx→ 0 as n→ +∞.

Set∫
RN

An(x, y)dydx :=

∫
RN

|ũn|2
∗
µ,s |ũn|2

∗
µ,s

|x− y|µ
dydx−

∫
RN

|φ(x− zn)|2
∗
µ,s |φ(y − zn)|2

∗
µ,s

|x− y|µ
dydx.

where

An(x, y) =
[ζ2

∗
µ,s(x+ zn)ζ

2∗µ,s(y + zn)− 1]|φ|2∗µ,s |φ|2∗µ,s

|x− y|µ
.

Since |zn| → +∞ as n→ +∞ and

|x+ zn| ≥ |zn| − |x| and |y + zn| ≥ |zn| − |y|,

for each x, y ∈ RN there is N0 ∈ N satisfying

|x+ zn| ≥ 2λ and |y + zn| ≥ 2λ, n ≥ N0.

Hence ζ(x+ zn) = 1 = ζ(y + zn) for all n ≥ N0, and we have that

An(x, z) → 0 a.e. in RN × RN as n→ +∞.

Furthermore,

|An(x, y)| ≤ C
|φ(x)|2∗µ,s |φ(y)|2∗µ,s

|x− y|µ
∈ L1(RN × RN ).

Therefore, by the Lebesgue’s theorem, we conclude that∫
RN

|ũn|2
∗
µ,s |ũn|2

∗
µ,s

|x− y|µ
dydx→

∫
RN

|φ(x)|2∗µ,s |φ(z)|2∗µ,s
|x− y|µ

dydx as n→ +∞. (2.10)

Similar to the proof as in [1] we can show that

∥ũn − φ(· − zn)∥2RN → 0 as n→ +∞. (2.11)

Thus, combining with (2.10) and (2.11), the claim (2.9) holds.

For ũn ⊂ Ds,2
0 (Ω), arguing as in Lemma 2.2, there exists unique tn > 0 such that tnũn ∈ N and

then ⟨J ′(tnũn), tnũn⟩ = 0.

We claim that tn → 1 as n→ +∞. Indeed, according to definition of ũn, it is easy to see that

a ≤ ∥ũn∥ ≤ b, a ≤
∫
Ω

∫
Ω

|ũn|2
∗
µ,s |ũn|2

∗
µ,s

|x− y|µ
dydx ≤ b,

where a, b > 0 are constants. Hence, we can get that there is C > 0 such that |tn| ≥ C. Suppose that

tn → +∞, thanks to tnũn ∈ N , we have that
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∥ũn∥2 = t
(2·2∗µ,s−2)
n

∫
Ω

∫
Ω

|ũn(x)|2
∗
µ,s |ũn(y)|2

∗
µ,s

|x− y|µ
dydx+ on(1) as n→ +∞,

which is a contradiction. Thus, {tn} is bounded from above. So, according to fact ⟨J ′(ũn), ũn⟩ →
0 as n→ +∞, we can easy to get tn → 1 as n→ +∞. Then, it follows from (2.9) that J (tnũn) → m∞.

Due to tnũn ∈ N , we deduce that m ≤ m∞.

Consequently, from above arguments, we conclude that m = m∞.

Step 2: To prove that m is not achieved. Suppose that, by contradiction, there exists u⋆ ∈ N such

that J (u⋆) = m = m∞ and J ′(u⋆) = 0. Let tu⋆ > 0 be such that tu⋆u
⋆ ∈ N∞, then we have

m∞ ≤ J∞(tu⋆u
⋆) =

1

2
∥tu⋆u⋆∥2RN − 1

2 · 2∗µ,s

∫
RN

(Iµ ∗ |tu⋆u⋆|2
∗
µ,s)|tuu⋆|2

∗
µ,sdx

=
1

2
∥tu⋆u⋆∥2 −

1

2 · 2∗µ,s

∫
Ω

∫
Ω

|tuu⋆(x)|2
∗
µ,s |tuu⋆(y)|2

∗
µ,s

|x− y|µ
dydx

≤ 1

2
∥tu⋆u⋆∥2 +

1

2

∫
Ω
V (x)(tu⋆u

⋆)2dx− 1

2 · 2∗µ,s

∫
Ω

∫
Ω

|tuu⋆(x)|2
∗
µ,s |tuu⋆(y)|2

∗
µ,s

|x− y|µ
dydx

= J (tu⋆u
⋆) ≤ J (u) = m∞.

Hence, we deduce that

tu⋆ = 1,

∫
Ω
V (x)(u⋆)2dx = 0

which implies that u⋆ is a minimizer of m∞. Without loss of generality, we can assume that u⋆ ≥ 0.

Therefore, by the maximum principle we get that u⋆ > 0 in RN , which is impossible since u⋆ = 0 in

RN\Ω.

In the following, we cite some useful Lemmas for prove our main results.

Lemma 2.4. ([19, 42]) Let N > 2s and µ ∈ (0, N). If {un} is a bounded sequence in L2∗s (RN ) such that

un → u almost everywhere in RN as n→ ∞, then∫
RN

(Iµ ∗ |un|2
∗
µ,s)|un|2

∗
µ,sdx−

∫
RN

(Iµ ∗ |un − u|2∗µ,s)|un − u|2∗µ,sdx

→
∫
RN

(Iµ ∗ |u|2
∗
µ,s)|u|2∗µ,sdx.

Lemma 2.5. ([19]) Let {un} is a bounded sequence in Ds,2(RN ) such that un → 0 almost everywhere

in RN as n→ ∞. Denote g(u) = (Iµ ∗ |u|2
∗
µ,s)|u|2∗µ,s−2u. Then for each v ∈ Ds,2(RN ), we have∫

RN

|g(un + v)− g(un)− g(v)|
2∗s

2∗s−1 dx = on(1).

By arguing as Lemma 3.4 in [20], we can obtain the following result.
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Lemma 2.6. Suppose that {un} ⊂ Ds,2(RN ) is a sequence of (P.S.)c sequence for J∞ such that un ⇀ 0

in Ds,2(RN ) and un ↛ 0 in Ds,2(RN ). Then there exists a sequence of points {zn} ⊂ RN and a sequence

of positive numbers {σn} such that

vn(x) = σ
N−2s

2
n un(σnx+ zn) (2.12)

converges weakly in Ds,2(RN ) to a nontrivial solution v of (2.8).

It follows from Proposition 2.2 that the equation (1.1) does not have any ground state solution.

So, we only to find a bound state solution. For this purpose, we need to obtain the global compactness

result.

Theorem 2.1. Suppose that (V1) holds, let {un} ⊂ Ds,2
0 (Ω) is a sequence of (P.S.)c sequence for J ,

that is

J (un) → c and J ′(un) → 0 as n→ +∞. (2.13)

Then there exist a number l ∈ N := {0, 1, 2, . . .}, l sequences of numbers {σin} ⊂ R+, points {zin} ⊂ RN ,
1 ≤ i ≤ l, l+1 sequences of functions {u(j)n } ⊂ Ds,2(RN ), 0 ≤ j ≤ l, such that for some subsequence, still

denoted by {un},

(a) un(x) = u(0)n (x) +
l∑

i=1

(σin)
−N−2s

2 u(i)n (
· − zin
σin

);

(b) u(0)n ⇀ u(0) in Ds,2
0 (Ω) as n→ +∞;

(c) u(i)n ⇀ u(i) ̸= 0 in Ds,2(RN ) as n→ +∞, 1 ≤ i ≤ l;

(2.14)

where u(0), u(i)(1 ≤ i ≤ l) satisfy

(−∆)su(0) + V (x)u(0) =
(∫

Ω

|u(0)(y)|2∗µ,s
|x− y|µ

dy
)
|u(0)|2∗µ,s−2u(0), x ∈ Ω;u = 0, x ∈ RN\Ω. (2.15)

(−∆)su(i) = (Iµ ∗ |u(i)|2
∗
µ,s)|u(i)|2∗µ,s−2u(i), x ∈ RN , 1 ≤ i ≤ l. (2.16)

Moreover, we have

∥un − u(0) −
l∑

i=1

(σin)
−N−2s

2 u(i)(
· − zin
σin

)∥2 → 0 as n→ +∞, (2.17)

and

J (un) → J (u(0)) +

l∑
i=1

J∞(u(i)) as n→ +∞. (2.18)
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Proof. First, we prove that {un} is bounded in Ds,2
0 (Ω). It follows from (2.13) that

c+ on(1) + on(1)∥un∥ = J (un)−
1

2 · 2∗µ,s
⟨J ′(un), un⟩

≤ (
1

2
− 1

2 · 2∗µ,s
)∥un∥2 + (

1

2
− 1

2 · 2∗µ,s
)

∫
Ω
V (x)u2ndx,

which combine with V (x) ≥ 0 show that {un} is bounded in Ds,2
0 (Ω). So there is u(0) ∈ Ds,2

0 (Ω) such

that, up to a subsequence, still denoted by {un},

un ⇀ u(0) in Ds,2
0 (Ω); un → u(0) a.e. in Ω. (2.19)

For any ψ ∈ C∞
0 (RN ), by Lemma 2.1 and Lemma 2.5 we have that

⟨J ′(un), ψ⟩ =(un, ψ) +

∫
Ω
V (x)unψdx−

∫
Ω

∫
Ω

|un(x)|2
∗
µ,s |un(y)|2

∗
µ,s−2un(y)ψ(y)

|x− y|µ
dydx

=(u(0), ψ) +

∫
Ω
V (x)u(0)ψdx−

∫
Ω

∫
Ω

|u(0)(x)|2∗µ,s |u(0)(y)|2∗µ,s−2u(0)(y)ψ(y)

|x− y|µ
dydx+ on(1)

=⟨J ′(u(0)), ψ⟩+ on(1),

which shows ⟨J ′(u(0)), ψ⟩ = 0. That is, u(0) satisfies (2.15).

Let

v(1)n (x) =

 (un − u(0))(x), x ∈ Ω,

0, x ∈ RN\Ω.
(2.20)

Then it follows from (2.19) that v
(1)
n ⇀ 0 in Ds,2

0 (Ω) as n→ +∞. Thanks to Lemma 2.1, we have∫
RN

V (x)(v(1)n )2dx→ 0 as n→ +∞. (2.21)

Furthermore, by Lemma 2.1 and Lemma 2.4, we have that

∥v(1)n ∥2RN = ∥v(1)n ∥2 = ∥un∥2 − ∥u(0)∥2 + on(1),

J∞(v(1)n ) =
1

2
∥v(1)n ∥2RN +

1

2

∫
Ω
V (x)(v(1)n )2dx− 1

2 · 2∗µ,s

∫
RN

(Iµ ∗ |v(1)n |2∗µ,s)|v(1)n |2∗µ,sdx+ on(1)

=
1

2
∥un∥2 +

1

2

∫
Ω
V (x)u2ndx− 1

2 · 2∗µ,s

∫
Ω

∫
Ω

|un(x)|2
∗
µ,s |un(y)|2

∗
µ,s

|x− y|µ
dydx

− 1

2
∥u(0)∥2 − 1

2

∫
Ω
V (x)(u(0))2dx+

1

2 · 2∗µ,s

∫
Ω

∫
Ω

|u(0)(x)|2∗µ,s |u(0)(y)|2∗µ,s
|x− y|µ

dydx+ on(1)

= J (un)− J (u(0)) + on(1).

(2.22)

If v
(1)
n → 0 in Ds,2(RN ), the Theorem is proved with l = 0.
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If v
(1)
n ↛ 0 in Ds,2(RN ). For any ψ ∈ C∞

0 (RN ), thanks to Lemma 2.1 and (2.13), we have that

⟨J ′
∞(v(1)n ), ψ⟩ =(v(1)n , ψ)RN +

∫
Ω
V (x)v(1)n ψdx+ on(1)∥ψ∥RN

−
∫
RN

(Iµ ∗ |v(1)n |2∗µ,s)|v(1)n |2∗µ,s−2v(1)n ψdx

=⟨J ′(v(1)n ), ψ⟩+ on(1)∥ψ∥RN

=⟨J ′(un), ψ⟩ − ⟨J ′(u(0)), ψ⟩+ on(1)

=on(1),

(2.23)

which shows that J ′
∞(v

(1)
n ) → 0 as n → +∞. Hence, {v(1)n } is a Palais-Smale sequence for J∞, and

satisfies

v(1)n ⇀ 0 in Ds,2(RN ); v(1)n ↛ 0 in Ds,2(RN ).

Then, by Lemma 2.6, there exist {z1n} ⊂ RN , {σ1n} ⊂ R+ and u(1) ∈ Ds,2(RN ) such that

u(1)n := (σ1n)
N−2s

2 v(1)n (σ1n ·+z1n),

u(1)n ⇀ u(1) in Ds,2(RN ),

J ′
∞(u(1)) = 0, u(1) ̸= 0.

Thus u(1) is a nontrivial solution of the equation (2.16). Moreover, we have

∥v(1)n ∥2RN = ∥u(1)n ∥2RN = ∥u(1)∥2RN + ∥u(1)n − u(1)∥2RN + on(1),

J∞(v(1)n ) = J∞(u(1)n ) = J∞(u(1)) + J∞(u(1)n − u(1)) + on(1).

Combine with above equality and (2.22), we conclude that

∥un∥2 =∥v(1)n ∥2RN + ∥u(0)∥2 + on(1)

=∥u(0)∥2 + ∥u(1)∥2RN + ∥u(1)n − u(1)∥2RN + on(1)

J (un) =J (u(0)) + J∞(v(1)n ) + on(1)

=J (u(0)) + J∞(u(1)) + J∞(u(1)n − u(1)) + on(1).

(2.24)

Let v
(2)
n := u

(1)
n − u(1), if v

(2)
n → 0 in Ds,2(RN ), the Theorem is proved with l = 1.

If v
(2)
n ↛ 0 in Ds,2(RN ). Similarly, we can conclude that {v(2)n } is a Palais-Smale sequence for J∞

and satisfies

v(2)n ⇀ 0 in Ds,2(RN ); v(2)n ↛ 0 in Ds,2(RN ).

Then, it follows from Lemma 2.6 that there are {z2n} ⊂ RN , {σ2n} ⊂ R+ and u(2) ∈ Ds,2(RN ) so that

u(2)n := (σ2n)
N−2s

2 v(2)n (σ2n ·+z2n),

u(2)n ⇀ u(2) in Ds,2(RN ),

J ′
∞(u(2)) = 0, u(2) ̸= 0,
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which implies that u(2) is a nontrivial solution of the equation (2.16). Moreover, one has

∥v(2)n ∥2RN = ∥u(2)n ∥2RN = ∥u(2)∥2RN + ∥u(2)n − u(2)∥2RN + on(1),

J∞(v(2)n ) = J∞(u(2)n ) = J∞(u(2)) + J∞(u(2)n − u(2)) + on(1),

together with (2.24), we conclude that

∥un∥2 =∥u(0)∥2 + ∥u(1)∥2RN + ∥u(1)n − u(1)∥2RN + on(1)

=∥u(0)∥2 + ∥u(1)∥2RN + ∥v(2)n ∥2RN + on(1)

=∥u(0)∥2 + ∥u(1)∥2RN + ∥u(2)∥2RN + ∥v(2)n − u(2)∥2RN + on(1)

J (un) =J (u(0)) + J∞(u(1)) + J∞(u(1)n − u(1)) + on(1)

=J (u(0)) + J∞(u(1)) + J∞(v(2)n ) + on(1)

=J (u(0)) + J∞(u(1)) + J∞(u(2)) + J∞(v(2)n − u(2)) + on(1)

(2.25)

Iterating the above procedures, we can obtain sequences {u(k−1)
n } in this way. Let v

(k)
k := u

(k−1)
n −

u(k−1), if v
(k)
n → 0 in Ds,2(RN ), then Theorem is proved with l = k.

If v
(k)
n ↛ 0 in Ds,2(RN ). Arguing as before, {v(k)n } is a Palais-Smale sequence for J∞ such that

v(k)n ⇀ 0 in Ds,2(RN ); v(k)n ↛ 0 in Ds,2(RN ).

Then, according to Lemma 2.6, there exist {zkn} ⊂ RN , {σkn} ⊂ R+ and u(k) ∈ Ds,2(RN ) satisfying

u(k)n := (σkn)
N−2s

2 v(k)n (σkn ·+zkn),

u(k)n ⇀ u(k) in Ds,2(RN ),

J ′
∞(u(k)) = 0, u(k) ̸= 0.

Thus u(k) is a nontrivial solution of the equation (2.16). Furthermore,

∥un∥ =∥u(0)∥2 +Σki=1∥u(i)∥2RN + ∥u(k)n − u(k)∥2RN + on(1),

J (un) =J (u(0)) + Σki=1J∞(u(i)) + J∞(u(k)n − u(k)) + on(1).
(2.26)

Thanks to

0 = ⟨J ′
∞(u(i)), u(i)⟩ = ∥u(i)∥2RN −

∫
RN

(Iµ ∗ |u(i)|2
∗
µ,s)|u(i)|2∗µ,sdx, i ∈ {1, 2 . . . , k}

and the definition of Sµ,s, we obtain that ∥u(i)∥RN ≥ S
2N−µ

N−µ+2s
µ,s , i = 1, 2, . . . , k. Then, we conclude that

the iteration must terminate at a finite index l ≥ 1, that is, v
(l+1)
n := u

(l)
n − u(l) → 0 in Ds,2(RN ). Then,

we have
∥un∥ =∥u(0)∥2 +Σli=1∥u(i)∥2RN + on(1),

J (un) =J (u(0)) + Σli=1J∞(u(i)) + on(1).
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Moreover, it is easy to obtain from above discission that

un =(u(0) + on(1)) + (σ1n)
−N−2s

2 (u(1) + on(1))
(x− z1n

σ1n

)
+(σ1nσ

2
n)

−N−2s
2 (u(2) + on(1))

(x− z1n − σ1nz
2
n

σ1nσ
2
n

)
+(σ1nσ

2
nσ

3
n)

−N−2s
2 (u(3) + on(1))

(x− z1n − σ1nz
2
n − σ1nσ

2
nz

3
n

σ1nσ
2
nσ

3
n

)
+ · · ·

+(σ1nσ
2
nσ

3
n · · ·σln)−

N−2s
2 (u(l) + on(1))

(x− z1n − σ1nz
2
n − σ1nσ

2
nz

3
n − · · · − σ1nσ

2
nσ

3
n · · ·σl−1

n zln
σ1nσ

2
nσ

3
n · · ·σln

)
.

So, it follows from rewrite the notations that (2.14)-(2.16) are satisfied.

Corollary 2.1. Suppose that (V1) holds, let {un} ⊂ Ds,2
0 (Ω) be a non-negative sequence such that

J (un) → m, ⟨J ′(un), un⟩ = 0 as n→ +∞, (2.27)

then we have

un = wn + φδn,zn , (2.28)

where {wn} ⊂ Ds,2(RN ) such that wn → 0 in Ds,2(RN ), and φδn,zn defined in (2.7) is the positive

function realizing m∞.

Proof. It follows from (2.27) that {un} is a minimizing sequence for J |N . Then, it follows from variational

principle ([53]) that there is a sequence {vn} ⊂ N satisfying

J (vn) → m, J ′(vn)− ςnG′(vn) → 0 , ∥un − vn∥ → 0 as n→ +∞, (2.29)

where ςn ∈ R. We may assume vn ≥ 0.

Next, we prove that J ′(vn) → 0 as n→ +∞. From (2.29), ones has that

⟨J ′(vn), vn⟩ − ςn⟨G′(vn), vn⟩ = on(1)∥vn∥.

It follows from (2.4), (2.5) and the fact {vn} ⊂ N that ⟨G′(vn), vn⟩ < C̃ < 0. Therefore, thanks to

{vn} ⊂ N and J (vn) → m, it is easy to see that {vn} is bounded. So, ςn → 0 as n → +∞. For any

ϕ ∈ Ds,2
0 (Ω),

⟨G′(vn), ϕ⟩ = 2(vn, ϕ) + 2

∫
Ω
V (x)vnϕdx− 2 · 2∗µ,s

∫
Ω

∫
Ω

|vn(x)|2
∗
µ,s |vn(y)|2

∗
µ,s−2vn(y)ϕ(y)

|x− y|µ
dydx.

Thus, according to the boundedness of |V |N
2s
, using the Hölder inequality we deduce that

|⟨G′(vn), ϕ⟩| ≤
(
C1∥vn∥+ C2∥vn∥

3N+2s−2µ
N−2s

)
∥ϕ∥,
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which combine with boundedness of {vn} show that G′(vn) is bounded. Then we can easy to obtain that

J ′(vn) → 0 as n→ +∞.

Now, for any ϕ ∈ Ds,2
0 (Ω), we could easy to get that

⟨J ′(un)− J ′(vn), ϕ⟩ → 0 as n→ +∞,

from which we conclude that J ′(un) → 0 as n→ +∞.

By Theorem 2.1, there exist a number l ∈ N and a subsequence of {un}, still denoted by {un},
such that (2.15)-(2.18) hold.

If u(0) ̸≡ 0 and l ≥ 1, thanks to (2.15)-(2.16), we have

⟨J ′(u(0)), u(0)⟩ = 0, ⟨J ′
∞(u(i)), u(i)⟩ = 0, 1 ≤ i ≤ l,

which shows that u(0) ∈ N , u(i) ∈ N∞, 1 ≤ i ≤ l. Hence, we have that J (u(0)) ≥ m = m∞,J∞(u(i)) ≥
m∞, 1 ≤ i ≤ l. We deduce that

m = J (u(0)) + Σli=1J∞(u(i)) ≥ (l + 1)m∞ ≥ 2m∞,

which contradicts with the fact m = m∞.

If u(0) ≡ 0 and l ≥ 2, similar to the above discussion, we obtain a contradiction

m = Σli=1J∞(u(i)) ≥ lm∞ ≥ 2m∞.

If u(0) ̸≡ 0 and l = 0, then u(0) is a ground state solution of (1.1), which contradicts with Proposition

2.2.

If u(0) ≡ 0 and l = 0, we also get a contradiction due to the fact J (u(0)) = m.

According to above arguments, we must have that u(0) ≡ 0 and l = 1. That is, u(1) satisfies (2.8)

and then J∞(u(1)) = m = m∞. This fact shows that u(1) is a ground state solution of (2.8). Then it

follows from Lemma 2.3 and the nonnegativity of {un} that u(1) ≥ 0. Arguing as in Corollary 4.2 of [18],

we can get u(1) > 0. Consequently, it follows from above discussion and the unique of positive solution

of (2.8), the (2.28) holds.

Corollary 2.2. Suppose that (V1) holds, let {un} ⊂ Ds,2
0 (Ω) be a non-negative sequence of (P.S.)c

sequence for J , that is

J (un) → c and J ′(un) → 0 as n→ +∞, (2.30)

if c ∈ (m∞, 2
4s−µ

N−µ+2sm∞), then the functional J satisfying the (P.S.)c condition.

Proof. According to Theorem 2.1, there are l ∈ N and a subsequence of {un}, still denoted by {un}, such
that (2.15)-(2.18) hold. Thanks to 0 < 4s−µ

N−µ+2s < 1 and c ∈ (m∞, 2
4s−µ

N−µ+2sm∞), similar to the arguments

of Corollary 2.1, we can conclude that u(0) ̸≡ 0 and l = 0. So, it follows from (2.17) that un → u(0) in

Ds,2
0 (Ω).
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3 Main technique and some basic estimates

Let φδ,z defined by (2.7) be the ground state solution of the equation (2.8). Without any loss of generality,

we assume that 0 ∈ RN\Ω, then λ = inf{τ : RN\Ω ⊂ Bτ (0)} > 0. Let

vλ := ζ(x)φδ,z = ξ
( |x|
λ

)
φδ,z,

where ζ, ξ are defined as in Proposition 2.2. Defined Kλ : RN × R+ → Ds,2(RN ) by

Kλ(z, δ) = tvλvλ,

where tvλ > 0 satisfies ⟨J ′(tvλvλ), tvλvλ⟩ = 0. According to definitions, vλ and Kλ(z, δ) can be seen as

elements in Ds,2
0 (Ω) and L2∗s (Ω). Moreover, we have that

∥Kλ(z, δ)∥ = ∥Kλ(z, δ)∥RN , ∥vλ∥ = ∥vλ∥RN ,

|Kλ(z, δ)|2∗s = |Kλ(z, δ)|2∗,RN , |vλ|2∗s = |vλ|2∗s ,RN .

Lemma 3.1. Suppose that (V1) holds with |V |N
2s

̸= 0, then Kλ(z, δ) satisfies

(a) Kλ(z, δ) is continuous in (z, δ) for every λ;

(b) J (Kλ(z, δ)) → m∞ and ⟨J ′(Kλ(z, δ)),Kλ(z, δ)⟩ → 0 as |z| → +∞, uniformly for every bounded λ,

and bounded δ away from 0;

(c) as λ → 0, J (Kλ(z, δ)) → m∞ and ⟨J ′(Kλ(z, δ)),Kλ(z, δ)⟩ → 0 as δ → 0 or δ → +∞,uniformly in

z ∈ RN .

Proof. (a) is obviously hold. By the similar arguments as in the proof of Proposition 2.2, we easily obtain

(b). In the what following, we prove (c).

∥vλ − φδ,z∥2RN =

∫
RN

∫
RN

∣∣∣(ξ( |x|λ )− ξ( |y|λ )
)
φδ,0(x− z) +

(
ξ( |y|λ )− 1

)(
φδ,0(x− z)− φδ,0(y − z)

)∣∣∣2
|x− y|N+2s

dydx

≤ 2

∫
RN

∫
RN

∣∣∣ξ( |x|λ )− ξ( |y|λ )
∣∣∣2∣∣∣φδ,0(x− z)

∣∣∣2
|x− y|N+2s

dxdy + 2

∫
RN

∫
RN

∣∣∣ξ( |y|λ )− 1
∣∣∣2∣∣∣φδ,0(x− z)− φδ,0(y − z)

∣∣∣2
|x− y|N+2s

dydx

:= 2(I1 + I2),

where

I1 :=

∫
RN

∫
RN

∣∣∣ξ( |x|λ )− ξ( |y|λ )
∣∣∣2∣∣∣φδ,0(x− z)

∣∣∣2
|x− y|N+2s

dydx,

I2 :=

∫
RN

∫
RN

∣∣∣ξ( |y|λ )− 1
∣∣∣2∣∣∣φδ,0(x− z)− φδ,0(y − z)

∣∣∣2
|x− y|N+2s

dydx.
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First, we claim I2 → 0 as λ→ 0. In fact,

I2 =

∫
RN

∫
RN

∣∣∣ξ( |y+z|λ )− 1
∣∣∣2∣∣∣φδ,0(x)− φδ,0(y)

∣∣∣2
|x− y|N+2s

dydx.

By definition of ξ, we have that∣∣∣ξ( |y+z|λ )− 1
∣∣∣2∣∣∣φδ,0(x)− φδ,0(y)

∣∣∣2
|x− y|N+2s

≤ 4

∣∣∣φδ,0(x)− φδ,0(y)
∣∣∣2

|x− y|N+2s
∈ L1(RN × RN ),

∣∣∣ξ( |y+z|λ )− 1
∣∣∣2∣∣∣φδ,0(x)− φδ,0(y)

∣∣∣2
|x− y|N+2s

→ 0 a.e. in RN × RN as λ→ 0.

Hence, the Lebesgue’s theorem ensures that

I2 → 0 as λ→ 0, for every z ∈ RN . (3.1)

Next, arguing as in Lemma 4.1 of [1] (see also Lemma 2.3 of [54]), we prove I1 → 0, as λ →
0, for z ∈ RN . Let RN × RN = Π1 ∪Π2 ∪Π3, it is easy to see that

I1 =

∫
RN

∫
RN

∣∣∣ξ( |x+z|λ )− ξ( |y+z|λ )
∣∣∣2∣∣∣φδ,0(x)∣∣∣2

|x− y|N+2s
dydx

=
3∑
i=1

∫
Πi

∣∣∣ξ( |x+z|λ )− ξ( |y+z|λ )
∣∣∣2∣∣∣φδ,0(x)∣∣∣2

|x− y|N+2s
dydx,

where

Π1 := (RN\B2λ(−z))× (RN\B2λ(−z)); Π2 := B2λ(−z)× RN ;

Π3 := (RN\B2λ(−z))×B2λ(−z).

For any (x, y) ∈ Π1, |x+ z| ≥ 2λ, |y + z| ≥ 2λ, hence ξ( |x+z|λ ) = ξ( |y+z|λ ) = 1. Then we have that

∫
Π1

∣∣∣ξ( |x+z|λ )− ξ( |y+z|λ )
∣∣∣2∣∣∣φδ,0(x)∣∣∣2

|x− y|N+2s
dydx = 0. (3.2)

Denoted ∫
Π2

∣∣∣ξ( |x+z|λ )− ξ( |y+z|λ )
∣∣∣2∣∣∣φδ,0(x)∣∣∣2

|x− y|N+2s
dydx

=

∫
B2λ(−z)

∫
Bλ(x)

∣∣∣ξ( |x+z|λ )− ξ( |y+z|λ )
∣∣∣2∣∣∣φδ,0(x)∣∣∣2

|x− y|N+2s
dydx

+

∫
B2λ(−z)

∫
RN\Bλ(x)

∣∣∣ξ( |x+z|λ )− ξ( |y+z|λ )
∣∣∣2∣∣∣φδ,0(x)∣∣∣2

|x− y|N+2s
dydx.
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On the one hand, using mean value theorem, we conclude that

∫
B2λ(−z)

∫
Bλ(x)

∣∣∣ξ( |x+z|λ )− ξ( |y+z|λ )
∣∣∣2∣∣∣φδ,0(x)∣∣∣2

|x− y|N+2s
dydx ≤ C1

(2− 2s)λ2s

∫
B2λ(−z)

|φδ,0(x)|2dx. (3.3)

On the other hand, we obtain that

∫
B2λ(−z)

∫
RN\Bλ(x)

∣∣∣ξ( |x+z|λ )− ξ( |y+z|λ )
∣∣∣2∣∣∣φδ,0(x)∣∣∣2

|x− y|N+2s
dydx

= 4

∫
B2λ(−z)

|φδ,0(x)|2
∫
RN\Bλ(x)

1

|x− y|N+2s
dydx

≤ C2

sλ2s

∫
B2λ(−z)

|φδ,0(x)|2dx.

(3.4)

Combine with (3.3) and (3.4), we have that

∫
Π2

∣∣∣ξ( |x+z|λ )− ξ( |y+z|λ )
∣∣∣2∣∣∣φδ,0(x)∣∣∣2

|x− y|N+2s
dydx ≤ C3

λ2s

∫
B2λ(−z)

|φδ,0(x)|2dx. (3.5)

Define

A := {y ∈ B2λ(−z) : |x− y| ≤ λ},Ac := {y ∈ B2λ(−z) : |x− y| > λ},

then ∫
Π3

∣∣∣ξ( |x+z|λ )− ξ( |y+z|λ )
∣∣∣2∣∣∣φδ,0(x)∣∣∣2

|x− y|N+2s
dydx

=

∫
RN\B2λ(−z)

∫
A

∣∣∣ξ( |x+z|λ )− ξ( |y+z|λ )
∣∣∣2∣∣∣φδ,0(x)∣∣∣2

|x− y|N+2s
dydx

+

∫
RN\B2λ(−z)

∫
Ac

∣∣∣ξ( |x+z|λ )− ξ( |y+z|λ )
∣∣∣2∣∣∣φδ,0(x)∣∣∣2

|x− y|N+2s
dydx.

Arguing as before, we can obtain that

=

∫
RN\B2λ(−z)

∫
A

∣∣∣ξ( |x+z|λ )− ξ( |y+z|λ )
∣∣∣2∣∣∣φδ,0(x)∣∣∣2

|x− y|N+2s
dydx

≤ C4

λ2s

∫
B3λ(−z)

|φδ,0(x)|2dx.

(3.6)

Choose γ > 4, it is easy to see that

(RN\B2λ(−z))×B2λ(−z) ⊂ [(Bγλ(−z)×B2λ(−z)) ∪ (RN\Bγλ(−z)×B2λ(−z))].
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Therefore, ∫
RN\B2λ(−z)

∫
Ac

∣∣∣ξ( |x+z|λ )− ξ( |y+z|λ )
∣∣∣2∣∣∣φδ,0(x)∣∣∣2

|x− y|N+2s
dydx

≤
∫
Bγλ(−z)

∫
Ac

∣∣∣ξ( |x+z|λ )− ξ( |y+z|λ )
∣∣∣2∣∣∣φδ,0(x)∣∣∣2

|x− y|N+2s
dydx

+

∫
RN\Bγλ(−z)

∫
Ac

∣∣∣ξ( |x+z|λ )− ξ( |y+z|λ )
∣∣∣2∣∣∣φδ,0(x)∣∣∣2

|x− y|N+2s
dydx.

(3.7)

By direct computation, one gets

∫
Bγλ(−z)

∫
Ac

∣∣∣ξ( |x+z|λ )− ξ( |y+z|λ )
∣∣∣2∣∣∣φδ,0(x)∣∣∣2

|x− y|N+2s
dydx

≤ C5

sλ2s

∫
Bγλ(−z)

|φδ,0(x)|2dx.

(3.8)

If (x, y) ∈ RN\Bγλ(−z))×B2λ(−z), we have

|x− y| ≥ |x+ z| − |z + y| ≥ |x+ z|
2

+
γλ

2
− 2λ ≥ |x+ z|

2
.

So, we have that ∫
RN\Bγλ(−z)

∫
Ac

∣∣∣ξ( |x+z|λ )− ξ( |y+z|λ )
∣∣∣2∣∣∣φδ,0(x)∣∣∣2

|x− y|N+2s
dydx

≤ C6

γN

(∫
RN\Bγλ(−z)

|φδ,0(x)|2
∗
sdx

) 2
2∗s ,

(3.9)

Hence, it follows from (3.7)-(3.9) that

∫
RN\B2λ(−z)

∫
Ac

∣∣∣ξ( |x+z|λ )− ξ( |y+z|λ )
∣∣∣2∣∣∣φδ,0(x)∣∣∣2

|x− y|N+2s
dydx

≤ C6

γN

(∫
RN\Bγλ(−z)

|φδ,0(x)|2
∗
sdx

) 2
2∗s +

C7

λ2s

∫
Bγλ(−z)

|φδ,0(x)|2dx.

(3.10)

Therefore, combining with (3.2), (3.5), (3.6) and (3.10), we conclude that

I1 ≤
C3

λ2s

∫
B2λ(−z)

|φδ,0(x)|2dx+
C4

λ2s

∫
B3λ(−z)

|φδ,0(x)|2dx

+
C7

λ2s

∫
Bγλ(−z)

|φδ,0(x)|2dx+
C6

γN

(∫
RN\Bγλ(−z)

|φδ,0(x)|2
∗
sdx

) 2
2∗s

≤ C8

λ2s

∫
Bγλ(−z)

|φδ,0(x)|2dx+
C6

γN

(∫
RN\Bγλ(−z)

|φδ,0(x)|2
∗
sdx

) 2
2∗s

≤ C9γ
2s
(∫

Bγλ(−z)
|φδ,0(x)|2

∗
sdx

) 2
2∗s +

C10

γN
.
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Given ε > 0, we can fix γ large enough such that C10

γN
< ε

2 . So,

I1 ≤ C9γ
2s
(∫

Bγλ(−z)
|φδ,0(x)|2

∗
sdx

) 2
2∗s +

ε

2
.

Now let us fix λ small enough such that∫
Bγλ(−z)

|φδ,0(x)|2
∗
sdx <

(ε
2

) 2
2∗s 1

C9γ2s
.

From above arguments, we get that I1 ≤ ε uniformly in z for λ small enough, which shows that

I1 → 0, as λ→ 0, for z ∈ RN .

Then, together with (3.2), we deduce that

∥vλ∥2 = ∥vλ∥2RN → ∥φδ,z∥2RN as λ→ 0, ∀(z, δ) ∈ RN × R+. (3.11)

It follows from simple calculation that∫
RN

∫
RN

|vλ(x)|2
∗
µ,s |vλ(y)|2

∗
µ,s

|x− y|N−µ dydx−
∫
RN

∫
RN

|φδ,z(x)|2
∗
µ,s |φδ,z(y)|2

∗
µ,s

|x− y|N−µ dydx

=

∫
RN

∫
RN

|vλ(x)|2
∗
µ,s |vλ(y)|2

∗
µ,s

|x− y|N−µ dydx−
∫
RN

∫
RN

|φδ,0(x− z)|2∗µ,s |φδ,0(y − z)|2∗µ,s
|x− y|N−µ dydx

=

∫
RN

∫
RN

[∣∣∣ξ( |x+z|λ )
∣∣∣2∗µ,s∣∣∣ξ( |y+z|λ )

∣∣∣2∗µ,s − 1
]
|φδ,0(x)|2

∗
µ,s |φδ,0(y)|2

∗
µ,s

|x− y|N−µ dydx

:=

∫
RN

∫
RN

Πλ(x, y)dydx.

Since

Πλ(x, y) ≤ C
|φδ,0(x)|2

∗
µ,s |φδ,0(y)|2

∗
µ,s

|x− y|N−µ ∈ L1(RN × RN )

and

Πλ(x, y) → 0 a.e. in RN × RN as λ→ 0,

using the Lebesgue’s dominated convergence theorem, we conclude that∫
RN

∫
RN

|vλ(x)|2
∗
µ,s |vλ(y)|2

∗
µ,s

|x− y|N−µ dydx→
∫
RN

∫
RN

|φδ,z(x)|2
∗
µ,s |φδ,z(y)|2

∗
µ,s

|x− y|N−µ dydx (3.12)

uniformly in z ∈ RN as λ→ 0.

Thanks to

|vλ − φδ,z|
2∗s
2∗s ,RN =

∫
B2λ(0)

∣∣∣(ξ( |y|
λ
)− 1

)
φδ,0(x)

∣∣∣2∗sdx
≤ C

∫
B2λ(0)

|φδ,z(x)|2
∗
sdx

→ 0, for (δ, z) ∈ RN × R+,
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we obtain that

|vλ|
2∗s
2∗s

= |vλ|
2∗s
2∗s ,RN → |φδ,z|

2∗s
2∗s ,RN as λ→ 0, ∀(z, δ) ∈ RN × R+, (3.13)

which together with V ∈ L
N
2s (Ω) concludes that∫

RN

V (x)|vλ|2dx→
∫
RN

V (x)|φδ,z|2dx, as λ→ 0, ∀(z, δ) ∈ RN × R+. (3.14)

Thanks to V ∈ L
N
2s (Ω), arguing as in the proof of Lemma 4.3 in [20], for any ε > 0, there exist

δ1 = δ1(ε) and δ2 = δ2(ε) such that ∫
RN

V (x)|φδ,z|2dx < ε,

for z ∈ RN and δ ∈ (0, δ1] ∪ [δ2,+∞). An then, combined with (3.14), we obtain that as λ→ 0,∫
RN

V (x)|vλ|2dx→ 0 as δ → 0 or δ → +∞, ∀z ∈ RN . (3.15)

So, it follows from (3.11), (3.12), (3.15), J∞(φδ,z) = m∞ and ⟨J ′
∞(φδ,z), φδ,z⟩ = 0 that, as λ→ 0,

J (vλ) → m∞ and ⟨J ′(vλ, vλ⟩ → 0 as δ → 0 or δ → +∞ for z ∈ RN .

Then similar to the proof as in Proposition 2.2, we can conclude that as λ→ 0, tvλ → 1, as δ → 0 or δ →
+∞ for z ∈ RN . Consequently, (c) follows directly from the definition of Kλ(z, δ).

Lemma 3.2. Let (V1)− (V2) hold, then there is λ∗ ∈ (0, 18) such that for any λ < λ∗

sup
(z,δ)∈RN×R+

J (Kλ(z, δ)) < 2
4s−µ

N−µ+2sm∞.

Proof. It follows from (3.11), (3.12), (3.14) and ⟨J ′(Kλ(z, δ)),Kλ(z, δ)⟩ = ⟨J ′(tvλvλ), tvλvλ⟩ = 0 that

t
(2·2∗µ,s−2)
vλ =

∥vλ∥2 +
∫
Ω V (x)v2λdx∫

Ω(Iµ ∗ |vλ|
2∗µ,s)|vλ|2

∗
µ,sdx

≤
∥vλ∥2 + |V |N

2s
|vλ|22∗s∫

Ω(Iµ ∗ |vλ|
2∗µ,s)|vλ|2

∗
µ,sdx

→
∥φδ,z∥2RN + |V |N

2s
|φδ,z|

2∗s
2∗s ,RN∫

RN (Iµ ∗ |φδ,z|2
∗
µ,s)|φδ,z|2

∗
µ,sdx

as λ→ 0, ∀(z, δ) ∈ RN × R+.

Hence, by (V1) and (V2) we derive that

lim
λ→0

J (Kλ(z, δ)) = lim
λ→0

( t2vλ
2
∥vλ∥2 +

t2vλ
2

∫
Ω
V (x)v2λdx− t

2·2∗µ,s
vλ

2 · 2∗µ,s

∫
Ω
(Iµ ∗ |vλ|2

∗
µ,s)|vλ|2

∗
µ,sdx

)
= lim

λ→0

(1
2
− 1

2 · 2∗µ,s

)
t
2·2∗µ,s
vλ

∫
RN

(Iµ ∗ |vλ|2
∗
µ,s)|vλ|2

∗
µ,sdx

≤ N − µ+ 2s

2(2N − µ)

( ∥φδ,z∥2RN (
1
Ss
|V |N

2s
+ 1)∫

RN (Iµ ∗ |φδ,z|2
∗
µ,s)|φδ,z|2

∗
µ,sdx

) 2·2∗µ,s
2·2∗µ,s−2

∫
RN

(Iµ ∗ |φδ,z|2
∗
µ,s)|φδ,z|2

∗
µ,sdx

≤ N − µ+ 2s

2(2N − µ)

( 1

Ss
|V |N

2s
+ 1

) 2N−µ
N−µ+2s

S
2N−µ

N−µ+2s
µ,s

< 2
4s−µ

N−µ+2s
N − µ+ 2s

2(2N − µ)
S

2N−µ
N−µ+2s
µ,s

= 2
4s−µ

N−µ+2sm∞ ∀(z, δ) ∈ RN × R+.
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Consequently, we conclude that there exists constant λ∗ ∈ (0, 18) such that for any λ < λ∗

sup
(z,δ)∈RN×R+

J (Kλ(z, δ)) < 2
4s−µ

N−µ+2sm∞.

In subsequent discussions, we always assume Ω fixed with

diam(RN \ Ω) := sup{|x− y| : x, y ∈ RN \ Ω} < λ∗, where λ∗ ∈ (0, 1/8) is the constant obtained in

Lemma 3.2. Hence, for any x0 ∈ RN\Ω, RN\Ω ⊂ Bλ∗(x0). Thus, we have that

λ = inf{τ : RN\Ω ⊂ Bτ (0)} < λ∗ <
1

8
, RN\Ω ⊂ B 1

8
(0).

Defined χi : R+ → R, i = 1, 2 by

χ1(t) =

 4, t ≤ 1
4 ,

1
t , t >

1
4 ,

and χ2(t) =

 0, t < 1,

1, t ≥ 1.

Define a barycenter type map α : Ds,2(RN ) → RN and a functional β : Ds,2(RN ) → R as

α(u) =
1

S
2N−µ

N−µ+2s
µ,s

∫
RN

χ1(|x|)x|(−∆)−
s
2u|2dx, β(u) = 1

S
2N−µ

N−µ+2s
µ,s

∫
RN

χ2(|x|)|(−∆)−
s
2u|2dx.

Let

M :=
{
u ∈ N : (α(u), β(u)) = (0,

1

2
)
}
⊂ Ds,2

0 (Ω).

Lemma 3.3. If |z| ≥ 1
2 , then we have

α(φδ,z) =
z

|z|
+ o(1) as δ → 0.

Proof. Fix |z| ≥ 1
2 , we have B 1

4
(0) ∩ Bε(z) = ∅ for any ε > 0 small enough. Then by the definition of

φδ,z and thanks to Proposition 2.2 in [45], we have that∣∣∣ 1

S
2N−µ

N−µ+2s
µ,s

∫
B 1

4
(0)

4x|(−∆)−
s
2φδ,z|2dx

∣∣∣ ≤ 1

S
2N−µ

N−µ+2s
µ,s

∫
B 1

4
(0)

4|x||(−∆)−
s
2φδ,z|2dx

≤ C

∫
B 1

4
(0)

|∇φδ,z|2dx

≤ Cδ
N−2s

2 |z|2 → 0 as δ → 0,

(3.16)

and ∣∣∣ 1

S
2N−µ

N−µ+2s
µ,s

∫
A

x

|x|
|(−∆)−

s
2φδ,z|2dx

∣∣∣ ≤ 1

S
2N−µ

N−µ+2s
µ,s

∫
RN\B 1

4
(0)

|(−∆)−
s
2φδ,z|2dx

≤ C1

∫
RN\B 1

4
(0)

|∇φδ,z|2dx

≤ C2δ
N−2s → 0 as δ → 0,

(3.17)
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where A = RN\(Bε(z) ∪B 1
4
(0)).

For any x ∈ Bε(z), considering |z| ≥ 1
2 and ε > 0 small enough, we have∣∣∣ x|x| − z

|z|

∣∣∣ < C3ε.

Therefore, we deduce that∣∣∣ z|z| − 1

S
2N−µ

N−µ+2s
µ,s

∫
Bε(z)

x

|x|
|(−∆)−

s
2φδ,z|2dx

∣∣∣
=

∣∣∣ 1

S
2N−µ

N−µ+2s
µ,s

∫
Bε(z)

( z

|z|
− x

|x|

)
|(−∆)−

s
2φδ,z|2dx+

1

S
2N−µ

N−µ+2s
µ,s

∫
RN\Bε(z)

z

|z|
|(−∆)−

s
2φδ,z|2dx

∣∣∣
≤ C3ε

S
2N−µ

N−µ+2s
µ,s

∫
RN

|(−∆)−
s
2φδ,z|2dx+

1

S
2N−µ

N−µ+2s
µ,s

∫
RN\Bε(z)

|(−∆)−
s
2φδ,z|2dx→ 0 as δ → 0.

(3.18)

Hence, combining with (3.16), (3.17) and (3.18), we obtain that

α(φδ,z) =
z

|z|
+ o(1) as δ → 0.

Lemma 3.4. Suppose that (V1) holds with |V |N
2s

̸= 0, then we have

c0 := inf
u∈M∩P

J (u) > m∞, (3.19)

where P is the cone of non-negative functions of Ds,2
0 (Ω). Furthermore, as λ→ 0, there exist T > 1

2 , 0 <

δ1 <
1
2 , δ2 >

1
2 such that

(a) β(Kλ(z, δ)) <
1

2
, |z| < 1

2
and δ ≤ δ1;

(b)
∣∣∣α(Kλ(z, δ))−

z

|z|

∣∣∣ < 1

4
, |z| ≥ 1

2
and δ ≤ δ1;

(c) β(Kλ(z, δ)) >
1

2
, z ∈ RN and δ ≥ δ2;

(d) J (Kλ(z, δ)) <
c0 +m∞

2
, z ∈ RN and δ = δ1 or δ = δ2;

(e) J (Kλ(z, δ)) ∈ (m∞,
c0 +m∞

2
), |z| ≥ T and and δ ∈ [δ1, δ2];

(f)
(
α(Kλ(z, δ)), z

)
RN

> 0, |z| = T and δ ∈ [δ1, δ2].

(3.20)

Proof. First, we prove (3.19). Obviously, c0 ≥ m∞, so to obtain (3.19), we suppose c0 = m∞ by

contradiction. Hence, there is {un} ⊂ M∩P such that

lim
n→∞

J (un) = m∞, ⟨J ′(un), un⟩ = 0, α(un) = 0, β(un) =
1

2
. (3.21)
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Thanks to Proposition 2.2, {un} is not relatively compact. Then it follows from Corollary 2.1 that

un(x) = φδn,zn(x) + wn(x), x ∈ RN

where {zn} ∈ RN , {δn} ∈ R+, {wn} ⊂ Ds,2(RN ) with wn → 0 in Ds,2(RN ), and φδn,zn is a positive

ground state solution of (2.8) realizing m∞. In subsequence sense, for (δn, zn), one of the following

conditions holds:
(1) δn → +∞ as n→ +∞; (2) δn → δ ̸= 0 as n→ +∞;

(3) δn → 0 and zn → z with |z| < 1

2
as n→ +∞;

(4) δn → 0 as n→ +∞ and |zn| ≥
1

2
for n large.

(3.22)

By definitions of α(u) and β(u), thanks to (3.21), we have that

α(φδn,zn) → 0, β(φδn,zn) →
1

2
as n→ +∞. (3.23)

If δn → +∞ as n→ +∞, we obtain that

β(φδn,zn) =
1

S
2N−µ

N−µ+2s
µ,s

∫
RN

χ2(|x|)|(−∆)−
s
2φδn,zn |2dx

=
1

S
2N−µ

N−µ+2s
µ,s

∫
RN\B1(0)

|(−∆)−
s
2φδn,zn |2dx

= 1− 1

S
2N−µ

N−µ+2s
µ,s

∫
B1(0)

|(−∆)−
s
2φδn,zn |2dx

= 1 + on(1) as n→ +∞,

which is a contradiction.

If δn → δ ̸= 0 as n → +∞, by Proposition 2.2 we can obtain that zn → +∞ as n → +∞. Then

we have
β(φδn,zn) = β(φδ,zn) + on(1)

=
1

S
2N−µ

N−µ+2s
µ,s

∫
RN

χ2(|x+ zn|)|(−∆)−
s
2φδ,0|2dx+ on(1)

=
1

S
2N−µ

N−µ+2s
µ,s

∫
RN\B1(−zn)

|(−∆)−
s
2φδ,0|2dx+ on(1)

= 1− 1

S
2N−µ

N−µ+2s
µ,s

∫
B1(−zn)

|(−∆)−
s
2φδ,0|2dx+ on(1)

= 1 + on(1) as n→ +∞.

Thanks to (3.23), we get a contradiction.
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If δn → 0 and zn → z with |z| < 1
2 as n→ +∞, then

β(φδn,zn) = β(φδn,z) + on(1)

=
1

S
2N−µ

N−µ+2s
µ,s

∫
RN

χ2(|x+ z|)|(−∆)−
s
2φδn,0|2dx+ on(1)

=
1

S
2N−µ

N−µ+2s
µ,s

∫
RN\B1(−z)

|(−∆)−
s
2φδn,0|2dx+ on(1)

= on(1) as n→ +∞,

which contradicts with (3.23).

If δn → 0 as n→ +∞ and |zn| ≥ 1
2 for n large, according to Lemma 3.3, we get

α(φδn,zn) =
zn
|zn|

+ on(1) as n→ +∞.

Obviously, it is impossible duo to (3.23).

Consequently, it follows from above discussions that c0 > m∞.

In the what following, we give the prove of (3.20).

By (c) of Lemma 3.1, as λ→ 0, one has

J (Kλ(z, δ)) = J (tvλvλ)) → m∞ as δ → 0, uniformly in z ∈ RN .

Then it follows from Kλ(z, δ) ∈ N and Lemma 3.3 that, as λ→ 0

β(Kλ(z, δ)) → β(φδ,z) as δ → 0, uniformly in z ∈ RN . (3.24)

Hence we conclude that

β(φδ,z) =
1

S
2N−µ

N−µ+2s
µ,s

∫
RN\B1(0)

|(−∆)−
s
2φδ,z|2dx

=
1

S
2N−µ

N−µ+2s
µ,s

∫
RN\B1(−z)

|(−∆)−
s
2φδ,0|2dx

= o(1) as δ → 0, for |z| < 1

2
,

which shows that, as λ→ 0, there is 0 < δ1 <
1
2 such that (a) holds.

Similarly, it follows from (c) of Lemma 3.1 and Corollary 2.1 that, as λ→ 0

α(Kλ(z, δ)) → α(φδ,z) as δ → 0, uniformly in z ∈ RN .

Then according to Lemma 3.3, as λ→ 0, there is 0 < δ1 <
1
2 such that (b) holds.

By (c) of Lemma 3.1 and Corollary 2.1, as λ→ 0, we also obtain that

β(Kλ(z, δ)) → β(φδ,z) as δ → 0, uniformly in z ∈ RN . (3.25)
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Thanks to ∫
B1(0)

|(−∆)−
s
2φδ,z|2dx ≤ Cδ−

N
2
−1+s → 0 as δ → +∞,

we have that

β(φδ,z) = 1− 1

S
2N−µ

N−µ+2s
µ,s

∫
B1(0)

|(−∆)−
s
2φδ,z|2dx

= 1 + o(1) as δ → +∞.

Hence, as λ→ 0, it follows from (3.25) that there is δ2 >
1
2 such that (c) holds.

According to (c) of Lemma 3.1, as λ→ 0, we have

J (Kλ(z, δ)) = J (tvλvλ)) → m∞ as δ → 0 or δ → +∞ uniformly in z ∈ RN .

Thanks to (3.19), as λ→ 0, there exist 0 < δ1 <
1
2 < δ2 such that (d) holds.

By Kλ(z, δ) ∈ N , we have J (Kλ(z, δ)) ≥ m. Hence, thanks to Proposition 2.2, we obtain that

J (Kλ(z, δ)) > m = m∞,∀z ∈ RN , δ > 0.

By (b) of Lemma 3.1, one has

J (Kλ(z, δ)) = J (tvλvλ)) → m∞ as |z| → +∞

uniformly for every bounded λ, and bounded δ away from 0. Thanks to (3.19), there is T1 >
1
2 satisfying

J (Kλ(z, δ)) <
c0 +m∞

2
, |z| ≥ T1, δ1 ≤ δ ≤ δ2, λ < 1.

That is, (e) holds.

According to (b) of Lemma 3.1, Corollary 2.1 and the fact Kλ(z, δ) ∈ N , we have that(
α(Kλ(z, δ)), z

)
RN

→
(
α(φδ,z), z

)
RN

as |z| → +∞ (3.26)

uniformly in δ1 ≤ δ ≤ δ2, λ < 1.

Let

(RN )+z := {x ∈ RN : (x, z)RN > 0} and (RN )−z := {x ∈ RN : (x, z)RN ≤ 0}.

Since δ ∈ [δ1, δ2], there exist a large T2 > 0 and r ∈ (0, 1/4) such that if |z| ≥ T2, the ball Br(z̃) ⊂ (RN )+z
with z̃ satisfying |z − z̃| = 1

2 , and by the definition of φδ,z one has

|(−∆)−
s
2φδ,z|2 ≥ C0 > 0, x ∈ Br(z̃).
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Hence, for any |z| ≥ T2, δ ∈ [δ1, δ2], one has(
α(φδ,z), z

)
RN

=
1

S
2N−µ

N−µ+2s
µ,s

∫
(RN )+z

|(−∆)−
s
2φδ,z|2χ1(|x|)(x, z)RNdx

+
1

S
2N−µ

N−µ+2s
µ,s

∫
(RN )−z

|(−∆)−
s
2φδ,z|2χ1(|x|)(x, z)RNdx

:= I1 + I2.

Moreover, we have

I1 =
1

S
2N−µ

N−µ+2s
µ,s

∫
(RN )+z

|(−∆)−
s
2φδ,z|2χ1(|x|)(x, z)RNdx

≥ |z|

S
2N−µ

N−µ+2s
µ,s

∫
Br(z̃)

C0(x, z)RN

|x||z|
dx

≥ C1|z|
∫
Br(z̃)

1

|x|
dx

= C2|z|.

Arguing as Lemma 4.7 in [20], choose T3 > 0 large enough such that z ∈ RN with |z| > T3, we

have
1

S
2N−µ

N−µ+2s
µ,s

∫
(RN )−z

|(−∆)−
s
2φδ,z|2dx <

C2

2
.

Then we have

I2 ≥
1

S
2N−µ

N−µ+2s
µ,s

∫
(RN )−z

|(−∆)−
s
2φδ,z|2χ1(|x|)(x, z)RNdx

≥ − |z|

S
2N−µ

N−µ+2s
µ,s

∫
(RN )−z

|(−∆)−
s
2φδ,z|2dx

> −C2|z|
2

.

Therefor (
α(φδ,z), z

)
RN

= I1 + I2 ≥
C2

2
|z| > 0,

for all z ∈ RN with |z| > T = max{T1, T2, T3} > 0 and for all δ1 ≤ δ ≤ δ2.

Let

Πδ,z :=
{
(z, δ) ∈ RN × R+ : |z| < T, δ ∈ [δ1, δ1]

}
,

where δ1, δ2 and T are constants defined as in Lemma 3.4. Denoted

∂Πδ,z := Π1 ∪Π2 ∪Π3 ∪Π4,
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where

Π1 =
{
(z, δ) ∈ RN × R+ : |z| < 1

2
, δ = δ1

}
; Π2 =

{
(z, δ) ∈ RN × R+ :

1

2
≤ |z| < T, δ = δ1

}
;

Π3 =
{
(z, δ) ∈ RN × R+ : |z| ≤ T, δ = δ2

}
; Π4 =

{
(z, δ) ∈ RN × R+ : |z| = T, δ ∈ [δ1, δ1]

}
.

Defined Θ ⊂ Ds,2
0 (Ω) by

Θ :=
{
Kλ(z, δ) : (z, δ) ∈ Πδ,z

}
.

It is easy to see that Θ ⊂ P ∩N . Set

E :=
{
γ : γ ∈ C(P ∩N ,P ∩N ), γ(u) = u for any u with J (u) <

c0 +m∞
2

}
,

F :=
{
D ⊂ P ∩N : D = γ(Θ), γ ∈ E

}
.

Lemma 3.5. Let (V1) hold and D ∈ F , then as λ→ 0 we have

D ∩M ≠ ∅.

Proof. To prove this Lemma, we just prove that for any γ ∈ E , as λ→ 0, there is (z∗, δ∗) ∈ Πδ,z so that

((α, β) ◦ γ ◦ Kλ)(z
∗, δ∗) = (0,

1

2
). (3.27)

Defined Lγ : RN × R+ → RN × R+ and L : Πδ,z → RN × R+ by

Lγ = (α, β) ◦ γ ◦ Kλ, L = (α, β) ◦ Kλ.

Firstly, we prove that, as λ→ 0

deg(Lγ ,Πδ,z, (0,
1

2
)) = deg(L,Πδ,z, (0,

1

2
)). (3.28)

It follows from (d) and (e) of (3.20) that, as λ→ 0

J (Kλ(z, δ)) <
c0 +m∞

2
, (z, δ) ∈ ∂Πδ,z.

Thus, as λ→ 0, we have

γ(Kλ(z, δ)) = Kλ(z, δ), (z, δ) ∈ ∂Πδ,z.

So, we obtain that

Lγ(z, δ) = ((α, β) ◦ Kλ)(z, δ) = L(z, δ), (z, δ) ∈ ∂Πδ,z,

which concludes that (3.28) holds.

Secondly, we need to prove that as λ→ 0

deg(L,Πδ,z, (0,
1

2
)) = 1. (3.29)
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Let

Υ(z, δ, t) = tL(z, δ) + (1− t)(z, δ), t ∈ [0, 1].

It follows from the homotopy invariance property of the topological degree and the fact

deg(IdΠδ,z
,Πδ,z, (0,

1

2
)) = 1,

that, for get (3.29), we just to prove that as λ→ 0

Υ(z, δ, t) ̸= (0,
1

2
), for ∀(z, δ) ∈ ∂Πδ,z and t ∈ [0, 1]. (3.30)

If (z, δ) ∈ Π1, thanks to δ1 <
1
2 and (a) of (3.20), we have

t(β ◦ Kλ)(z, δ1) + (1− t)δ1 <
1

2
, t ∈ [0, 1]. (3.31)

If (z, δ) ∈ Π2, since δ1 <
1
2 , it follows from (b) of (3.20) that∣∣∣α(Kλ(z, δ))−

z

|z|

∣∣∣ < 1

4
,

which concludes that

|(1− t)z + t(α ◦ Kλ)(z, δ1)| ≥
∣∣∣(1− t)z + t

z

|z|

∣∣∣− ∣∣∣t(α ◦ Kλ)(z, δ1)− t
z

|z|

∣∣∣
≥ (1− t)|z|+ t− t

4

≥ 1

2
+
t

4
> 0, t ∈ [0, 1].

(3.32)

If (z, δ) ∈ Π3, by δ2 >
1
2 and (c) of (3.20), we deduce that

t(β ◦ Kλ)(z, δ2) + (1− t)δ2 > (1− t)
1

2
+
t

2
=

1

2
, t ∈ [0, 1]. (3.33)

If (z, δ) ∈ Π4, according to (f) of (3.20), we have(
t(α ◦ Kλ)(z, δ) + (1− t)z, z

)
RN

= (1− t)|z|2 + t
(
(α ◦ Kλ)(z, δ), z

)
RN

> 0, t ∈ [0, 1]. (3.34)

Consequently, by (3.31)-(3.34), we get (3.30), and then (3.29) holds. Therefore, combine (3.28)

with (3.29), we obtain that D ∩M ≠ ∅.

4 The proof of main results

Proof. Let

c∗ := inf
D∈F

sup
u∈D

J (u).

Kc∗ := {u ∈ P ∩N : J (u) = c∗, J ′(u) = 0}.
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J r := {u ∈ N : J (u) ≤ r}, r ∈ R.

Let λ∗ small enough such that Lemmas 3.2 and 3.5 hold for any λ < λ∗. Fix λ with λ < λ∗. To

prove the Theorem 1.1, we only prove that Kc∗ ̸= ∅. Suppose by contradiction Kc∗ = ∅. It follows from
Lemma 3.4 and Lemma 3.5 that

c∗ ≥ inf
u∈M∩P

J (u) = c0 > m∞.

By Lemma 3.2, we obtain that c∗ < 2
4s−µ

N−µ+2sm∞ due to Θ ⊂ F . Therefore, we have

m∞ < c∗ < 2
4s−µ

N−µ+2sm∞.

According to Corollary 2.2, J satisfies Palais-Smale condition in

P ∩N ∩ {u ∈ Ds,2
0 (Ω) : m∞ < J (u) < 2

4s−µ
N−µ+2sm∞}.

So, it follows from a variant due to Hofer [22] of the classical deformation lemma (see [50, 53]) that

there is a continuous map

ψ : [0, 1]× P ∩N → P ∩N

and ε0 > 0 satisfying:

(a) J c∗+ε0\J c∗−ε0 ⊂⊂ J 2
4s−µ

N−µ+2sm∞\J
c0+m∞

2 ;

(b) ψ(0, u) = u;

(c) ψ(t, u) = u, u ∈ J c∗−ε0 ∪ {P ∩ N\J c∗+ε0}, t ∈ [0, 1];

(d) ψ(1,J c∗+
ε0
2 ) ⊂ J c∗− ε0

2 .

By definition of c∗, there exists D∗ ∈ F such that

c∗ ≤ sup
u∈D∗

J (u) < c∗ +
ε0
2
,

hence ψ(1, D∗) ∈ F , and it follows from (d) that

c∗ ≤ sup
u∈ψ(1,D∗)

J (u) < c∗ − ε0
2
,

which is a contradiction. Thus, Kc∗ ̸= ∅ and Theorem 1.1 is proved.
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[16] W. Guan, V. D. Rădulescu, D. B. Wang, Bound states of fractional Choquard equations with Hardy-

Littlewood-Sobolev critical exponent, J. Differential Equations, 355(2023), 219-247.

[17] L. Guo, T. Hu, S. J. Peng, W. Shuai, Existence and uniqueness of solutions for Choquard equation involving

Hardy-Littlewood-Sobolev critical exponent, Calc. Var. Partial Differ. Equ. 58(2019), 128.

[18] L. Guo, Q. Li, Multiple bound state solutions for fractional Choquard equation with Hardy-Littlewood-

Sobolev critical exponent, J. Math. Phys. 61(2020), 121501.
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