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Abstract. We study the asymptotic behavior of the minimizers for the
Ginzburg-Landau energy with a weight which vanishes. We find the link
between the growth rate of the weight near its zeroes and the number of
singularities of the limiting configuration, as well as their degrees. We give
the expression of the corresponding renormalized energy which governs the
location of singularities at the limit.

Introduction

F. Bethuel, H. Brezis and F. Hélein have studied in [BBH4] the asymptotic
behavior as ε → 0 of minimizers of the Ginzburg-Landau energy

Eε(u,G) = Eε(u) =
1
2

∫

G
| ∇u |2 +

1
4ε2

∫

G
(1− | u |2)2

in the class

H1
g = H1

g (G) = {u ∈ H1(G;R2); u = g on ∂G} ,

where G ⊂ R2 is a smooth bounded domain and g : ∂G → S1 is a smooth
data with the topological degree d > 0.

For each sequence εn → 0, they have proved the existence of a subse-
quence, also denoted (εn) and of a finite configuration {a1, · · · , ad} in G
such that (uεn) converges in certain topologies to u?, which is the canonical
harmonic map with values in S1 associated to {a1, · · · , ad} with degrees +1
and to the boundary data g. This means that

u?(z) =
z − a1

| z − a1 | · · ·
z − ad

| z − ad | e
iϕ(z) in G \ {a1, · · · , ad}
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with

(1)
{

∆ϕ = 0 in G
u? = g on ∂G .

Moreover, the configuration a = (a1, · · · , ad) minimizes the renormalized
energy W (a, g). The renormalized energy W (a, d, g) associated to a given
configuration a = (a1, · · · , ak) with corresponding degrees d = (d1, · · · , dk)
and to the boundary data g with deg (g, ∂G) = d, d = d1 + · · · + dk was
introduced in [BBH2], [BBH4]. If all dj equal +1 (that is k = d) then
W (a, g) denotes W (a, d, g).

In [LR1] we have studied the Ginzburg-Landau energy with weight

Ew
ε (u) =

1
2

∫

G
| ∇u |2 +

1
4ε2

∫

G
(1− | u |2)2w ,

where w ∈ C1(G), w > 0 in G. We proved a similar behavior of minimizers,
but the limiting configuration minimizes the modified renormalized energy.
More precisely, uεn converges to u? in certain topologies but now the limiting
configuration a = (a1, · · · , ad) is a minimum point of

W̃ (b, g) = W (b, g) +
π

2

d∑

j=1

log w(bj) , b ∈ Gd.

A natural question is to see what happens if w vanishes. We first study
the case when w ≥ 0 and it has a unique zero x0 ∈ G and suppose that
w(x) ∼| x−x0 |p around x0, where p > 1. This means that w(x) =| x−x0 |p
+f(x) | x |p+1 in a neighbourhood of x0, where f is a C1 function. We show
that, up to a subsequence, uε converges to a harmonic map u? associated to
singularities x0, a1, · · · , ak with d0 = deg (u?, x0) > 0 and deg (u?, aj) = +1
for j = 1, · · · , k. More precisely, we have (see Theorems 1 and 7)

u?(z) =
(

z − x0

| z − x0 |
)d0 z − a1

| z − a1 | · · ·
z − ak

| z − ak | e
iϕ

with d0 + k = d. Here ϕ is such that (1) holds. Remark that in some
situations the set a = (a1, · · · , ak) is empty. We next complete this result
by finding:
a) the exact value of k as a function of p and d;
b) the position of a1, · · · , ak through the corresponding renormalized energy.
Our main results are the following:
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Theorem A. Assume that d <
p

4
+ 1. Then d0 = d and x0 is the only

singularity of u?.

Theorem B. Assume that d ≥ p

4
+1 and that p is not an integer multiple

of 4. Then d0 =
[
p

4

]
+1 (here [x] denotes the integer part of the real number

x).

Theorem C. Assume that d ≥ p

4
+ 1 and that p is an integer multiple

of 4. Then either d0 =
p

4
or d0 =

p

4
+ 1.

Theorem D. Assume that d ≥ p

4
+ 1 and uε converges to the canonical

harmonic map associated to the configuration a = (x0, a1, · · · , ak) with de-
grees d = (d0, +1, · · · , +1) and to the boundary data g. Then the limiting
configuration a minimizes the renormalized energy

Ŵ (b) = W (b, d, g) +
π

2

k∑

j=1

log w(bj)

among all configurations b = (x0, b1, · · · , bk).

We show, by considering two examples, that in Theorem C both cases
actually occur (see Examples 1 and 3).

The proofs of Theorems A-D follow immediately from Theorems 6, 7, 8
and 9.

1 Estimates of the energy in the case of a ball

We start with a preliminary result.
Theorem 1. For each sequence εn → 0, there exist a subsequence (also

denoted by εn), k points a1, · · · , ak in G and positive integers d0, d1, · · · , dk

with d0+d1+· · ·+dk = d such that (uεn) converges in H1
loc(G\{x0, a1, · · · , ak};R2)

to u?, which is the canonical harmonic map with values in S1 associated to
the points x0, a1, · · · , ak with corresponding degrees d0, d1, · · · , dk and to
the boundary data g. Moreover, d0 ≥ 0 and d1 = · · · = dk = ±1.

Proof. As in [BBH4], the estimate

(2)
1
ε2

∫

G\U
(1− | uε |2)2w ≤ C
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is fundamental to prove the convergence of (uε), where U is an arbitrary
neighbourhood of x0 and C = C(U). The estimate (2) may be obtained
with the techniques of Struwe (see [S2]) used by Hong in the case w > 0 (see
[H]).

Let V be a closed neighbourhood of x0. With the methods developed in
[BBH4], Chapters III-VI, one obtains a finite number of “bad” discs in G\V .
By this way we find a finite configuration {a1, · · · , ak} (k depending on V )
in G \ V such that, up to a subsequence, (uεn) converges in H1

loc(G \ (V ∪
{a1, · · · , ak});R2) to some u?. The limit u? is a harmonic map with values
in S1 and singularities a1, · · · , ak, such that the degree of u? around each aj

(j ≥ 1) is some non-zero integer dj . The fact that all the singularities lie in
G follows as in [BBH4], Theorem VI.2.

Taking arbitrary small neighbourhoods V of x0 and passing to a further
subsequence, we obtain by a diagonal argument a sequence (ak) of points in
G without cluster point in G\{x0} and a sequence (dk) of non-zero integers
such that (uεn) converges in

H1
loc(G \ ({x0} ∪ {ak; k ≥ 1});R2)

to u?, which is a harmonic map from G \ ({x0} ∪ {ak; k ≥ 1}) with values
in S1 and singularities ak of degrees dk.

As in [BBH4], Theorem III.1,

(3) Eε(uε) ≤ πd log
1
ε

+ O(1), as ε → 0 .

Taking into account the energy estimates in [BBH4] (see also [LR1]) we
obtain that

(4)
∑

j≥1

d2
j ≤ d .

This means that there is a finite number of singularities aj , say k.
Denote d0 = deg (u?, x0), which is well defined, since x0 is an isolated

singularity. By adapting the proof of Lemma V.2 from [BBH4] in our case
and on G\V we obtain that all degrees dj , j = 1, · · · , k have the same sign.
Moreover, as in Theorem VI.2 from [BBH4], | dj |= +1, for all j ≥ 1.

We now prove that d0 ≥ 0. Indeed, if not, there would be at least d + 1
singularities different from 0. This would contradict (4).

We shall see later that d0 > 0 and dj = +1, for all j = 1, · · · , k. This
will be done after obtaining stronger energy estimates.
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At this stage we are in position to point out the following estimate, which
will be used in what follows: for each compact K ⊂ G \ {x0, a1, · · · , ak},

(5) ‖∇(uε − u?)‖L∞(K) ≤ CKε .

This follows with the techniques from [BBH3] in the case of a null degree
(see also [M]).

We shall next establish, when G is a ball and w(x) = |x|p, upper and
lower bounds for the energy Eε. These will be accomplished by using the
techniques developed in [BBH4], Chapter I. We shall also take into account
some results from [LR1] (see Theorem 1).

For fixed p > 0, ε,R > 0 and g(x) =
(

x

| x |
)d

, set

Jd(ε,R) = Jp
d (ε, R) = min

H1
g (BR)

{
1
2

∫

BR

| ∇u |2 +
1

4ε2

∫

BR

(1− | u |2)2 | x |p
}

.

By scaling, it is easy to see that

(6) Jd(ε,R) = Jd

(
ε

R1+ p
2

, 1
)

.

Hence, in order to obtain an asymptotic formula for Jp
d , it suffices to study

the functional Jd(ε) := Jd(ε, 1). If p = 0, denote Id(ε,R) = J0
d (ε,R).

Throughout, uε will denote a point where Jd(ε) is achieved.
We first establish an upper bound for Jd(ε).

Theorem 2. The following estimate holds

(7) Jd(ε) ≤ 2d2

p + 2
π log

1
ε

+ O(1), as ε → 0 .

Proof. For α > 0 and 0 < ε < 1, let wε be a minimizer of Eε on
H1

g (B(0, εα)). In order to obtain (7), we choose the following comparison
function:

vε(x) =





(
x

| x |
)d

for εα ≤| x |≤ 1

wε(x) for 0 <| x |< εα .

A straightforward computation shows that

(8) Eε(vε; {x; εα <| x |< 1}) =
1
2

∫

εα<|x|<1
| ∇vε |2= πd2α log

1
ε

.
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On the other hand, using Lemma III.1 in [BBH4] and the fact that |x|p ≤ εpα

on B(0, εα), we obtain
(9)

Eε(vε; B(0, εα)) ≤ Id(ε1− pα
2 , εα) = Id(ε1− p+2

2
α, 1) ≤ π d | log

1

ε1− p+2
2

α
| +O(1) .

Now, choosing α =
2

p + 2
and taking into account (8) and (9) we obtain

(7).

We next establish a lower bound for the energy.

Theorem 3. Assume that the only limit point of uε obtained in Theorem

1 is

(
x

| x |
)d

, that is 0 is the unique singularity of the limit. Then

(10) Jd(ε) ≥ 2d2

p + 2
π log

1
ε
−O(1) as ε → 0 .

Proof. We first estimate
d

dε
Eε(uε) using an idea from [S1]. Let ε1 < ε2.

Then
Eε1(uε2) ≥ Eε1(uε1) ≥ Eε2(uε1) ≥ Eε2(uε2) .

Therefore, if ν(ε) := Eε(uε) then

| ν(ε1)− ν(ε2) |≤| ε1 − ε2 | ·ε1 + ε2

ε2
1ε

2
2

∫

B1

(1− | uε2 |2)2w(x)dx .

This implies that ν is locally Lipschitz on (0, +∞), that is locally absolutely
continuous on (0, +∞) and ν equals to the integral of its derivative. On the
other hand

Eε1(uε2)− Eε2(uε2)
ε1 − ε2

≤ Eε1(uε1)−Eε2(uε2)
ε1 − ε2

≤ Eε1(uε1)− Eε2(uε1)
ε1 − ε2

.

Letting ε1 ↗ ε2 and ε2 ↘ ε1 we have

(11) ν ′(ε) =
d

dε
Eε(uε) = − 1

2ε3

∫

B1

(1− | uε |2)2 | x |p a.e. on (0, +∞).

Recall that uε satisfies the equation

(12)

{
−∆uε =

1
ε2

uε(1− | uε |2) | x |p in B1

uε = xd on ∂B1 .
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As in the proof of the Pohozaev identity, multiplying (12) by (x · ∇uε) and
integrating by parts we obtain
∫

∂B1

∂uε

∂ν
(x·∇uε)+

∫

B1

∑

i,j

∂uε

∂xj

(
δij

∂uε

∂xi
+xi

∂2uε

∂xi∂xj

)
=

p + 2
4ε2

∫

B1

(1− | uε |2)2 | x |p .

Therefore

(13)
p + 2
2ε2

∫

B1

(1− | uε |2)2 | x |p =
∫

∂B1

(
| ∂uε

∂τ
|2 − | ∂uε

∂ν
|2

)
.

Thus

(14)
1

2ε2

∫

B1

(1− | uε |2)2 | x |p =
2d2

p + 2
π − 1

p + 2

∫

∂B1

| ∂uε

∂ν
|2 .

Taking into account the estimate (5) we obtain from (14) that

(15)
1

2ε2

∫

B1

(1− | uε |2)2 | x |p =
2d2

p + 2
π + O(ε) as ε → 0 .

Integrating (11) from ε to 1 we find together with (15) that

(16) Eε(uε) =
2d2

p + 2
π log

1
ε

+ O(1) as ε → 0 .

Theorem 4. Suppose, in the case of the ball B1 and w(x) =| x |p, that
uεn converges as in Theorem 1 to u? which has singularities 0 with degree
d0 and a1, · · · , ak such that

deg (u?, a1) = · · · = deg (u?, ak) = ±1 .

Then

(17)
1

4ε2
n

∫

B1

(1− | uεn |2)2 | x |p=
d2

0

p + 2
π +

kπ

2
+ O(ε) as n →∞ .

Proof. We follow the strategy of the proof of Theorem VII.2 from
[BBH4]. From (13) we have that

Wn =
1

4ε2
n

(1− | uεn |2)2 | x |p
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is bounded in L1(B1) as n → ∞. We also remark at this stage that there
exists C > 0 such that, for all ε > 0 (and not only for a subsequence),

1
4ε2

∫

B1

(1− | uε |2)2 | x |p≤ C .

Indeed, if not, passing to a subsequence εn such that (uεn) converges, we
would contradict the previous result.

By the boundedness of (Wn) it follows its convergence weak ? in C(B1)?

to a measure W? supported by 0, a1, · · · , ak. Hence

W? = m0δ0 +
k∑

j=1

mjδaj with mj ∈ R .

We now determine m0.
Consider BR = B(0, R) for R small enough so that BR contains no other

point ai (i 6= 0). Multiplying (12) by x·∇uε and integrating on BR we obtain

(18)
R

2

∫

∂BR

| ∂uε

∂ν
|2 +

p + 2
4ε2

∫

BR

(1− | uε |2)2 | x |p=

=
R

2

∫

∂BR

| ∂uε

∂τ
|2 +

R

4ε2

∫

∂BR

(1− | uε |2)2 | x |p .

Passing to the limit in (18) as ε → 0 and using the convergence of Wn

we find

(19)
R

2

∫

∂BR

| ∂u?

∂ν
|2 +(p + 2)m0 =

R

2

∫

∂BR

| ∂u?

∂τ
|2 .

The fact that u? is canonical implies that

u?(x) =
(

x

| x |
)d0

eiH0(x) on BR

with
∆H0 = 0 .

Therefore, on ∂BR,

(20) | ∂u?

∂ν
|2=| d0

∂θ

∂ν
+

∂H0

∂ν
|2=| ∂H0

∂ν
|2 .

(21) | ∂u?

∂τ
|2=| d0

∂θ

∂τ
+

∂H0

∂τ
|2= d2

0

R2
+ 2

d0

R

∂H0

∂τ
+ | ∂H0

∂τ
|2 .
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Inserting (20) and (21) into (19) we obtain

(22)
R

2

∫

∂BR

| ∂H0

∂ν
|2 +(p + 2)m0 = d2

0π +
R

2

∫

∂BR

| ∂H0

∂τ
|2 .

On the other hand, by multiplying ∆H0 = 0 with x·∇H0 and integrating
on BR we find

(23)
R

2

∫

∂BR

| ∂H0

∂ν
|2= R

2

∫

∂BR

| ∂H0

∂τ
|2 .

Thus, from (22) and (23) we obtain

m0 =
π

p + 2
d2

0 .

A similar computation for aj , j 6= 0 gives mj =
π

2
(see [BBH4], Theorem

VII.2).

Remark 1. By analyzing the proofs of Theorems 3 and 4 we observe that
we may replace the weight | x |p by a weight which, in a neighbourhood of 0 is
of the form w(x) =
| x |p +f(x) | x |p+1, with f ∈ C1.

Remark 2. The conclusion of Theorem 4 remains valid for a general
domain G and a weight w(x) = |x|p around 0. In this case, the boundedness
of

1
4ε2

∫

G
(1− | uε |2)2w

follows by the same computation as in the proof of Theorem 4.

Until now we have obtained a lower bound for the energy under the
supplementary hypotheses that G = B1, g = eidθ and w(x) = |x|p. We now
establish a general lower bound for Eε(uε) when w is like in Remark 1; this
will be useful to deduce the exact value of d0.

Theorem 5. Let

(24) C = lim inf
ε→0

1
4ε2

∫

G
(1− | uε |2)2w .

Then
i) C > 0.
ii) The following hold:

(25)
1

4ε2

∫

G
(1− | uε |2)2w ≥ C −O(ε) .
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and

(25′) Eε(uε) ≥ 2C π log
1
ε
−O(ε) .

iii) We have

(26) C ≥ min
{

(d− `)2

p + 2
+

`

2
; 0 ≤ ` ≤ d

}
.

Proof. ii) Suppose (25) does not hold. Then there are εn → 0 and
Cn → +∞ such that

1
4ε2

n

∫

G
(1− | uεn |2)2w ≤ C − Cnεn .

We may suppose that uεn converges as in Theorem 1. Taking into account
(18) and the rate of convergence of uε away from singularities (see [BBH4],
Theorem VI.1) we easily observe that

1
4ε2

n

∫

G
(1− | uεn |2)2w = C + O(εn) ,

which gives a contradiction.
The inequality (25’) follows by integrating (11) for small ε.
i),iii) By Theorem 4, any limit point as ε → 0 of

1
4ε2

∫

G
(1− | uε |2)2w

is of the form
(d− `)2

p + 2
π +

| ` | π
2

with −d ≤ ` ≤ d

and i), iii) follow immediately.

Theorem 1’. Under the assumptions of Theorem 1, we have d0 > 0.

Proof. We already know that d0 ≥ 0. Suppose d0 = 0. Then, as in
[LR1], Theorem 1,

Eε(uε) ≥ π d log
1
ε
− C .

On the other hand, by Theorem 2 and choosing an appropriate test function,

Eε(uε) ≤
(

2
p + 2

+ (d− 1)
)

π log
1
ε

+ C .
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This gives a contradiction.

Theorem 6. Let G = B1, g(θ) = eidθ and w(x) =| x |p. If d <
p

4
+ 1

then, for the corresponding minimizers uε of Eε, we have

uε(x) →
(

x

| x |
)d

as ε → 0 .

If p is not an integer multiple of 4 and d >
p

4
+ 1, then u? has singularities

0, a1, · · · , ak with degrees d0, +1, · · · , +1, where d0 =
[
p

4

]
+ 1.

Proof. We prove the assertion of the theorem by induction. Let d = 1
and let k be the number of singularities different from 0. On the one hand,
it follows from Theorem 2 that

Eε(uε) ≤ 2π

p + 2
log

1
ε

+ O(1) as ε → 0 .

On the other hand, it follows as in [LR1], Theorem 1 that

Eεn(uεn) ≥ π k log
1
εn

+ O(1) as εn → 0 .

We thus obtain k ≤ 2
p + 2

< 1, that is k = 0.

Suppose now the assertion true for any 0 ≤ k ≤ d− 1 with d <
p

4
+ 1. If

the conclusion of the theorem does not hold, there is a sequence εn → 0 and
there are k ≥ 1 points a1, · · · , ak in G \ {0} such that (uεn) has at the limit
the singularities a1, · · · , ak. These singularities have equal degrees d′ = +1
or d′ = −1. We shall examine the two cases:

i) If d′ = +1 then d0 < d. Taking into account the induction hypotheses
and Theorem 5 we obtain, for R > 0 sufficiently small,

Eε(uε; BR) ≥ 2d2
0

p + 2
π log

1
ε
− C , as ε → 0 .

Thus

(27) Eε(uε) ≥
(

2d2
0

p + 2
+ k

)
π log

1
ε
− C , as ε → 0 .

But Theorem 2 implies

(28) Eε(uε) ≤ 2d2

p + 2
π log

1
ε

+ C , as ε → 0 .
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If we compare (27) and (28) we find that

2d2

p + 2
≥ 2d2

0

p + 2
+ k .

This inequality is clearly false if k > 0 and d0 > 0, contradiction.
ii) Let d′ = −1. There are two cases:
Case 1: d + k ≤ p

4
+ 1. In this case, the corresponding minimum in (26)

for d replaced by d + k is achieved for ` = 0 and we obtain from Theorem 5
that

Eεn(uεn) ≥
(

2(d + k)2

p + 2
− δ + k

)
π log

1
εn
− C as εn → 0 .

This contradicts the upper bound (7).
Case 2: d+k >

p

4
+1. In this case, the minimum in (26) (for d replaced

by d + k) is >
d2

p + 2
. This yields again a contradiction.

Theorem 7. Under the assumptions of Theorem 1, we have di = +1,
for i = 1, · · · , k.

If p is an integer multiple of 4 and d ≥ p

4
+ 1 then d0 ∈

{
p

4
,
p

4
+ 1

}
.

Proof. The fact that di = +1 follows as in Theorem 6. The statement

that d0 ∈
{

p

4
,
p

4
+ 1

}
for d ≥ p

4
+ 1 is a consequence of Theorem 5 and of

the fact that the quantity

2d2
0

p + 2
+ (d− d0)

atteints its minimum in the set d0 ∈ {1, · · · , d} for d0 =
p

4
or d0 =

p

4
+ 1.

2 The renormalized energy

In [BBH4], F. Bethuel, H. Brezis and F. Hélein have introduced the concept
of renormalized energy associated to a given configuration of points with
prescribed degrees and to a boundary data. They observed that the limiting
configuration of singularities is a minimum point of this functional. We shall
find the renormalized energy in the case of a ball, say B1, when the weight is
w(x) =| x |p. In the case of a vanishing weight the introduction of a concept
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of renormalized energy is useful only for d ≥ p

4
+ 1. Indeed, for d <

p

4
+ 1

there is only one singularity at the limit, namely the zero of w.

Theorem 8. Let g : ∂B1 → S1, deg (g, ∂B1) = d >
p

4
+ 1, w(x) =|

x |p. If uεn converges to the canonical harmonic map u? associated to
a = (0, a1, · · · , ak) with corresponding degrees d = (d0, +1, · · · , +1), then
the configuration a minimizes the functional

Ŵ (a, g) = W (a, d, g) +
π

2

k∑

j=1

log w(aj) .

The proof follows the same lines as of the proof of Theorem 1 in [LR1].

It has been observed in the preceding Section that if p is an integer multi-
ple of 4, then

d0 ∈
{

p

4
,
p

4
+ 1

}
. In what follows we show that both cases may occur.

Example 1. If p is an integer multiple of 4, G = B1, w(x) =| x |p,
g(θ) = ediθ and d =

p

4
+ 1 then d0 =

p

4
+ 1.

Assume, by contradiction, that d0 6= d. As observed in Theorem 7, the only
possibility in this case is d0 =

p

4
. By Theorem 8, the limiting configuration

a = (0, a1) with degrees d = (
p

4
, 1) minimizes the functional Ŵ . We may

now make use of the explicit form of the renormalized energy W found in
[LR2], Proposition 2:

W (a, d, g) = −π

2
p log | a1 | −π log(1− | a1 |2)− π

2
p log(| a1 |2 +1− | a1 |2)

= −π

2
p log | a1 | −π log(1− | a1 |2) .

Hence
Ŵ (a, g) = −π log(1− | a1 |2) .

But this functional does not achieve its infimum on B1 \ {0}. So, this case
is impossible, that is d0 =

p

4
+ 1.

Example 2. If p is an integer multiple of 4, G = B1, w(x) =| x |p,
g(θ) = ediθ and d =

p

4
+ 2 then d0 =

p

4
.

Indeed, with the explicit form of the renormalized energy (see [LR2]) we
compute Ŵ when d0 =

p

4
+ 1 (that is k = 1) and d0 =

p

4
(that is k = 2).
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If d0 =
p

4
+ 1 then

Ŵ (0, a1) = −π log
(
| a1 |2 (1− | a1 |2)

)

which achieves its infimum on B1 \ {0} and

inf Ŵ (0, a1) = π log 4 .

If d0 =
p

4
then

Ŵ (0, a1, a2) = −π log | a1 − a2 |2 −π log(1− | a1 |2)− π log(1− | a2 |2)−

−π log
(
| a1 − a2 |2 +(1− | a1 |2)(1− | a2 |2)

)
.

In this case, with an argument from [LR2], the infimum of Ŵ (0, a1, a2) is
achieved for a1 = −a2 = 5−

1
4 . A straightforward calculation gives

inf Ŵ (0, a1, a2) < inf Ŵ (0, a1)

which means that d0 =
p

4
.

We next turn to the case of general G, g.

Theorem 9. Let G be a smooth bounded domain in R2, g : ∂G → S1

of topological degree d and w : G → R, w > 0 in G \ {x0}, w(x) = C |
x−x0 |p +f(x) | x−x0 |p+1 in a small neighbourhood of x0, where f is a C1

function. If d >
p

4
+ 1 then the limit configuration a = (0, a1, · · · , ak) with

degrees d = (d0, +1, · · · , +1), d0 > 0, minimizes the functional Ŵ (a, g).

The proof is similar as of Theorem 8.

We shall now give an example which shows that if p is an integer multiple
of 4 and for a general weight w that is like | x |p in a neighbourhood of 0, then
one can not obtain a general result, in the sense that the zero of the weight
might have different degrees at the limit. This example shows that not only
the behavior of the weight around its zero is important in the determination
of degrees, but also the form of the weight w away from 0.

Example 3. Let h : [0, 1] → (0, 1] be a C1 function which equals 1 on
[0, δ0] and h(a1) = min

[0,1]
h = δ > 0, which will be suitable chosen. We take
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w(x) = h(| x |) | x |p, p an integer multiple of 4 and g(x) = xd on ∂B1,
where d =

p

4
+ 1. We shall choose δ such that

W

(
(0), (d)

)
> W

(
(0, a1), (d− 1,+1)

)
+

π

2
log(δap

1) .

Taking into account Theorems 8 and 9, it follows that this choice of δ gives
d0 =

p

4
.

3 Remarks for the case of a weight with several
zeroes

For the sake of simplicity assume w has two zeroes a1 and a2 in G and, in
small neighbourhoods of aj ,

w(x) =| x− aj |pj with pj > 0, j = 1, 2 .

We also suppose that each pj is not an integer multiple of 4. If d >

[
p1

4

]
+

[
p2

4

]
+2 it can be proved using the same techniques that uεn converges to u?

which has singularities a1, a2, · · · , ak of corresponding degrees d1 =
[
p1

4

]
+

1, d2 =
[
p2

4

]
+ 1, d3 = · · · = dk = +1. Moreover, the configuration a =

(a1, a2, a3, · · · , ak) with d = (d1, d2, +1, · · · ,+1) minimizes the renormalized
energy

Ŵ (a, d, g) = W (a, d, g) +
π

2

k∑

j=3

log w(aj) .

The case d ≤
[
p1

4

]
+

[
p2

4

]
+ 2 yields a delicate discussion. For example, if

d = 1, then there is only one singularity at the limit. This is a1 if

2
p1 + 2

<
2

p2 + 2
, that is p1 > p2 .

The case p1 = p2 is more difficult. If

(29) W (a1, 1, g) < W (a2, 1, g)

83



then the singularity at the limit is a1. We cannot conclude when equality
holds in (29).

Suppose now d = 2 and p1 > p2. If

(30)
8

p1 + 2
<

2
p1 + 2

+
2

p2 + 2

then, at the limit, there is one singularity, namely a1, of degree +2. If

8
p1 + 2

>
2

p1 + 2
+

2
p2 + 2

then there are two singularities at the limit, namely a1 and a2 of corre-
sponding degrees +1. If the equality holds in (30) we argue in terms of
renormalized energy as above.

The discussion may be similarly continued for greater values of d.
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