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Abstract

In this paper, we study the following critical Schrédinger-Bopp-Podolsky system driven by the p-Laplace operator
and with a logarithmic nonlinearity:

—Apu+ V(ex)|ulP~2u + kou = A|ulP~2u + 9u|P2ulog |u|” + |[u[’” "2u  in R?,
—Ad+ a?A%p = 4702 in R3.

The analysis is developed under the prescribed mass assumption fR3 |u|Pdx = pP, where 9,a,p > 0,6 >0, A € R,k >0
and p € (1,3). The potential ¥V > 0 is a bounded and continuous function that satisfies some suitable global
conditions. The main results establish the existence, multiplicity and concentration of normalized solutions to the
above system and the proofs combine suitable variational and topological methods. This seems to be the first paper
dealing with the existence and concentration of solutions with prescribed mass for critical Schrodinger-Bopp-Podolsky
systems involving the p-Laplacian and logarithmic nonlinearity. In the final part of this paper, we are interested
in the asymptotic behaviour of normalized solutions as A — 0 and a — 0, respectively. The main feature of this
paper is given by the combined effects generated by the simultaneous appearance of a quasilinear operator, critical
exponent, and the logarithmic nonlinearity.
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1 Introduction and main result

This paper is devoted to the study of the following critical Schrédinger-Bopp-Podolsky system involving the p-Laplacian
and logarithmic nonlinearity:
—Apu A+ V(ex)|[ulP~2u + wpu = Mu|P~2u + 9|u[P~2ulog [ul? + |uP" 2w in R3, (1.1)
—A¢ + a?A%p = dn?y? in R3, '

under the mass constraint

[ tupds = (1.2)
RS

where A,- = div(]V - |P72V) is the usual p—Laplacian, J,a,p > 0, > 0, A € R,k > 0, p € (1,3) and the potential
VY > 0 is a bounded continuous function.

In recent years, D’Avenia and Siciliano [7] first considered the following Schrédinger-Bopp-Podolsky system:

—Au+wu + ¢?pu = |ulP~2u  in R3, (1.3)

A2p 4+ a?A%p = 4mu? in R3, '

where a, w > 0. This system is formed when we couple a Schrodinger field ¥ = (¢, ) with the electromagnetic field in
the Bopp-Podolsky electromagnetic theory, especially in the electrostatic case for standing waves 1 (t, ) = e**u(z). The
Bopp-Podolsky theory is a second order gauge theory of the electromagnetic field, and is proposed to solve the so-called
infinity problem that occurs in the classical Maxwell theory, see [13, 14, 15]. Note that this theory was first developed
by Bopp [12], and independently by Podolsky [41]. Furthermore, the Bopp-Podolsky theory can be interpreted as a
valid theory for short distances (see [23]), whereas for long distances it is experimentally indistinguishable from Maxwell
one. Therefore, the Bopp-Podolsky parameter a > 0 with the inverse dimension of mass can be regarded as the cut-off
distance or can also be related to an effective radius of the electron. For more background of this topic, we refer to
[9, 16]. On the other hand, system (1.1) involving p-Laplacian has a wide range of physical applications, such as the
study of flows through porous media (p = 2), nonlinear elasticity (p > 2) and glaciology (p € (1, 3]); see [20, 24, 31] and
references. This is the reason why it is more interesting and meaningful to consider the Schrédinger-Bopp-Podolsky
system driven by the p-Laplace operator.
Generally, there are two ways to consider system (1.1):

(7) the frequency A is a given constant.
(79) the frequency A is unknown to system (1.1).

In case (i), we are usually interested in investigating ground state solutions of system (1.1) since such solutions
possess more properties, such as stability, positivity, and symmetry. They can be regarded as minimizers of the energy
functional 7, among its nontrivial critical points, that is, the minimizers of

ex = {Zn s u € X(RP)\{0}, Z}(u) = 0},

where 7 is the action functional of system (1.1). For example, Bahrouni and Missaoui [8] obtained the existence of a
ground state solution with a fixed sign and a least energy nodal solution for system (1.3) by minimization techniques.
Also, they showed the relationship between the energy of the nodal solution and that of the ground state solution.
In [58], Yao et al. obtained the existence of ground state solution for Schrédinger-Bopp-Podolsky system involving
Choquard nonlinearity via Nehari-Pohozaev manifold method. Chen et al. [18] considered the existence of ground state
solutions for the non-autonomous Schrédinger-Bopp-Podolsky system by variational methods. Some other interesting
results on this topic can be found in [28, 29, 30, 37, 50] and the references therein.

In case (i), the parameter A € R arises as a Lagrange multiplier, which is determined by the solution rather than
being given in advance. Such solutions always correspond to a couple (u,\) that satisfies some fixed problems. We
call these solutions normalized solutions, that is, solutions of system (1.1) satisfying the normalized condition (1.2).
From a physical point of view, ng |u|Pdx is regarded as the mass, which represents the number of particles of each
component in Bose-Einstein condensates or the power supply in the nonlinear optics framework. On the other hand,
normalized solutions provide a better perspective for understanding the dynamical properties, such as orbital stability or



instability, and describe attractive Bose-Einstein condensates. That is the reason why there are many scholars exploring
the normalized solutions in recent years.

Nevertheless, there are not many results about normalized solutions of Schrédinger-Bopp-Podolsky systems. In [1],
Afonso and Siciliano first considered the Schrédinger-Bopp-Podolsky system under Neumann boundary conditions. Un-
der appropriate conditions, they obtained the existence of multiple normalized solutions by the Lusternik-Schnirelmann
theory and Krasnoselskii genus. Siciliano and Silva [48] explored the non-existence and qualitative properties of solu-
tions for Schrodinger-Bopp-Podolsky systems by the fibering approach and variational methods. de Paula Ramos and
Siciliano [44] studied the following Schrédinger-Bopp-Podolsky system in R3:

—Au+ wu + du = |ulP~2u,
—A2¢ + a’A¢ = 4mu?, (1.4)

[ullzz = p,

where a,p > 0 are fixed, with unknowns being u, ¢ : R®> — R and w € R. The authors proved that system (1.4) has
10

a least energy solution if 2 < p < 3 (resp. 3 < p < %) and p is small enough. Furthermore, they also obtained
that if 2 < p < % and p is sufficiently small, least energy solutions are radially symmetric up to translation, and as
a — 0, these solutions converge to least energy solutions of Schrédinger-Poisson-Slater systems under the same L2-
norm constraint. For the non-existence results, we refer to [49]. Huang and Wang [27] considered system (1.4) in the
L?-mass supercritical case. More precisely, by Mountain-pass arguments developed on the L2-spheres, they obtained
the existence of normalized ground states when the spherical radius of L?-spheres is small enough, the asymptotic
behavior of normalized ground states as the mass vanishes or tends to infinity as ¢ — 0, the radial symmetry and
uniqueness of normalized ground states, and the instability of normalized ground states. Zhang et al. [59] considered
Schrédinger-Bopp-Podolsky system involving a negative potential. Indeed, they obtained the existence of normalized
solutions with positive energy by Mountain-pass argument and also proved the non-existence of normalized solutions
with negative energy. Li et al. [28] studied the following critical Schrodinger-Bopp-Podolsky system:

{—Au +ou = Au+ plulP~2v + ju[tu  in R3, (1.5)

—A¢ + A%¢p = 41u? in R3,

/ lu|?dx = 2,
R3

wherec > 0,2 <p < %, w > 0is a parameter, and A € R is a Lagrange multiplier. By a constraint minimizing approach,
they obtained the existence of normalized ground state solutions for the above system. Peng [42] studied the existence
and multiplicity of normalized solutions for Schrodinger-Bopp-Podolsky system of the following type:

on the mass constraint

_l=l
—Au+Iu—k <1e < |u|2) u=|u*u  in R3,

|]

(1.6)
u>0, [g|ulPde =c?,

where ¢,a > 0 and k € R\ {0} are fixed constants and A\ € R is a Lagrange multiplier. More precisely, for k > 0,
combined with the truncation argument and a measure representation lemma proposed by Lions [40], they obtained that
system (1.6) has at least n pairs of radial normalized solutions with negative energy. Furthermore, they also obtained
a non-existence result of the above system via a Liouville-type Theorem and the Pohozaev identity.

On the other hand, system (1.1) contains logarithmic nonlinearity. It is essential to introduce the background of
logarithmic Schrodinger equations. Such equations have a wide range of applications in physics, such as quantum me-
chanics, quantum optics, nuclear physics, transport and diffusion phenomena, open quantum system, effective quantum
gravity and so on. For more information on this topic, see [10, 25].

In the following, we shall present several relevant references for this paper. Alves and Ji [6] obtained the existence and
multiplicity of normalized solutions for logarithmic Schrédinger equations by minimization techniques and the Lusternik-
Schnirelmann category. Shen and Squassina [47] supplemented and expanded the results of [6]. They considered
logarithmic Schrodinger systems involving p-Laplacian:

—ePApu+ V() |ulP~2u = MuP~2u + [ulP2ulog [ulP? in RV,

(1.7)
Jan |uPdaz = aPe™,



where a,e > 0, A € R is known as the Lagrange multiplier. More precisely, they obtained the existence and concentration
of normalized solutions for system (1.7). At the same time, they also proved the existence of normalized solutions for
system (1.7) in both LP-mass subcritical and LP-mass supercritical cases. In [43], Peng and Jia considered the following
logarithmic Schrédinger-Bopp-Podolsky system:

—eAu+ V(x)u — ¢pu = ulogu? in R3,

. (1.8)
—e¢ + e*A%¢ = 4mu? in R3,

where £ > 0 and the potential function V(z) € C(R3,R). By the variational methods introduced by Szulkin [51], they
obtained the existence and concentration of solutions for system (1.8). For more results on this topic, we refer to
[19, 35, 36, 38, 52, 53, 54].

To the best of our knowledge, there are no relevant results in the existing literature regarding the normalized solutions
of logarithmic Schrodinger-Bopp-Podolsky systems involving p-Laplacian. Therefore, it is natural to consider that
whether there exist normalized solutions of system (1.1) involving p-Laplacian and Sobolev critical exponent? Moreover,
whether these solutions are concentrated, or possess some good properties? Inspired by the above works, we first show
that it is possible to obtain that the number of normalized solutions is not less than the number of global minimum
points of V as the parameter ¢ is small enough by minimization techniques and the truncated argument. Next, by
borrowing the arguments in Li and Zhang [34] and fixing the parameter a, we shall obtain the asymptotic behavior of
normalized solutions as A — 0. Finally, inspired by references [7, 46], we will show the found solutions strongly converge
to solutions of Schrodinger-Poisson systems when A is fixed and @ — 0. As far as we know, this is the first study on
the concentration and asymptotic behavior of normalized solutions for system (1.1).

Now, we are ready to state the main results in this paper. We suppose that the potential ¥V > 0 is a bounded and
continuous function satisfying the following conditions:

(Vi) V € L> (R3),V(z) > 0 for all z € R3.
(VQ) Voo = hm|$|_)+oo V(ZZ?) >V = min,cgs V(I) = 0.
(V3) V71H{0}) = {c1,c2,- -+ , ¢} with ¢; = 0 and ¢ # cs if j # s.

Theorem 1.1. Let conditions (V1)—(Vs) be satisfied and a > 0. For anyl € N, then there exist € and V. such that system
(1.1) admits at least | couples (ul, AL) of weak solutions for |V|s < V. and e € (0,€) with [g, }u2|pdx = pP, AL <0 for
i=1,2,---,1. Furthermore, each u’ has a mazimum point zi € R* such that V(z!) — V(z') = Vy as e — 0F.

In what follows, we consider the asymptotic behavior of solutions for system (1.1) as A — 0 and a — 0, respectively.

Theorem 1.2. Suppose that conditions (V1) — (V3) hold, and for a suitable fived parameter a* > 0, (ug;\, A) is a family

of weak solutions of system (1.1) obtained in Theorem 1.1. Then, up to subsequences, limy_o ug*)\ = ugfo, where ugjo 15
a normalized solution of the following system:

—Apu+V(ex)|[ulP"2u + wpu = F|uP~2ulog |ulP + |ulP "2u  in R3,
—A¢ + a?A%p = 4nu? in R3, (1.9)
f]Rs |u|pdx =pP.

Moreover, each u?,*o has a mazimum point z. € R® such that V(z.) = V(2) = Vy as e — 0F.

Theorem 1.3. Suppose conditions (V1) —(Va) are satisfied, and (ug ., \*) is a family of weak solutions of system (1.1)
obtained in Theorem 1.1 for a suitable fixed parameter \* < 0. Then, up to subsequences, lim,_¢ ug . = ug/\*, where
ug))\* s a normalized solution of the following Schrodinger-Poisson system:

—Apu+V(ex)|[ulP"2u + wpu = MulP~2u + 9|ulP~2 log [ul? + |[ulP" ~2u  in R3,
—A¢ = 4m?u? in R3, (1.10)
Jgs lulPdz = pP.

The proofs of Theorems 1.1-1.3 are based on suitable variational and topological arguments. It is more interesting
and meaningful to consider Theorem 1.1-Theorem 1.3 due to the appearance of non-local terms (¢,w), logarithmic
nonlinearity and critical nonlinearity, so we have to establish some new estimates. In addition, since X is not prescribed,
the sequences of approximated Lagrange multipliers have to be controlled. To clearly compare the contributions of this
paper with previous results, we emphasize the following points.



(#)

(i)

(iid)

It seems that this work is the first contribution to obtaining the concentration and asymptotic behavior of normal-
ized solutions for critical Schrodinger-Bopp-Podolsky systems involving p-Laplacian and logarithmic nonlinearity.
In the previous results, there are no such results for Schrédinger-Bopp-Podolsky systems involving p-Laplacian
and logarithmic nonlinearity, even in the critical case. Therefore, our results are completely new.

Inspired by the ideas of [34, 42, 47], we consider the concentration and asymptotic behavior of normalized solutions.
However, we do not simply repeat the methods in [34, 47] to get the desired results. More precisely, Li and Zhang
[34] considered the existence, multiplicity and asymptotic behavior of system (1.1) without logarithmic nonlinearity
in the case p = 2. In contrast the equations in Shen and Squadssina [47] merely contain logarithmic nonlinearity,
while system (1.1) includes the non-local (u,¢) and critical nonlinearity. For non-local term (u, ), we shall
use reduction arguments proposed in D’Avenia and Siciliano [7] to reduce energy functional to a single variable
functional J.. In addition, to obtain our main results in this paper, inspired by the ideas about the method of
decomposition of logarithmic nonlinearity in Shen and Squadssina [55], we complete the proof of Theorems 1.1-1.3.
On the other hand, Peng and Jia [43] only obtained the concentration of solutions for logarithmic Schrédinger-
Bopp-Podolsky system involving the classical Laplacian, even not in the critical case, and the solutions they
studied are not normalized solutions. To some extent, we supplement and extend the results of [34, 42, 47].

The appearance of the non-zero potential function V(z) makes the proof of the existence of the normalized solution
extremely complicated. In the LP-subcritical case, we cannot directly obtain the energy functional corresponding
to system (1.1) on the sphere (see reference [32]). At the same time, the compactness of the minimizing sequence
also requires detailed estimates to handle. To overcome these difficulties, borrowing of the arguments as references
[3, 5], we use the penalization method proposed by Del Pino and Felmer [21]. We achieved this goal by modifying
the nonlinearity outside the set. However, the most important way to overcome this difficulty is that we must
find a new appropriate penalization for system (1.1), because the the original penalization in Del Pino and Felmer
[21] has a linear growth at infinity, and this growth is controlled by the lower bound Vy of the potential function
VY > 0. Here, the lower bound of V can be equal to zero, so the penalization found in Del Pino and Felmer [21]
cannot be directly used in our case.

The main obstacle in this paper is to verify that (PS) condition holds. In fact, system (1.1) contains critical
nonlinearity in the whole space R™, which prevents the bounded (PS) sequence from converging. Hence, we
have to consider how the interaction between the nonlocal term and the nonlinear term will affect the existence
of normalized solutions for system (1.1). In addition, we shall encounter the other difficulty that sequences of
approximated Lagrange multipliers have to be controlled, since A is not prescribed. Furthermore, weak limits
of the Palais-Smale sequences could leave a constraint. In conclusion, we use the concentration-compactness
principles due to Lions [40] to overcome the lack of compactness in RY. At the same time, we shall establish some
new techniques to overcome the difficulties brought by the emergence of the nonlocal term.

The paper is organized as follows. In Sect. 2, we introduce the variational setting and present some preliminary
lemmas. In Sect. 3, we adopt a truncation function and consider the autonomous problem with truncation In Sect. 4,
we prove Theorems 1.1-1.3 by the Lusternik-Schnirelmann category and variational methods.

2

Preliminaries

In this section, we shall introduce some notations, fundamental concepts and properties concerning the Orlicz spaces
which will be used later. For more details, we refer to Rao and Ren [45].

Definition 2.1. An N-function is a continuous function ® : R — [0,+00) that satisfies the following conditions:

(i) ® is a conver and even function;

(ii) ®(t) = 0 <= t = 0;

(iii) lim * = 0 and lim %2 = foo.

t—o0

We say that the N-function ® satisfies the Ag-condition, denoted by ® € (Ayg), if

®(2t) < k(t), Vit >t

for some constants k > 0 and tg > 0.



The conjugate function ® associated with ® is obtained through the Legendre’s transformation, defined as

= — >
D(s) r{l;gg{st ®(t)} for s> 0.

It can be shown that ® is also an N-function. The functions ® and ® are mutually complementary, that is, d=0.
For an open set  C R3, we define the Orlicz space associated with the N-function ® as follows

L®(Q) = {u e Li (Q): / d (';‘) dx < 400, for some \ > 0} .
Q

Note that L®(£2) is a Banach space equipped with the Luxemburg norm define by

||u|q>=inf{X>o:/¢(WJ)dmg1}.
Q A

Then there also holds the Holder and Young type inequalities, namely
st < ®(t) + (s), Vs, t>0

and
< 2||ulle|lv]lg, for Yu € LT(Q) and Yo € L*(Q).

‘ / uvdx
Q

The space is the reflexive and separable space L® () provided that ®, ® € (Ay). Furthermore, the Ay-condition shows
that

L*(Q) = {u € Li.(Q): /Q ®(|ul)dx < +oo}

and
U, — u in L*(Q) <= / @ (|up — ul)dz — 0.
Q

In addition, we recall some properties of N-functions. Let ® be an N-function of C* class and ® be its conjugate
function. If

<m, t#0, (2.1)

then @, ® € (Ay). Finally, we consider the functions
€o(t) = min{t!, t™} and & (t) = max{t',t™}, V¢ > 0.
By (2.1), we can see that the function ® satisfies
& (lulle) < @(u) < & (Julls), Yu € L*(Q). (2.2)

In order to deal with the logarithmic nonlinearity in system (1.1), borrowing from the arguments of [6], we define the
functions F; and F5 as follows

Fl(_s)a S S 07
Fi(s) = —%sl’ log s?, 0<s<(p—1)4,
—%sp[log (p—1)8)" +p+1] +posP~t — ﬁ((p —1)8)", s> (p—1)d,
and
07 |5| < (p - 1)67

Fy(s) =
Lls[Plog (|s|?/((p = 1)8)P) + pd|s[P~" = EEL|s|? — L5 (0 — 1)8)", |s| > (p = 1)6,

where § > 0 is sufficiently small but fixed, and then we obtain the decomposition
[s|P log |s|P = Fa(s) — Fi(s). (2.3)

Furthermore, F} and F5 satisfy the following properties:



(F1) Fy is even with Fy(s)s > 0 and Fy(s) > 0 for all s € R. Moreover, F; € C}(R,R) is convex if § ~ 07;
a

(Fa) Fy € CL(R,R) N C?((d,+0c0),R) and for each § € (p,p + %), there exists a Cyz > 0 such that

|Fy(s)| < Cyls|T7t, Vs eR;
10)
(525) S — F

sp—1

is a nondecreasing function for s > 0 and a strictly increasing function for s > J;
. FU(:
(yﬁl) sll>rgo sg(jl) = 0.

is standard to prove the following result.

Lemma 2.1. [47, Lemma 2.2] The function Fy is an N-function. Moreover, if 2 < p < N, it holds that F}, F, e (Ag).
Replacing ® and Q in the above discussions with Fy and R3, respectively, we define the Orlicz Space L (R3) and it

Corollary 2.1. The functional © : L*' (R®) — R given by u — [ps Fi(u)dx is of class C*(L*" (R?)) with

O’ (u)v :/ F|(u)vdz, Yu,v € L*(R?),
R3

where L1 (R3) is the Orlicz space associated with Fy endowed with the Laremburg norm | - || £, -
In the sequel, in order to avoid the points u € W1P(R?) that satisfy Fy(u) ¢ L'(R?), we should consider the workspace
X(R?) = WP(R3) N L1 (R?) equipped with the following norm

120 lwrwsy + 1 7
where | - |ly1.p(r2) denotes the usual norm in W*»(R?). Moreover, the space of radially symmetric functions X;.q(R?)
is defined by X,q(R?) = {u € X(R?) : u(x) = u(|z|)} with the norm || - |.
In the following, we also define the functional space H!(R?) by

HY(R®) := {u € L*(R?), Vu € L*(R®)}
endowed with the norm

ey = [ (9l + o
product

In addition, we also define D as the completion of C§°(R3) with respect to the norm | - ||p introduced by the scalar

(u,v)p = / (VuVo + a? Aulv)dz.
R3

Therefore, D is a Hilbert space, and there exists a continuous embeddings D — D'2(R3) — LS(R?). Finally, we denote
L"(R3) as the usual Lebesgue space endowed with the standard norm.

uly = | Julrdo
R3
for r € [1,+00).
As shown in d’Avenia and Siciliano [7], the continuous embedding D < L*°(R?) holds, where
D:={¢pe D" ?*R%:A¢p € L*(R*)}.

The energy functional Z. ,(u, ¢) corresponding to system (1.1) is defined by

Z;@(u,¢)==l

1 K K Ka?
s [varar s [ Veaurde+ § [ oluPde - 751908 - S5 jaok

1 *
/ |u|? log |u|Pdx — —*/ lulP" dz in X(R?) x D.
D Jgrs P R3



Note that the critical points of Z. ,(u, ¢) are weak solutions of system (1.1). By (2.3), the energy functional Z. 4(u, ¢)
can be rewritten as

1 1 2
Ze a(u, ) }/ \VU\pderf/ (V(sx)+1)|ulpdx+f/ ¢u2d:v—f|V¢|2 W INE:
P Jgrs P Jr3 16m

+9 | Fi(u )dx—ﬁ F2 dm——/ lulP” da.
R3

In fact, if (u, ¢) € X(R3) x D is a critical point of Z. ,, then for every (v,() € X(R3) x D, one has
1
0=0uZc o(u,@)v / |Vu|P~2VuVods + - / (V(ex) + 1)|ulP~2uvda
R3
¢uvdx+19/ (F{(u) — Fy(u))vdz 7/ ulP"” *wvdz
R3

and

2
0= 0. alu 8)lc] = /]R e - 1 /R Vovedr - B /R oA

which implies that (u, ¢) is a weak solution of system (1.1).

From this fact, together with the standard argument, we research for the critical points of a functional of a single
variable. Now, for every fixed v € H* (RS), the Lax-Milgram theorem implies that there exists a unique solution ¢,, € D
such that

—A¢p+a’A%¢ =’

In order to write explicitly this solution (see Podolsky [41]), we consider

— e~ lzl/a
K(z) = 1-e ™"

47|z |

From d’Avenia and Siciliano [7], we have the fundamental properties for K.

Lemma 2.2. For every y € R?, K(- —y) solves in the sense of distributions
—A¢+a*A%p =4,

Moreover, we also have

(i) if f € L}, .(R®) and for a.e. x € R3, the map y € R? — % is summated, then K  f € L} (R3),

(ii) if f € LP(R®) with 1 <p < 3, then K f € LY(R?) for q € (%,Jroo].

In both cases K = f solves
~A¢+a*A%p =6,

in the sense of distributions and we have the following distributional derivatives
VIK+f)=(VK)*f and AKxf)=(AK)*f a.e. in R3.
Then, if we fix u € E, the unique solution of the second equation for system (1.1) in D is

1 1 — e~ lz—yl/a )

% (x) =K *xu? = — /]1{3 ——u*(y)dy.

4 |z =yl
Therefore, the function ¢, possesses the following good properties.
Lemma 2.3. [7, Lemma 8.4] For every u € H' (R3), then ¢$ € D and the following conclusions are satisfied:
(i) for everyy € RS, 6%, = 6(- + y);
(ii) ¢y = 0;



(iii) for anyt >0, ¢2, = t2¢;
(v) Igullp < Cluf3, < Cllullk and [ps 65 |ul*dz < Clully < Cllull;
(v) if un — u in X(R3), then ¢% — ¢% in D.
In what follows, We define a smooth functional P(u) : H'(R?) — R by

Plu) = byuidr
R3

In fact, the functional P(u) has the following useful properties, similar to the Brézis-Lieb Lemma [56, Lemma 1.32].

Lemma 2.4. [57, Lemma 2.3] Let u, — u in H'(R®) and u,, — u a.e. in R®. Then
Pun —u) =P(un) — P(u) +0o(1) as n — .

Now, taking the same arguments as d’Avenia and Siciliano [7], we can reduce system (1.1) into the following single
equation:
—Apu+ V(ez)|ulP~?u + kolu = MulP~2u + |uP*ulog [ul? + [u’ "u in R®. (2.4)

It is standard that for any p > 0, a solution of problem (2.4) restricted to (1.2) can be regarded as a critical point of
the corressponding energy functional

Tow) Tea(udt) = 5 [ Fupdat o [ e) 4 Diupde+ 5 [ otutda
_ _ p*
-4—19/]1%3 Fy(u)dz 19/R3 Fy(u)dx pe /}R3 |ulP de. (2.5)

Then the parameter A\ € R appears as a Lagrange multiplier. It is easy to verify that the energy functional J; is well-
defined and is of class C! on X(R?). Furthermore, the pair (u,¢2) € X(R3) x D is a critical point of Z. , is equivalent
to the fact that u is a critical point of J. and ¢ = ¢2.

In the following, we introduce the well-known Hardy-Littlewood-Sobolev inequality.

Lemma 2.5. (/39]) Let t,r > 1 and 0 < a < N with 1/t + a/N +1/r =2, f € L' (RY) and h € L" (RY). There
exists a sharp constant C(t,n,a,r) independent of f,h such that

// F@IY) 4ay < Ot N, 0,0 1B
R2N |$— |a

In fact, if r =t = %, then by the Hardy-Littlewood-Sobolev inequality, we deduce

/ % |ul*dr < / <|| * U ) lu|?dz < Clu|iz. (2.6)
R3 E

In order to prove that the (PS). condition are satisfied, we use the second concentration compactness principle and
the concentration compactness principle at infinity. Now, we recall the concentration compactness principle due to
Lions [40].

Lemma 2.6. ([40]) Let {u,} be a weakly convergent sequence to u in WP (R3) such that |un|p* — v and |[Vu,|" = &
in the sense of measures. Then, there exists a (at most countable) set of distinct points {x;} C R3, for some at most
countable index set I,

(i) v=|ulP" +c;0u;vi, vi > 0;
(ii) = |VulP + 3 c; 0a,ptir pi > 0;

(iii) p; > SUP'?"



where 05, are Dirac measures at x;, S is the best Sobolev constant defined by

S = inf {/ |ulPdx : / [ulP” da = 1} (2.7)
RS RS

and ki, V; are some positive constants.

However, Lemma 2.6 is only concerned with the possible concentration of a weakly convergent sequences at finite points
and it does not provide any information about the loss of mass of a sequence at infinity. The following concentration
compactness principle at infinity was established by Chabrowski [17] and provides some quantitative information about
the mass loss of the sequences at infinity.

Lemma 2.7. ([17]) Let {u,} be a weakly convergent sequence to w in W» (R3), and define

(i) Voo = limp_00 limsupn_mo/ un|?” da;
|lz|>R

(ii) too = limp_s o0 limsupnﬁoo/ |V, |” dz.
|z|>R

The quantities Voo and Koo exist and satisfy

(1) limsup,, . [ps un|P dz = / dv + Voo
R3

(w) limsup,, . [ps |[Vun|” de = /3 dp+ floo;
R

(V) oo > SVELP".

We will need the following Gagliardo-Nirenberg inequality, which plays a crucial role in proving that the truncated
functional J. r is bounded from below on .S,.

Lemma 2.8. (Gagliardo-Nirenberg inequality) [2, 55] For every p < s < p*, there exists an optimal constant Cp s > 0
depending only on p and s such that

luls < Cps|Vu gs u|;f'85, Yu € WHP(R3), (2.8)
where
B, :=3 (zl) = i) - LS}; p) (2.9)
By (2.8), we see that ,
p=p+ 3

is the LP-mass critical exponent with respect to p-Laplace equations.

Lemma 2.9. Let (%) — (F3) and (V1) be satisfied, then there exists a unique mazimum point of H,(t), where

a1-8g) -

1 : 1
Hy(t) = —t? —9C,qp~ 7 P71 — — G 1P
p p

for allt > 0.
Proof. By Lemma 2.8, Lemma 2.3-(i1), (%1) — (%#2) and (V1), for any u € S,, we deduce that

1 1 .
VAOE f/ |Vu|pdx—19/ Fg(u)dx——*/ luf? da
P Jgrs R3 p R3

1 . 1 .
> 7/ [VulPdx — 19/ lulfdz — —*/ |ulP dz
P Jrs R3 b Jrs

1 q(1—B8g) _ 1 * .
> 7/ VulPde —9p" 5 = Cgp|VulTP — — 55 |Vul?
P Jrs p

=H (p, |Vulp) . (2.10)

10



Let

for all ¢ > 0. Therefore, we deduce that

~ N L a(1-84)
H (0,t) = $B3—1 (tpfqﬁq _ g —dBa _ ﬂcp,qﬁquq)
= téﬁgilgl (t)v

where i
- * .~ G(1-Bg
gl (t) — tp*‘]ﬁq _ S—%tp —qBg _ ﬁcp,qﬂqp = q

for all ¢ € [0, 00). Moreover, we obtain that

a1-8)
lim Gi(t) = —9C, 38:p  » and tgrgo Gi(t) = —oo0.

t—0+

Therefore, there exists a local maximum point ty € (0,00) of Gy (¢). It is clear to see that ¢ is also a local maximum
point of Go(t) defined by

Go(t) = tP—@Ba _ —%tp**fiﬁq _ tp*fiﬁq(l _9 —%t:ﬂ**p)

and Ga(t) > 0 for t > 0 sufficiently small. Therefore, Ga(tg) > 0 and ¢y is the unique maximum point of G5(t) since
Gs(t) is a decreasing function on (0, 00), where

Gs(t):=1— 8 T 7.

Therefore, ty is the unique maximum point of G;(¢) on the interval (0, co).
-

In the following, we may suppose that 9C, 5850~ » P Ga(to), then Gy (tg) > 0. Clearly, to is the unique maximum
point of H'(p,t) with positive maximum value. Therefore, there exist 0 < ¢; < t9 < to < 400 such that H'(p,t) > 0
if t € (t1,t2) and H'(p,t) < 0 if t € (0,%1) U (t2,00). Then H,(t) attains the maximum point at ¢t2 and local miminum

2
point at ¢;. For p < ¢ < p+ &, we define the function
1

G(t) = —tP~ P isf%tp*—éﬁg
p p*

where (5 is given in Lemma 2.8. Together with the definition of H(p,t), we obtain

a(1-Bg)

H(p,t) = t771(G(t) = IC, 0™ 7 ).

Therefore, we obtain that ¢ is the unique maximum point of G(t). Moreover, we deduce that G(t) > 0 for ¢ > 0 small
i(1-6g)
enough. Then if we assume that 9C, g5p™ » T < G(t2), we can deduce that the maximum value H,(t) > 0 and there

exist 0 < Ry < tg < Ry < 400 such that

H,(Ro) =H,(Ry1) = 0. (2.11)
In the following, we denote
. Ga(to) \ ot (GG (t2)\ 7055
pr= { (ﬁccmﬁq> ’ ( 9C,p ) }
we have 7, (t) < 0 in the intervals (0, Ro), (R1, +00) and H,(t) > 0 on (Ro, R1) and all p; € (0, p1). Therefore, we finish
the proof of Lemma 2.9. O

Let 7(x) € C*°(R™,[0,1]) be an non-increasing function such that

1 if0<z<R,,
m(z) = .
0 ifz>R;.

11



Now, we study the following truncated functional

1 1
Tor(u) = 7/ |vu|de+f/ (V(gx)+1)|u|ﬁdx+f/ o u2dx
b Jrs P Jrs 4 Jgs

+9 | Fdz—0 ngx—L*“'p)/ Jul?”
RS RS p R3

By (#1) — (#2), Lemma 2.8 and (V7), we obtain

Ter(u / \Vu|pd:r—19p e (Cp’q|Vu|gﬁ‘? - 577 /p|Vu|p

= Hr(p, [Vulp),

T(Vulp)
p*

that is,
P a(1-8g)

5 t « “
Hr(p,t) == ri d9p (Cp,qtqﬁ‘? _ %S*p /pgp”

In what follows, we give some properties of Hr(p,t).

Lemma 2.10. Let (%) — (%2) and (V1) be satisfied. Then the function M, satisfies the following properties:

(i) Hr(p,t) = H,(t) for all t € (0, Ro],
(ii) Hr(p,t) is positive and strictly increasing in (R, +00).
Proof. In the following, we consider the sign of Hr(p,t) as t > Ry. For all t € [Ry, +00), we have

a(1-Bg)

1 53
HT(p, t) = HT,p(t) = p —9p~ P (Cp@tqﬁq.

Now, we may suppose that

) R 1 q(lifﬁ_) P~(:D*§Bq)
O<p<m1n{p1,( ) TRy 10-F9 }
IpCp.q

Consequently, we have Hr ,(t) > 0 for all £ > R;. In addition, we have that

a(1—Bq) .
Hirp(p,t) =t (1 —dp @ Cp,qﬂthBq_p> >0

_ pfp—éﬁq)
forallt > Ry and 0 < p < (W) qu_ﬂq)quufﬂ‘i) . Then we may suppose that
(P—3dBg)
- [~ 1 Ty, D QB) 1 Pl i oo
0<p<p::m1n{p1,< ) T Ry TTFa) (7) “R a }
UpCp.q VCyp,q84 !

Hence, we deduce that Hr(p,t) has the following properties

Hr(p,t) = H,y(t) forall te (0,R],

Hr(p,t) is positive and strictly increasing in (Rg, +00).
Hence, we complete the proof of Lemma 2.10.

Without loss of generality, we may assume that we can take Ry > 0 sufficiently small such that

1 1 p* *
;t% - ES’?t’f >0forallt; €[0,Ry] and R < S».

In what follows, for any Vi € [0, [V|«], we denote by Jy,, Jv,,r : X (R?) — R the following functionals
1 1
I, (u) == f/ |VulPdz + M/ |ulPdz + E/ ¢lutde +9 | Fy(u)dr
P Jrs p R3 4 Jgs

R3

1 "
-9 | Fy(u)dx — —*/ |u|P dx
R3 P Jrs

12
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and

1 1

T, r(u) == f/ |VulPdz + M/ |u|Pdx + E/ ¢lutdr +9 | Fi(u)dz
P Jrs p R3 4 R3 R3
- 19/ Fy(u)dx — M JulP" dz.

R3 p R3

3 The autonomous problem with truncated.
In this section, we study the properties of the truncated functional Jy, v on S,,.
Lemma 3.1. The functional Jy, 1 is bounded from below in S, and coercive.

Proof. For each u € S,, we deduce that

Fvir(u) 2 Hrp(|Vulp) = f Hr, (1) > —oo.

Moreover, Jy, 7(u) = oo as |Vu|, — co. Therefore, we obtain the desired result. O

In the following, we can define that ~
dth’p = 1enSf jyl’T(u). (3]_)
ueoSp

The following result presents an important property of cy, 7,,.

Lemma 3.2. For p < p, there exists V. > 0 such that J\;l’T’p <0 if V1 < V.

Proof. Fix ¢ € X(R?)\{0} and s > 0. By some calculations, we obtain that

3s 635 V +].
TSy = & / ol + LT e / I de
D Jrs p 3
3s
el I B R Ay T
635 » Vl + 1 38 P P 36 2
= [ e 2R [ pd € ¢w|w| da

3 9
—ﬂ—se3slog|e|/ |oh|Pda — e—
p R3

for s > 0 small enough. Therefore, we deduce that

= T My - <0
for s > 0 small enough. Consequently, setting V; < V, := — (iﬁ) we obtain that
Fvir(es ) < o = (o +2)+1<0,

which shows that (Zyl,Tvp < 0, and completes the proof of Lemma 3.2. O
Lemma 3.3. Assume that Vi <V, holds. The energy functional Jy, 7 has the properties as follows:

(i) Jy, r € CHX(R?),R).

(ii) If Jy, v <0 then |Vul, < Ro, and Jy, 7(v) = Jv, (v) for all v in a small neighborhood of u in X(R3).
Proof. The results of Lemma 3.3 can be obtained by the similar arguments to [33, Lemma 3.3], so we omit here. O
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We recall the definition of Hr (p,t) given in (2.13), and define

1 5(1_[3‘5) t -
Frp.t)i= 3~ 0Cpap 7 00 = D5 F o,

where 71 := ¢85 —p < 0. At the same time, we also define the following function

N—

1 Gl " L -z p*—p
f(p, t) = ]; — ﬁCp)qp p t — ES p* . (32)

In what follows, we study the properties of Fr(p,t) for all ¢ € (0, 00).
Lemma 3.4. Let (p2,t2) € (0,00) x (0,00) satisfy F(p2,t2) > 0. Then for all p1 € (0, p2], it holds that

Fr(p1,t1) 20, Vi, € [(%)%h’h]

Proof. Since p — Fr(p,t) is an non-increasing function on the internal (0, 00), we can deduce that

Fr(p1:t2) = Fr(pz,ta) > F(p2,t2) > 0.

By some calculations, we infer that

1 1
Fr <Pl, <p1> t2> > F <,017 (,01> tz)
P2 P2

1 1(1-54) 1 g
——U0Cpapy ¥ tzl—];S*%t’S b

v

D
= F(p2,t2) >0,

d(1—Bg)+m

> > 0 and ~; is given in Lemma 3.3. Therefore, we obtain that

where v, 1=

1
.FT <p1, (Zl) t2> 2 0 and .FT (pl,tg) 2 0.
2

=

By the definition of 7, we conclude that Fr (p1,t1) > 0 for ¢; € [(‘p’;) to, t2:| . Consequently, we complete the proof of
Lemma 3.4. O

Lemma 3.5. For each u € S,, we deduce that
thT(u) > |VU|£‘/—"T(,O, |vu|p)
Proof. By the Gagliardo-Nirenberg inequality (see Lemma 2.8), (V1), (%1) — (:%2) and Lemma 2.3-(i7), we obtain that

a(1-B3)

1 -
Ty r(u) = 5/ |VulPde —9p~ » (Cp,,;|Vu|gﬂ‘7 _ r(Vuly)
R3

*

)
ST [Vult,

1 q(1-B8g)
L L.

8™ | Vulp P

) *

= [Vulp Fr(p, [Vul2)
for each u € S,. Therefore, the proof of Lemma 3.5 is finished. O
We recall the definition of d~y17T7p in (3.1), and we will show that it possesses some nice properties.

Lemma 3.6. CthT’p is continuous with regard to p € (0,p).

14



Proof. By the similar arguments to [26, Lemma 2.3], we can obtain the desired result. Therefore, we omit it here. O

For any p < p, by setting of (2.11) and H(p,t) = t* F(p,t), it follows that F (p, Ry) = 0. Moreover, p — F(p,t) is an
non-increasing function. It follows that F (p, Rg) > 0 for all p € (0, p).
Lemma 3.7. %cfylmm < CZVl’T’pl <0, where 0 < p; < pa < p.

1

Proof. Set ¢ = (%)P > 1. Let {u,} C S, be a minimizing sequence with respect to dy, 1., i-6., Jy,.1 (un) —

dy, 1,0, <0 asn — +oo by Lemma 3.2. Therefore, there exists ng such that

Ty (un) <0 for n > ng. (3.3)

1

By Lemma 3.4, F (p2, Rg) > 0, and we obtain that Fr (p1,t) > 0 for any t € {(gf) ;Ro, RO} . Moreover, it follows from
(3.3) and Lemma 3.5 that

[Vulp, < (Zz) zpRO for n > ng. (3.4)
1

Let v, = Cup, s0 v, € S,,. Then we can obtain that |Vu,|, = (|Vu,|, < Ry by Lemma 3.3. Consequently, we deduce
that
T (Vunlp) =7 ([Vonlp) = 1.

Moreover, by ¢ > 1, we obtain that
7 P’ ¢r p P p’
dv,,1.ps < Ivy1r (Un) < ¢7 Jyy r(un) — » log ¢¥pf < ¢ Jv, r(un).

. o . 5 2 ~ .
Passing the limit as n — oo, we infer that dy, 7,, < (P dy, 1, i-e.,

P

P15 7
TthT,PQ < dV17T7P1'
P2

Therefore, we finish the proof of Lemma 3.7. O
Lemma 3.8. Let {u,} C S, be a minimizing sequence with respect to CZVI’T’p <0, then u, — u in L (Rs).

Proof. Since |Vun|§ < Ry for n large enough, by Lemma 2.6 and Lemma 2.7, there exist two positive measures v and
1 such that

IVun|? = i, and |u, [P — v (3.5)

in the space M (R3) as n — oo.

We define that ¢, (z) := (%) for all ¢ > 0, where ; is given in Lemma 2.6 and ¢ € Ce(R3),p=1in By, p =0in
BS and [Vg| e gsy < 2. Note that {u,@,} is bounded in X(R?) and ¢, take values in R, we have (7, (un), @otn) — 0
as n — oo, for n € N sufficiently large. Together with these facts, (#1) — (%#2), Lemma 2.3-(¢3) and (V4), we deduce
that

/ |Vun|p<pg(x)d:c+/ un|Vun\p*2Vun<pg(z)d:r§/ |un|‘7<pgd:c+/ tn|P” 0o (x)dz + 0, (1). (3.6)
RS RS RS R3

By the Holder inequality, we can obtain that

lim limsup/ un|Vun|p_2Vungog(m)dx‘ =0. (3.7)
=0 pnosoo JR3

By g€ (p,p+ %) and the definition of ¢,, we have

lim lim sup/ [t | %0 ,da = 0.
=0 nooo JR3
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Therefore, by (3.5) and Lemma 2.6, we have

lim lim gog/ |Vuy,|” dz = lim/ wodp = p ({zi}) = pa,
R3 0—0 Jpr3

o—0n—o0

lim lim Yo |un|p* dx = lim/ podv =v ({x;}) = v;.
3 0—0 JRr3

0—0n—oo Jp
r_
Letting ¢ — 0, we obtain that u; = v;. Together with y; > Sy}, it implies that
(i) i =0 or (id) p; > S». (3.8)

Arguing by contradiction that there exists ig € Z such that p;, > S %, we obtain that

R{ > lim lim [Vu,[? > lim lim o |[Vu,|" dz = lim/ Qo = 1y > S7,
R3 0—0 R3

o—0n—o0 o—0n—o0

which contradicts (2.14). Therefore, we can deduce that

Uy, —u in LP (R?’).

loc

In what follows, we define a cut off function n € C'* (R3) such that 7 = 0 in By and = 1 in R\ By, and we set
nr(x) = n(x/R) for all R > 0. Note that {u,nr} is also bounded in X(R3) and np takes values in R. By a direct
calculation, we deduce that (73, (un), nrun) — 0 as n — oo, for n € N sufficiently large. Combining with these facts,
(1) — (%#2), Lemma 2.3-(i4) and (V}), we deduce that

/ \Vun|an(x)dx+/ Un |Vt [P~ 2V, Vg (z)de
R3 R3

< / | T () +/ | 12 (2)d + 0n (1), (3.9)
R3 R3
From the Holder inequality, it holds that

’ lim limsup/ un\Vun|p72VunVnR(:c)dz‘:O.
R3

R—+400 nsoo

By the definition of ng, we have

/ |Vu,|P dz < / nr |Vu, |’ dz < / |Vuy,|? dx.
{z€R3:|z|>R} R3 {z€R3:|z|>R/2}

Thus, by Lemma 2.7, we obtain
lim lim Nr |[Vu, |’ dz = - (3.10)
3

R—ocon—oo [p

Similarly, we obtain that

lim lim R |un|’ do = vs
R—oon—00 Jp3

and

lim lim NR |un|?dz = lim / nrlulddr = lim nrlu|dz = 0.
R—o00 n—o0 R3 R—o0 R3 R—o0 ‘.’E|>R/2

Letting R — o0, we deduce that po, = vo,. We obtain pio, > Svgf . Furthermore, we deduce that

(ii) oo = 0 or (V) poo > S7. (3.11)
Similarly, we deduce that case (iv) cannot occur. Therefore, we have

U, —u in LP (R*\ Bg(0)).

Hence, we know that
Up, — u in LP (R?’).

This completes the proof of Lemma 3.12. O

16



Lemma 3.9. (Compactness theorem on S(p)). Let {u,} C S, be a minimizing sequence with respect to dy, r,,. Then,
for some subsequence, either

(i) {u,} is strongly convergent, or

(ii) there exists {yn} C R® with |y,| — oo such that the sequence t,(z) = uy, (x +y,) is strongly convergent to a
function @ € S, with Jy, v(@) = dy, 1.,

Proof. By Lemma 3.1 and Lemma 3.2, we obtain that {u,} is bounded in X(R3). Therefore, there exists u € X(R?)
such that u,, — u in X(R?) for some subsequence. In the following, we consider the following case:

Case 1. Assume u # 0.
If |u|, := b # p, then we must have b € (0, p). Let v, := u, —u. From Lemma 2.3, the Fatou’s Lemma, the Brézis-Lieb
Lemma [56, Lemma 1.32] and Lemma 2.4, we obtain that

|un‘p ‘Unlp'i' |u‘p+0n(1)

/ qﬁunund:ﬂ—/ by, v Zd:ch ¢Zu2dx+0n(1)7

(Vb = [Vulb + |an|§ + on(1)

and .
e +on(1).

We suppose that e,, = |vy]p, then |v,|, — e, where pP = eP + bP. Noting that e,, € (0, p) for n large enough, and by the
fact that 7 is continuous, non-increasing function and Lemma 3.7, we deduce that

dy, 1.+ 0on(1) =Ty, 1 (un)
1 1
:7/ |wn|sz+7(vl+1)/ \vn|pd:¢+5/ ¢° vada:Jrﬂ/ Fi(vn)da
P Jrs p R3 4 Jgs " R3

—o [ Byvn)de — TV 00ln) / o da
p R3

R3

|t [ =

1 1
_‘_,/ [VulPdz + = (W1 +1)/ |ulPdx + E/ ¢Zu2dx+19/ Fy(u)dx
R3 p RS 4 Jgs R3

p
-9 [ F(u)dr — M/ |ulP” dx
p R3

R3
>Jv,,r (vn) + Ty, 7 (w) 4+ 0, (1)

Zdvl,T,en + dNVhT,b +0,(1)
eP - ~
Zp%dvl,T,p +dy, 7 + 0n(1).

Passing the limit as n — +o00, by Lemma 3.7, we obtain that

eP eb - bP - -
dy,1.p > dthp +dy, 1 > o it £ dvir, = dviry

which is impossible. This asserts that |u|p = p, or equivalently, u € S(p).
As |up|p = |ulp = p, up — u in LP(R?) and LP(R3) is reflexive, we have that

U, —u in LP(R3). (3.12)

This combined with interpolation theorem in the Lebesgue space and (%#2) gives

Fy(up)dx — Fy(u)dz. (3.13)
R3 R3

Moreover, by [7, Lemma 5.1], we obtain that

o uidw—)/ Plulde. (3.14)
RS R3
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These above facts together with dV17T7P = lim,, 400 Jy,,7(up) and Fy > 0 in (#1), we obtain that
dy, 1, = ngrfoo T, (un)

1
= lim <7/ [V, |Pdz +
P Jrs

n—-+o0o

1
Wit / |un|Pdx + m/ ¢% uldz+9 [ Fi(uy)de
p R3 R3 R3

- Fy(uy)dx — Mmﬂp*dx)
R3 p

> Iy (u).
As u € S, we conclude that Jy, 7(u) = dy, T, then
Jim Py, 1 (un) = Fvy (),

together with (3.12) and (3.13), we obtain that

lim/ |Vun|pda::/ |VulPdz
n—oo R3 R3

and
lim Fl(un)dm:/ Fy(u)dx.

n—o0 R3 R3
Combining with the fact that F; € (As) by Lemma 2.1 and (3.12), we obtain that u,, — u in X(R?), which implies that
() occurs.

Case 2. Assume u = 0, i.e., u, — 0 in X (R?).
Now we claim that there exists R;,s > 0, and a sequence {y,} C R3 such that

/ |up|P dx > < for all n. (3.15)
Br, (Yn)

If not, we must obtain u,, — 0 in L*® (R3) for all s € (p,p*) by the Vanishing Lemma. Noting that |Vu,|, < Ry for n
large enough, by (1) — (Z2), Lemma 2.3-(ii) and (3.2), we have that

1 "
0> Ivr = / [Vup|Pdz — 9 / Fy(u)dz — 7/ |un P dz + 0,(1)
> - / |V, [Pde — 19(Cpq/ |u|qu,7/ [un [P dx + 0, (1)
p
> Elvwg - ES*?WW@ + on(1)

1 sy 1 .
> \vun|g(]5 — Iy Cp T [VulTh P — 57 |Vl ,p> +on(1)

a(1-8g)

1 q GBs— 1 p* *
> \Vun|§(]; —09C, Cp~ 7 Rgﬂq P _ ES_TRg —P) +0,(1)
= |Vu,[bF(p, Ro) > 0
which is impossible. Therefore, (3.15) holds and |y,| — +oco. Consequently, we may define @, (v) = up (z +yn). It is

obvious to see that {@,} C S, and it is also a minimizing sequence of dy, r,,. Moreover, there exists @ € X (R?) \{0}
such that 4, = @ in X (R3). Following the similar arguments to the first part of this proof, we deduce that @, — @ in
X (R?’), which implies that (i¢) is true. Therefore, we complete the proof of Lemma 3.9. O

Lemma 3.10. dy, 1, is attained.

Proof. From Lemma 3.1 and Lemma 3.9, there exists a bounded minimizing sequence {u,} C S, and u,, = v in X (R3)
with respect to Ciyl’T’p = Jy,.r(u) < 0. Therefore, it follows from Lemma 3.3 that {u,} is also a minimizing sequence
for Jy, (u) and dy, 1,,(u) = Jy, (u). Consequently, we finish the proof of Lemma 3.10. O

The following result is a consequence of Lemma 3.10.
Corollary 3.1. If Vi < Vo < V,, then dy, 1., < dy, ...
Proof. Let u € S, satisfy Jy, 7(u) = dy, 7,,. Therefore, dy, 1., < v, 7(w) < Fvy 1(w) = dy, 1., O
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4  The nonautonomous problem

Now we denote by Jo 1, Joo.1 : X(R?) — R the following functionals:

Jo,r(u / |Vu|Pde + — / |u|Pdx + — / PluPdr + 0 F1( )dx
719/ Fy(u)dx — M lulP" dx
R3 p R3
and
Toor(u / |VulPdr + = / (voo+1)|u|Pd:c+4/ otuPdr +9 | Fy(u)dz
3 R3

—19/ Fg(u)dm—M/ |ulP" d.
R3 p R3

y (Vi) = (V3), Voo < V. and Lemma 3.10, we define the minimum value do 7, and deo 7.,

CZO,T,p = uiélsfp Jor(u) and  doo T.p = uléléf Tso, (),

respectively, which are attained. Therefore, there exist ug,us € S, such that Jor (ug) = d~0_,T7p and Joo, 1 (Ueo) =
doo,T,p, respectively. Furthermore, by Corollary 3.1 and Vg < Vu, we know that

dO,T,p < Joo,T,p < 0. (41)

In what follows, we consider the truncated functional J. 7 : X(R*) — R given in (2.12). Note that we study the
following the minimum value: ~
ds,T,p = ulélsfp \Z,T(u)a
where &E,T,p is well defined since dN()’T’p < dNEVT,p < dNOO,Tm < 0 and J. 1 is coercive on S, being greater than Jo 7.

Lemma 4.1. Let p > 0, then limsup,_,q+ dNE,T,p < dNO’TW and there exists e, > 0 such that Jz , < Jso,p for alle € (0,¢,).

Proof. Let ug € S, with Jo 1 (uo) = CZ())T,p. Therefore, we deduce that

d. T < Ter (wo) = / |Vug|Pdx + = /RS(V(ESE) + 1)|ug|Pdx + g /]1{3 qbzougdx

+9 [ Fi(ug)dz =0 | Fa(uo)dr — Liml]a)/ Juol”" da.
R3 R3 p R3

Taking the limit as e — 07, we have that

limsupde 1, < limsup Je. 1 (uo) = Jo.r (o) = do,1,p-
e—0t e—0t

Together with (4.1), then there exists £, > 0 small enough such that
derp < door, forall ec(0,e,)
which completes the proof of Lemma 4.1. O
Taking the same arguments as Lemma 3.3, we obtain the following result.
Lemma 4.2. The energy functional J. 1 satisfies the following properties:
(i) Jer € C* (X(R?),R).
(ii) If Ter(u) <0 then |Vul, < Ry, and J.7(v) = J-(v) for all v in a small neighborhood of u in X(R)>.
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Let {u,} C S, be a minimizing sequence of X, r (u,) with respect to any ¢ < JOO)T,p < 0. Taking the same
arguments as Lemma 3.1 and Lemma 3.2, we can deduce that {|Vu,|,} is bounded. Therefore, there exists u € X(R?)
and a subsequence of {u, }, still denoted by itself, such that

U, — ue in X(R*)  and  u,(x) = u-(z) ae. in R3.
Lemma 4.3. For e > 0, the weak limit u. of {un} is nontrivial.

Proof. By contradiction, we suppose that that u. = 0. Therefore,

¢+ 0,(1) = Ter (un) = Toor (un) + 1/ (V(er) — Vo) |un|? dx.

P Jgs
From (V1) — (V3), for any given £ > 0, there exists R > 0 such that
V(z) > Voo —& forall |z| > R.

Therefore, we deduce that

1
¢+ 0,(1) = Ter (upn) > Toor (un) + 7/ (V(ex) — Voo) lun|? dx — £ |un|? dx.
P JBgr,.(0) P JBg,, . (0)
Recalling that {u,} is bounded in X(R?) and u,, — 0 in L? (Bg/.(0)), it holds that
¢+ On(l) > joo,T (un) - fc > Czoo,T,p - SC (42)
By the arbitrariness of ¢ > 0, we obtain that ¢ > CZOC’T7P, which is impossible. So we deduce that the weak limit u. of
{uy,} is nontrivial. O

Lemma 4.4. Let {u,} be a (PS); sequence of Jor restricted to S, with ¢ < deor., and u. is the weak limit of {u,}
in X(R®). If u, = u. in X(R?), then there exists v > 0 independent of ¢ such that

1

lim inf < [, — uel? dac) T >
R3

n—-+oo
Proof. From Lemma 4.2 and ¢ < Joomp < 0, we obtain that |Vu,|, < R for n sufficiently large. Therefore, the

sequence {u,} is also a (P.S)z sequence of J. constrained to .S,, i.e.,

!

—0 as n — +oo.

n c d H n
Fewn) > and | Zels, )] o

Define ¥ : X(R?) — R by ¥(u) = 3 [ps |un|” dz, we observe that S, = ¥~'(o/p). By [56, Proposition 5.12], then there
exists a sequence {\,} C R such that

[T (un) = Xa W' (un)ll sy — 0 as n — +o0. (4.3)

Due to the boundedness of {u,} in X(R?), we obtain that u, — u.. Let v,, := u, — uc, then {\,} is also bounded. For
some subsequence, there exists A, such that A, — \; as n — 4o00. Together with (4.2), we deduce that

T (ue) = AW’ (ue) = 0 in (X(R*)*, ||TL (vn) — AV (vn)ll(x(r3y)» — 0 as n — +oo. (4.4)
By (2.6) and Lemma 2.8, choosing x > 0 small enough, then there exists C,;, > 0 such that

0> door, > lim 7 (un)

1 An
= lim (o(un) - STl + on(1))

n—oo

A 1 1
> = |ulPdx + KV(Z - f)/ ¢uPdr

P Jrs P Jrs

A 1 1 4(1=PB12/5)
> 2 [ uPde + w(5 — f)chgﬁws(/ |u\pdx> "

P Jrs 4 p R3

Ae

= <; + HCN') min{pl)’p‘lp(l—fjlz/s))}

> C e min{pP, pP=Fiz/s)} (4.5)
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where €' := 1 — %(CpRgﬁ”/s < 0. By (4.4), the above facts imply that

(Vb +/ V(ex) v, |P dx +/ d)gnvidm‘ — X|vnlb = 19/ Fy(vp)vpdz — 19/ Fi (vy)vpdz + |vp Z* + 0, (1).
R3 R3 R3 R3
Together with (4.5) and (%) — (:#2), we obtain that

P+ on(1). (4.6)

pJoo,T, G
|an|§ + /11@3 V(ex) v, |F do — Tp |un\§ <9 |vn|g~ + |vn
Invoking (4.6) and the Sobolev inequality, we can get that

Co loall? < 9 fonll + [valp. + 0n(1) < IO [|on]lZ + Co Joal? + 0n(1)-

Since v, - 0 in X(R3), there exists Cy independent of ¢ such that |jv,|. > Cs. Moreover, we have that

tim inf (9 o2 + [[oa]2") > Cs (4.7

n—-+oo

for some C5 > 0. By (4.7) and the Gagliardo-Nirenberg inequality (see Lemma 2.8) and the Sobolev inequality, there
exists v > 0 independent of € € (0,g¢) such that

imi > .
Amaflonly 27

Therefore, we complete the proof of Lemma 4.4. O

From now on, we fix

3 [ . P .
0 < 0o < min {doo,T,p —do,1,p, o (doo,T,p - do,T,p)} :

Lemma 4.5. J. 1 satisfies the (PS)z condition restricted to S, if ¢ < do1., + do-

Proof. Let {u,} C S, be a (PS)z sequence of J.  on S,. Noting that & < duor, < 0, we obtain the boundedness of
{un} in X(R?) by Lemma 4.2. Let u,, — u. in X(R3) and u. # 0 from Lemma 4.3. A straightforward computation gives
that v, := u,, —u. also is a (PS)# sequence of J. r on S, and & < ¢é. If v, - 0in X(R?), we have lim inf,, o |Un\p >
due to Lemma 4.4.

In what follows, let b = |uc|,, e, = |v,|, and assume that |v,[, — ¢, so we get ¢ > v > 0 and p? = b” + ¢". By the

fact that v, — 0, and the similar arguments to (4.2), we have that J. r (v,) > CZOC,TM, + 0,(1). From e, € (0,p) for n
large enough, we obtain that

et 0n(1) =T (un) > T (vp) + Ter (ue) > doo e, + do6 + 0n(1). (4.8)

By Lemma 3.7 and (4.7), we obtain that
- o b - bP -
do,r,p+ 00 > ¢+ o0,(1) > ﬁdoo,T,p + EdO,T,p-

Passing the limit as n — 400, we have that

~ P /- - AP - .
Qo Z ﬁ (doo,T,Q - dO,T,g) Z E (doo,T,p - dO,T,p)

which contradicts gp < Z—: (cioo,T’ p— a~l07T7 p). Therefore, we obtain u, — u. in X(R?). Consequently, we finish the proof
of Lemma 4.5. O
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4.1  Multiplicity result

In this section, we shall apply some arguments found in Alves [4] to obtaining the multiplicity result of system (1.1).
In what follows, we fix 9,7 > 0 satisfying

e B, (c;) N By (cj) =0, for i,j and ¢;,c; are defined in (V3).
o Uizi By (e:) € By (0).

o Kg/p=Uii Bosp (c0).
Set the function Q. : X(R?)\{0} — R? by

%(5m)|u| dx
QE(“) :

/ |u|?dx

2 (2) = {f i <7

where 2" : R? — R? is given by
rar il >
The following lemmas play essential roles in obtaining (P.S) sequences of J; 1 on S,.

Lemma 4.6. There exist ¢, € (0,e0] and o1 € (0, 00| such that if e € (0,e1),u € S, and Tz r(u) < dor,,+ 01, then
Qe(u) € K@/p

Proof. Arguing by contradiction that there exist sequences g, — 0,e, — 0 and {u,} C S, such that

L7£,L7T (un) S dO,T,p + On, Qan (un) ¢ K@/p- (49)

Therefore, we obtain that R y
dor,p < Jor (Un) < Teo1 (Un) < do,p + On-

This implies that {u,} C S, is a minimizing sequence of Jy r (u,). From Lemma 3.9, passing to a subsequence if
necessary, we consider two cases:

(i) there exists a function u € S, such that u,, — u in X(R?) as n — oo, or

(ii) there exists {y,} C R3 with |y,| — +o00 such that v, () = u, (¥ + y,) converges to some v € S,.
Analysis of (i). By the Lebesgue dominated convergence theorem, we obtain that
f?f (en) |un|” dz / 2 (0)|ulPdx

/ |un [P dx lulPdx

R3

Qen (un) = =¢ € K@/P

which contradicts Q. (un) & Kz/p-

Analysis of (ii). Now, we shall consider two cases:
(D) |enyn| — +oo and (I1) €.y, — y for some y € R3.

For case (I), from the limit v,, — v in X(R?), we obtain
1 1 p 1 a ,2
T, r (up) = = |Vu, [Pdx + = V (en + enyn) |vn|” do + = by, Vndx
P JRrs D Jrs 4 R3

R3 R3 p R3

— Joo,7(V). (4.10)
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Since Tz, 1 (Un) < JO)T,,) + 0n, We obtain that

doo1p < Toor(v) < dorp

which is impossible.
For case (II), taking the similar arguments of (4.10), we can deduce Je, 1 (un) = Jyr(v), which combined with

Te, 1 (up) < CZQ’T)p + 0, implies that cZy,T,,, < Jy,r(v) < JO}T’,J. It follows from Corollary 3.1 that V(y) = Vo and y = ¢;
for some ¢ = 1,2,--- | I. Therefore, we deduce that

%(Enx'f'gnyn) |Un|p dx / %(y)‘ﬂpdl’
— R

/|vn|pdx /|v|pdx
RS RS

which yields that Q. (u,) € K/, for n sufficiently large. This contradicts (4.9), so we finish the proof of Lemma
4.6. O

Qe (un) = =

=c; € K@/p

In what follows, we give some notations which will be used later.
o Tii={ueS,:Q.(u) —cl <8}, OTL = {ueS,:|Q(u)— | = o).
o vl i=infyeyi Jor(u), 3L = infueori Tor(u).
Lemma 4.7. There exists e3 € (0,¢1] such that

vi<dor,+ 9 and 7 < 7L for any € € (0,e2). (4.11)
p

Proof. Let u € S, satisfy Jo,r(u) = CZ07T,p. Now, for i € {0,1,---,1}, we define the function @’ : R?* — R as

Ci

() =u (x — —) .

3

Therefore, u. € S, for all e > 0 and i € {0,1,---,1}. By the change of variable, it holds that
~i 1 1 1 a,?
Te.T (us) =- |VulPdx + - V(ex + ¢;) |ulPdx + = poudz
D Jrs P JRrs 4 R3

+9 [ Fi(u)dx—9 | Fo(u)dx — Lﬁp)/ [ulP” da:
RS RS p R3

and ‘ ~
lim J.7 (@) = Jo,r(u) = do1,p- (4.12)
e—0+

Noting that as e — 0%, Q. (Ul) — ¢;, we obtain that @’ € T as € is small enough. By (4.12), there exists €3 € (0,&1]
such that L 0
ve < dor,p+ ;1 for any ¢ € (0,e2)

showing the first inequality in (4.11).
For any v € Y%, we deduce that Q. (v) ¢ K;/p- Therefore, it follows from Lemma 4.6 that

Ter(v) > cioyT’p +01 forall v€dYT! and €€ (0,e5).

This implies that

= inf >d +
Ve v€18 éL7E,T(U) 2 do,T,p T 01
for all e € (0, 52). Moreover, we deduce that

i <AL forall €€ (0,e9).

Therefore, this completes the proof of Lemma 4.7. O
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Proposition 4.1. Suppose € € (0,€) to be fized, where € := 5 is given in Lemma 4.7, decreasing € > 0 if necessary,
then J:|s(p) has at least | different nontrivial critical points.

Proof. For each i € {1,2,---,1}, we can apply the Ekeland’s variational principle to finding a sequence {u;} c
satisfying

T () 7% and || Tl (uh)

—0 as n — 4o0.
(X(R3))~

Since v¢ < cZQT”O + 0o and by Lemma 4.5, we can obtain that there exists u’ such that uf, — u® in X(R?). Therefore,
ul S T;, jE,T (ul) = ’Y; and jEvTKS’p (ul) =0.

For

Q. (u') € B (c;), Q-(w) € Bs(c;) and By(c;)NBs(c;) =0 for i#j,
then u’ # u’ for i # j, where 1 < i,j < I. This shows that J. r possesses at least [ nontrivial critical points for any

e € (0,8). O

Using Lemma 4.2 and the fact that J. r (ul) < 0 for any i = 1,2,---,1, we obtain that u’ are in fact the critical
points of J. on S, with J. (u’) = 7} < 0 and J! (u’) u* = A;p. Then, taking the similar arguments to (4.5), we can
obtain that \; < 0.

Now, we will study the concentrating behavior of positive solutions for system (1.1). To this end, by Proposition 4.1,
we know that there are k couples of (vi, A\L) € X x R such that

(>Rt €
vi €0, Je(vl) = ¢ and J/(vi) = ALW(vl) =0 in X,
where i € {1,2,---,1}, vi(z) > 0 for all x € R? and \* < 0.

Lemma 4.8. Suppose ¢ € (0,€) to be fived, decreasing & > 0 if necessary, there are yt € R®, Ry > 0 and ~§ > 0 such

that
[ ipdezs
BRU (’l/;)
fori € {1,2,--- I}. Moreover, the family {eyt}; is bounded and, passing to a subsequence if necessary, eyt — x' as
e— 0T,

Proof. By contradiction, we suppose that there exists a sequence {&,}, with &, — 0T such that

lim sup/ vl [Pdz =0

n— o0 y€R3
for all R > 0. It follows from Lion’s Vanishing Lemma [11] that
vi =0 in L¥(R?) forall s€ (p,p*). (4.13)

Taking the same arguments as Lemma 3.9, together with the fact that Fy(¢) > 0 for all £ € R by (%), we have
lim J.(v: ) > 0 which contradicts the fact that
n—00 "

lim 7., (v},) = lim 7} < dorp+ 01 < 0. (4.14)

n—oo

Consequently, we may define 92(-) = vi(- +y) and {#!}; is bounded with respect to ¢ € (0,&). Therefore, there exists
o € X(R?)\{0} such that ¢ — 9% in X(R?) as ¢ — 0T along a subsequence. Since {3!}; C S, and

T-(vh) > To(vl) = To(0L) > dor,p

jointly with (4.12), it yields that lim+ Jo(tl) = dor,. Applying Lemma 3.9, we know that & — o in X(R?) as
e—0

e — 0T. Suppose that {ey’}; is unbounded with respect to € € (0,€), then there exists a subsequence {e,y% }; such
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that e,y | — 400 as n — co. Exploiting 0. — o in X(R?),

T, (W . / |VvE |pdx+ / V(e ) |v€ [Pdx + — / (bv 577,

+19/ Fl(u)d:vfﬁ/ Fy(u)de — —/ i P dx
RS RS p*Jrs "
1 i 1 ~ip2 k ~i N2
== Vo [Pde+ - V(enac—i—anynﬂvs | dac—l—f ¢z (07 ) dx
p Jrs n 2 n RS en n

+9 [ Fy(@ )dm—q? B d:c——/| P da
R3

= Too ().
Combined with (4.14), it holds that ) .
dO,T,p + 01 2 joc({)) > doc,T,p-

From Lemma 3.7, it contradicts the definition of o; given in Lemma 4.6. Therefore, up to a subsequence, eyt — x} in
R3 as e — 0F.

In what follows, we verify that 2, = z*. In fact, we may take a similar argument to the case (ii) in Lemma 4.6, and we
have that V(z§) = Vo. Recalling v! € T¢, we know that nli_)n;o Q., (vl) = z§. Furthermore, we deduce that |z* — z}| < p.

Therefore, we obtain that 2§ = z%. The proof of Lemma 4.8 is finished. O

Lemma 4.9. Let € € (0,2) be fived, decreasing e* > 0. There exists vi possessing a mazimum nt satisfying V(enl) —
V(') ase — 0T forie {1,2,---,1}.

Proof. Since #%(-) = vi(- + y¢), the definition of v! implies that a couple of weak solution (7%, A\l) solves the following
problem

— A, + V(e + exl)|5LP 20 +/€¢)a 0L = ALIDL[PT20L 4 9|0t P22 log |L]P + | |p*7217§ in R3, (@.15)
[ fipdz = |
R3

Arguing as Proposition 4.1 and Lemma 4.8, it holds that 9! — @ in X(R?®), AL — A\ in R3 and e2! — 2 in R? as
e — 0F. Therefore, by (4.15), we obtain that (7%, \?) is a nontrivial solution to the problem of type:

— AT+ V[Tt P20 4 %t = NG PT200 + 9|6t [P 20 log |07 [P + [8°|P 20" in RP.
In what follows, we shall divide the proof into two steps.

Step 1. We verify that |9¢] > o' and '
lim o¢.(xz) =0, (4.16)

where ¢’ > 0 is independent of € € (0, ).
We prove the first conclusion. Arguing by contradiction that [0%|. — 0 as € — 0T in the sense of a subsequence.
Then, we obtain that ¢ — 0 in X(R3) which is impossible. Consequently, we have

15l |oo > 0,

where o' > 0 is independent of ¢ € (0, £).

In what follows, we verify that (4.16) holds. Indeed, for every R > 0 and 0 < r < %, we choose a cut-off function
¥ € C3°(R3,[0,1]) such that ¢(z) = 1if |z| > R, and ¢(z) = 0 if |2| < R — r as well as [V < 2. Given ¢ € (0,£) and
h > 1, define
Bi(2), #(z) <,

Ue,b(x) = .
b, vz(z) > b,

and _ o
Eh = P (0L ) =5l and Wiy = 1/”7;(5;,5)971
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with 6 > 1 to be determined later. Let 2;,) be a test function in (4.15), we have
/ POV + [ 66 0
= —p(6—1) /RS(~;h)P0*p*1¢%;|V@;|P*2w;w;hdx
= [ ORIV P s
+ [ aeun@ e = [ vitaler et Vs,

where V. (z) = V(ez + exl) and
g(8L) = ALIBLP 5L + |02[P 20 log [02] — w3, 8L + |07 20
= ()‘é - 1)|7~}é|p—21~}2 + 19F2(v5) - 19F1(’U€) - K’¢ﬁgﬁa + ‘/De|p _2’52'

y (#1), (#2) with ¢ € (p,p*) and Lemma 2.3-(i7), we obtain that

/ g(ag)@;’dxg/ ()\271)|’D§\pdm+p0€7/ |@E‘|‘idx+/ |6 |P" da.
R3 R3 R3 R3

Therefore, we can deduce that
/ (0L, VP < p /R Ty PO BV Vlde
+0pC; / YP(EL,POTI I Tde + (AL = 1= W) /R PP (@, )P0 Ve + / (oL B da
It follows from the Young’s inequality that
[ [ Gy eIy — 0 = 1= Vol 0 da
<G, [ Ly OO IV dn + 990, Cy [ (it PO Vlitlida+ [ oLy

Arguing as the proof of (4.5), we have that Al < 0 for all € € (0,2). By (V2), it holds that Vo + 1 > 0. Moreover, it
holds that _ _ ' _ _
|V@é,h|p < Cpqu <¢p(1~};b)p(0—l)|vﬁé|p + |Vw|p(@;’h)p(9—1)w;|p> )

Together with the Sobolev inequality, we deduce that

a)i
(L

b
)" < ([ @+ [ oo e
RB R?x
+ [ et e ds)
R3
< Gyt ( / [P dae + / ()P0~ 1 da
R—r<|z|<R |z|>R—7

- / (@Q)Pw*l)wgp*dx).
lz|>R—r
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In the following, we shall fix t = /7, p* > % and y = % > 1. Therefore,

2 5 3
. * P ~ .
< / @i P dx> < C,r / |9 | P57 do / dx
R3S R—r<|z|<R R—r<|z|<R
—1

t

+ / |17é\%dx / \172|(d_p)tdx
|z|>R—r |2|>R—r

+ / |57 da / |5 (P" Py :
|z|>R—r |z|>R—r

and using the Sobolev inequality, we obtain that

(/RS |d}2,h|p*dx)

, we obtain that

P

=
[ ) < ([ o
lz[>R |lz[>R

L*

P » ~ i 2ot
< (/ |we o " df) < Cp pt” </ v;|tpldx>
R3 |z|>R—7r

Passing the limit as h — +oo in the above inequality, we deduce that

1
t

Taking ¢ = thﬂ)

t—1
D

S e =
< Cp b 0|+ T d
|z|>R—r

b

Since @l = Yok (vl )0

P
.
B @éw““dx)

t—1

t

</|I>R|@g|p*9dx> <G, 0 </|>R |@;‘|f’9’idx> . (4.17)

Setting x = % and s = 25, by (4.17), we obtain that

~ ﬁj Xﬁj mo =i g
Dot x ST ix i
xmtis(lz|>R) < Cpp X—i=t |U8

~1
| p*(|z|>R—r)-

Therefore, we can deduce that

m —J -
251 X D iX
:

02|20 (212 R) < Cop |BE |p= (| > R—r) - (4.18)

Since #¢ — 9% in X(R3), (4.18) implies that we obtain the desired result.

Step 2. We verify that v possesses a maximum 7! satisfying V(en?) — V(z?).

In the following, letting o be a maximum of 4%, we have that [0%(al)|s > o'. By the fact that lim, . 0.(z) = 0
uniformly in ¢, then there exists R{ > 0 independent of € such that |al| < Rj. Recalling 02(-) = vZ(-+y2), then y! + ol
is a a maximum of of vl. Define n! = y! + af, according to Lemma 4.8 and |al| < R{, we obtain that en’ — 2% as
e — 07 and hence V(ent) — V(z*) by the continuity of V. Therefore, we complete the proof of Lemma 4.9. O

Proof of Theorem 1.1. From Proposition 4.1 and Lemma 4.9, we obtain that system (1.1) possesses at least [ different
couples of solutions(vi, A\L) € X(R3) x R with vi(z) > 0 for every x € R3 and A\ < 0, where i € {1,2,---,1}. Let
ul(-) = vl (-/e) and 2L = ent for i € {1,2,---,1}, then (ul,\) is the desired solution for i € {1,2,--- ,1}. The proof of
Theorem 1.1 is completed. O U
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4.2 Proof of Theorem 1.2
Fixing a suitable parameter a* > 0, we take (ug;\, A) to be a family of weak solutions of system (1.1) by Theorem 1.1.
Obviously, we can obtain the boundedness of {ugA} in X(R3). Then, going to a subsequence if necessary, there exists
u?io € X(R3) satisfying ugA — ug’*o as A — 0.
In the following, for any w € X(R?), we have that
/ |Vugf>\|p_2Vu§;\deac + /
R3

V(ex) + 1)|ul )\|p 2u Awdw — |ug*)\|p_2ug*)\wdx + @2 o u?}wdm
R3 RS s ) RS ul’\ e

=9 Fi(u ug /\)wda? — 19/ F(u c )\)wd:c —|—/ |u5 /\|p ;\wdaz. (4.19)
R3

From Lemma 4.3, Lemma 4.5, and Lemma 3.12, letting A — 0, we have

/ |Vu€k|p 2Vl )\dea:%/ |Vu€0|p 2Vl Ode:E / oo, ar U )\wdx% de) *ugjowdz,

/ Fy(u®) Juwdz — / Fl(u®y)ul gz, / By Juywdz — | Fl(uss)ulpwde

RS RS
[ul \ [P 2ul  wdr — [ug ofP
s e : e

/ [Vu a® |p 2VuEOdex—/\/ \u50|p 2y Owdm—i—/ (V(ex)+l)|u80|p 2u Owda:—i—/ o a usowdx
R-’_’)

and

o
ug gwdz.

From this fact, we get

=4 RSFQ( 50) eode—ﬂ/ Fi( ao) aOWd33+/ |Uao|p EOuEOde

which implies that Ug,*o is solutions of system (1.9).

Finally, with the same arguments as in the proof of Theorem 1.1, the solutions ugfo of system (1.9) have a maximum
point z. € R? such that V(z.) = V(z) = Vy as e — 0. O

4.3 Proof of Theorem 1.3

Let (ug ,.,A") be a family of weak solutions of system (1.1) obtained in Theorem 1.1 for a suitable fixed parameter
A* < 0. On the other hand, by [22, Lemma 6.1], as a — 0, we have ¢% s ¢% in D'? (R?), which solves
e, £ A%

—A¢% = (ul,.)? Finally, as in the proof of Theorem 1.2, we conclude that u? ,. is a solution of system (1.10). [
e,* ’ ’
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