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Abstract

In this paper, we study the following critical Schrödinger-Bopp-Podolsky system driven by the p-Laplace operator
and with a logarithmic nonlinearity:{

−∆pu+ V(εx)|u|p−2u+ κϕu = λ|u|p−2u+ ϑ|u|p−2u log |u|p + |u|p
∗−2u in R3,

−∆ϕ+ a2∆2ϕ = 4π2u2 in R3.

The analysis is developed under the prescribed mass assumption
∫
R3 |u|pdx = ρp, where ϑ, a, ρ > 0, ε > 0, λ ∈ R, κ > 0

and p ∈ (1, 3). The potential V ≥ 0 is a bounded and continuous function that satisfies some suitable global
conditions. The main results establish the existence, multiplicity and concentration of normalized solutions to the
above system and the proofs combine suitable variational and topological methods. This seems to be the first paper
dealing with the existence and concentration of solutions with prescribed mass for critical Schrödinger-Bopp-Podolsky
systems involving the p-Laplacian and logarithmic nonlinearity. In the final part of this paper, we are interested
in the asymptotic behaviour of normalized solutions as λ → 0 and a → 0, respectively. The main feature of this
paper is given by the combined effects generated by the simultaneous appearance of a quasilinear operator, critical
exponent, and the logarithmic nonlinearity.
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1 Introduction and main result

This paper is devoted to the study of the following critical Schrödinger-Bopp-Podolsky system involving the p-Laplacian
and logarithmic nonlinearity:{

−∆pu+ V(εx)|u|p−2u+ κϕu = λ|u|p−2u+ ϑ|u|p−2u log |u|p + |u|p∗−2u in R3,

−∆ϕ+ a2∆2ϕ = 4π2u2 in R3,
(1.1)

under the mass constraint ∫
R3

|u|pdx = ρp, (1.2)

where ∆p· = div(|∇ · |p−2∇·) is the usual p−Laplacian, ϑ, a, ρ > 0, ε > 0, λ ∈ R, κ > 0, p ∈ (1, 3) and the potential
V ≥ 0 is a bounded continuous function.
In recent years, D’Avenia and Siciliano [7] first considered the following Schrödinger-Bopp-Podolsky system:{

−∆u+ ωu+ q2ϕu = |u|p−2u in R3,

∆2ϕ+ a2∆2ϕ = 4πu2 in R3,
(1.3)

where a, ω > 0. This system is formed when we couple a Schrödinger field ψ = ψ(t, x) with the electromagnetic field in
the Bopp-Podolsky electromagnetic theory, especially in the electrostatic case for standing waves ψ(t, x) = eiωtu(x). The
Bopp-Podolsky theory is a second order gauge theory of the electromagnetic field, and is proposed to solve the so-called
infinity problem that occurs in the classical Maxwell theory, see [13, 14, 15]. Note that this theory was first developed
by Bopp [12], and independently by Podolsky [41]. Furthermore, the Bopp-Podolsky theory can be interpreted as a
valid theory for short distances (see [23]), whereas for long distances it is experimentally indistinguishable from Maxwell
one. Therefore, the Bopp-Podolsky parameter a > 0 with the inverse dimension of mass can be regarded as the cut-off
distance or can also be related to an effective radius of the electron. For more background of this topic, we refer to
[9, 16]. On the other hand, system (1.1) involving p-Laplacian has a wide range of physical applications, such as the
study of flows through porous media (p = 3

2 ), nonlinear elasticity (p ≥ 2) and glaciology (p ∈ (1, 43 ]); see [20, 24, 31] and
references. This is the reason why it is more interesting and meaningful to consider the Schrödinger-Bopp-Podolsky
system driven by the p-Laplace operator.
Generally, there are two ways to consider system (1.1):

(i) the frequency λ is a given constant.

(ii) the frequency λ is unknown to system (1.1).

In case (i), we are usually interested in investigating ground state solutions of system (1.1) since such solutions
possess more properties, such as stability, positivity, and symmetry. They can be regarded as minimizers of the energy
functional Iλ among its nontrivial critical points, that is, the minimizers of

cλ := {Iλ : u ∈ X(R3)\{0}, I ′
λ(u) = 0},

where Iλ is the action functional of system (1.1). For example, Bahrouni and Missaoui [8] obtained the existence of a
ground state solution with a fixed sign and a least energy nodal solution for system (1.3) by minimization techniques.
Also, they showed the relationship between the energy of the nodal solution and that of the ground state solution.
In [58], Yao et al. obtained the existence of ground state solution for Schrödinger-Bopp-Podolsky system involving
Choquard nonlinearity via Nehari-Pohozaev manifold method. Chen et al. [18] considered the existence of ground state
solutions for the non-autonomous Schrödinger-Bopp-Podolsky system by variational methods. Some other interesting
results on this topic can be found in [28, 29, 30, 37, 50] and the references therein.
In case (ii), the parameter λ ∈ R arises as a Lagrange multiplier, which is determined by the solution rather than

being given in advance. Such solutions always correspond to a couple (u, λ) that satisfies some fixed problems. We
call these solutions normalized solutions, that is, solutions of system (1.1) satisfying the normalized condition (1.2).
From a physical point of view,

∫
R3 |u|pdx is regarded as the mass, which represents the number of particles of each

component in Bose-Einstein condensates or the power supply in the nonlinear optics framework. On the other hand,
normalized solutions provide a better perspective for understanding the dynamical properties, such as orbital stability or
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instability, and describe attractive Bose-Einstein condensates. That is the reason why there are many scholars exploring
the normalized solutions in recent years.
Nevertheless, there are not many results about normalized solutions of Schrödinger-Bopp-Podolsky systems. In [1],

Afonso and Siciliano first considered the Schrödinger-Bopp-Podolsky system under Neumann boundary conditions. Un-
der appropriate conditions, they obtained the existence of multiple normalized solutions by the Lusternik-Schnirelmann
theory and Krasnoselskii genus. Siciliano and Silva [48] explored the non-existence and qualitative properties of solu-
tions for Schrödinger-Bopp-Podolsky systems by the fibering approach and variational methods. de Paula Ramos and
Siciliano [44] studied the following Schrödinger-Bopp-Podolsky system in R3:

−∆u+ ωu+ ϕu = |u|p−2u,

−∆2ϕ+ a2∆ϕ = 4πu2,

∥u∥L2 = ρ,

(1.4)

where a, ρ > 0 are fixed, with unknowns being u, ϕ : R3 → R and ω ∈ R. The authors proved that system (1.4) has
a least energy solution if 2 < p < 3 (resp. 3 < p < 10

3 ) and ρ is small enough. Furthermore, they also obtained
that if 2 < p < 14

5 and ρ is sufficiently small, least energy solutions are radially symmetric up to translation, and as
a → 0, these solutions converge to least energy solutions of Schrödinger-Poisson-Slater systems under the same L2-
norm constraint. For the non-existence results, we refer to [49]. Huang and Wang [27] considered system (1.4) in the
L2-mass supercritical case. More precisely, by Mountain-pass arguments developed on the L2-spheres, they obtained
the existence of normalized ground states when the spherical radius of L2-spheres is small enough, the asymptotic
behavior of normalized ground states as the mass vanishes or tends to infinity as a → 0, the radial symmetry and
uniqueness of normalized ground states, and the instability of normalized ground states. Zhang et al. [59] considered
Schrödinger-Bopp-Podolsky system involving a negative potential. Indeed, they obtained the existence of normalized
solutions with positive energy by Mountain-pass argument and also proved the non-existence of normalized solutions
with negative energy. Li et al. [28] studied the following critical Schrödinger-Bopp-Podolsky system:{

−∆u+ ϕu = λu+ µ|u|p−2v + |u|4u in R3,

−∆ϕ+∆2ϕ = 4πu2 in R3,
(1.5)

on the mass constraint ∫
R3

|u|2dx = c2,

where c > 0, 2 < p < 8
3 , µ > 0 is a parameter, and λ ∈ R is a Lagrange multiplier. By a constraint minimizing approach,

they obtained the existence of normalized ground state solutions for the above system. Peng [42] studied the existence
and multiplicity of normalized solutions for Schrödinger-Bopp-Podolsky system of the following type:−∆u+ λu− κ

(
1−e−

|x|
a

|x| ∗ |u|2
)
u = |u|4u in R3,

u > 0,
∫
R3 |u|2dx = c2,

(1.6)

where c, a > 0 and κ ∈ R \ {0} are fixed constants and λ ∈ R is a Lagrange multiplier. More precisely, for κ > 0,
combined with the truncation argument and a measure representation lemma proposed by Lions [40], they obtained that
system (1.6) has at least n pairs of radial normalized solutions with negative energy. Furthermore, they also obtained
a non-existence result of the above system via a Liouville-type Theorem and the Pohozaev identity.
On the other hand, system (1.1) contains logarithmic nonlinearity. It is essential to introduce the background of

logarithmic Schrödinger equations. Such equations have a wide range of applications in physics, such as quantum me-
chanics, quantum optics, nuclear physics, transport and diffusion phenomena, open quantum system, effective quantum
gravity and so on. For more information on this topic, see [10, 25].
In the following, we shall present several relevant references for this paper. Alves and Ji [6] obtained the existence and

multiplicity of normalized solutions for logarithmic Schrödinger equations by minimization techniques and the Lusternik-
Schnirelmann category. Shen and Squassina [47] supplemented and expanded the results of [6]. They considered
logarithmic Schrödinger systems involving p-Laplacian: −εp∆pu+ V (x)|u|p−2u = λ|u|p−2u+ |u|p−2u log |u|p in RN ,∫

RN |u|pdx = apεN ,
(1.7)
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where a, ε > 0, λ ∈ R is known as the Lagrange multiplier. More precisely, they obtained the existence and concentration
of normalized solutions for system (1.7). At the same time, they also proved the existence of normalized solutions for
system (1.7) in both Lp-mass subcritical and Lp-mass supercritical cases. In [43], Peng and Jia considered the following
logarithmic Schrödinger-Bopp-Podolsky system: −ε∆u+ V (x)u− ϕu = u log u2 in R3,

−εϕ+ ε4∆2ϕ = 4πu2 in R3,
(1.8)

where ε > 0 and the potential function V (x) ∈ C(R3,R). By the variational methods introduced by Szulkin [51], they
obtained the existence and concentration of solutions for system (1.8). For more results on this topic, we refer to
[19, 35, 36, 38, 52, 53, 54].
To the best of our knowledge, there are no relevant results in the existing literature regarding the normalized solutions

of logarithmic Schrödinger-Bopp-Podolsky systems involving p-Laplacian. Therefore, it is natural to consider that
whether there exist normalized solutions of system (1.1) involving p-Laplacian and Sobolev critical exponent? Moreover,
whether these solutions are concentrated, or possess some good properties? Inspired by the above works, we first show
that it is possible to obtain that the number of normalized solutions is not less than the number of global minimum
points of V as the parameter ε is small enough by minimization techniques and the truncated argument. Next, by
borrowing the arguments in Li and Zhang [34] and fixing the parameter a, we shall obtain the asymptotic behavior of
normalized solutions as λ→ 0. Finally, inspired by references [7, 46], we will show the found solutions strongly converge
to solutions of Schrödinger-Poisson systems when λ is fixed and a → 0. As far as we know, this is the first study on
the concentration and asymptotic behavior of normalized solutions for system (1.1).
Now, we are ready to state the main results in this paper. We suppose that the potential V ≥ 0 is a bounded and

continuous function satisfying the following conditions:

(V1) V ∈ L∞ (R3
)
,V(x) ≥ 0 for all x ∈ R3.

(V2) V∞ = lim|x|→+∞ V(x) > V0 := minx∈R3 V(x) = 0.

(V3) V−1({0}) = {c1, c2, · · · , cl} with c1 = 0 and cj ̸= cs if j ̸= s.

Theorem 1.1. Let conditions (V1)−(V3) be satisfied and a > 0. For any l ∈ N, then there exist ε̃ and V∗ such that system
(1.1) admits at least l couples

(
uiε, λ

i
ε

)
of weak solutions for |V|∞ < V∗ and ε ∈ (0, ε̃) with

∫
R3

∣∣uiε∣∣p dx = ρp, λiε < 0 for
i = 1, 2, · · · , l. Furthermore, each uiε has a maximum point ziε ∈ R3 such that V(ziε) → V(xi) = V0 as ε→ 0+.

In what follows, we consider the asymptotic behavior of solutions for system (1.1) as λ→ 0 and a→ 0, respectively.

Theorem 1.2. Suppose that conditions (V1)− (V3) hold, and for a suitable fixed parameter a∗ > 0, (ua
∗

ε,λ, λ) is a family

of weak solutions of system (1.1) obtained in Theorem 1.1. Then, up to subsequences, limλ→0 u
a∗

ε,λ = ua
∗

ε,0, where u
a∗

ε,0 is
a normalized solution of the following system:

−∆pu+ V(εx)|u|p−2u+ κϕu = ϑ|u|p−2u log |u|p + |u|p∗−2u in R3,

−∆ϕ+ a2∆2ϕ = 4π2u2 in R3,∫
R3 |u|pdx = ρp.

(1.9)

Moreover, each ua
∗

ε,0 has a maximum point z̄ε ∈ R3 such that V(z̄ε) → V(z̄) = V0 as ε→ 0+.

Theorem 1.3. Suppose conditions (V1)− (V3) are satisfied, and (uaε,λ∗ , λ∗) is a family of weak solutions of system (1.1)

obtained in Theorem 1.1 for a suitable fixed parameter λ∗ < 0. Then, up to subsequences, lima→0 u
a
ε,λ∗ = u0ε,λ∗ , where

u0ε,λ∗ is a normalized solution of the following Schrödinger-Poisson system:
−∆pu+ V(εx)|u|p−2u+ κϕu = λ|u|p−2u+ ϑ|u|p−2 log |u|p + |u|p∗−2u in R3,

−∆ϕ = 4π2u2 in R3,∫
R3 |u|pdx = ρp.

(1.10)

The proofs of Theorems 1.1-1.3 are based on suitable variational and topological arguments. It is more interesting
and meaningful to consider Theorem 1.1-Theorem 1.3 due to the appearance of non-local terms (ϕ, u), logarithmic
nonlinearity and critical nonlinearity, so we have to establish some new estimates. In addition, since λ is not prescribed,
the sequences of approximated Lagrange multipliers have to be controlled. To clearly compare the contributions of this
paper with previous results, we emphasize the following points.
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(i) It seems that this work is the first contribution to obtaining the concentration and asymptotic behavior of normal-
ized solutions for critical Schrödinger-Bopp-Podolsky systems involving p-Laplacian and logarithmic nonlinearity.
In the previous results, there are no such results for Schrödinger-Bopp-Podolsky systems involving p-Laplacian
and logarithmic nonlinearity, even in the critical case. Therefore, our results are completely new.

(ii) Inspired by the ideas of [34, 42, 47], we consider the concentration and asymptotic behavior of normalized solutions.
However, we do not simply repeat the methods in [34, 47] to get the desired results. More precisely, Li and Zhang
[34] considered the existence, multiplicity and asymptotic behavior of system (1.1) without logarithmic nonlinearity
in the case p = 2. In contrast the equations in Shen and Squadssina [47] merely contain logarithmic nonlinearity,
while system (1.1) includes the non-local (u, ϕ) and critical nonlinearity. For non-local term (u, ϕ), we shall
use reduction arguments proposed in D’Avenia and Siciliano [7] to reduce energy functional to a single variable
functional Jε. In addition, to obtain our main results in this paper, inspired by the ideas about the method of
decomposition of logarithmic nonlinearity in Shen and Squadssina [55], we complete the proof of Theorems 1.1-1.3.
On the other hand, Peng and Jia [43] only obtained the concentration of solutions for logarithmic Schrödinger-
Bopp-Podolsky system involving the classical Laplacian, even not in the critical case, and the solutions they
studied are not normalized solutions. To some extent, we supplement and extend the results of [34, 42, 47].

(iii) The appearance of the non-zero potential function V(x) makes the proof of the existence of the normalized solution
extremely complicated. In the Lp-subcritical case, we cannot directly obtain the energy functional corresponding
to system (1.1) on the sphere (see reference [32]). At the same time, the compactness of the minimizing sequence
also requires detailed estimates to handle. To overcome these difficulties, borrowing of the arguments as references
[3, 5], we use the penalization method proposed by Del Pino and Felmer [21]. We achieved this goal by modifying
the nonlinearity outside the set. However, the most important way to overcome this difficulty is that we must
find a new appropriate penalization for system (1.1), because the the original penalization in Del Pino and Felmer
[21] has a linear growth at infinity, and this growth is controlled by the lower bound V0 of the potential function
V > 0. Here, the lower bound of V can be equal to zero, so the penalization found in Del Pino and Felmer [21]
cannot be directly used in our case.

(iv) The main obstacle in this paper is to verify that (PS) condition holds. In fact, system (1.1) contains critical
nonlinearity in the whole space RN , which prevents the bounded (PS) sequence from converging. Hence, we
have to consider how the interaction between the nonlocal term and the nonlinear term will affect the existence
of normalized solutions for system (1.1). In addition, we shall encounter the other difficulty that sequences of
approximated Lagrange multipliers have to be controlled, since λ is not prescribed. Furthermore, weak limits
of the Palais-Smale sequences could leave a constraint. In conclusion, we use the concentration-compactness
principles due to Lions [40] to overcome the lack of compactness in RN . At the same time, we shall establish some
new techniques to overcome the difficulties brought by the emergence of the nonlocal term.

The paper is organized as follows. In Sect. 2, we introduce the variational setting and present some preliminary
lemmas. In Sect. 3, we adopt a truncation function and consider the autonomous problem with truncation In Sect. 4,
we prove Theorems 1.1-1.3 by the Lusternik-Schnirelmann category and variational methods.

2 Preliminaries

In this section, we shall introduce some notations, fundamental concepts and properties concerning the Orlicz spaces
which will be used later. For more details, we refer to Rao and Ren [45].

Definition 2.1. An N -function is a continuous function Φ : R → [0,+∞) that satisfies the following conditions:

(i) Φ is a convex and even function;

(ii) Φ(t) = 0 ⇐⇒ t = 0;

(iii) lim
t→0

Φ(t)
t = 0 and lim

t→∞
Φ(t)
t = +∞.

We say that the N -function Φ satisfies the ∆2-condition, denoted by Φ ∈ (∆2), if

Φ(2t) ≤ kΦ(t), ∀t ≥ t0

for some constants k > 0 and t0 ≥ 0.
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The conjugate function Φ̃ associated with Φ is obtained through the Legendre’s transformation, defined as

Φ̃(s) = max
t≥0

{st− Φ(t)} for s ≥ 0.

It can be shown that Φ̃ is also an N -function. The functions Φ and Φ̃ are mutually complementary, that is, ˜̃Φ = Φ.
For an open set Ω ⊂ R3, we define the Orlicz space associated with the N -function Φ as follows

LΦ(Ω) =

{
u ∈ L1

loc(Ω) :

∫
Ω

Φ

(
|u|
λ̃

)
dx < +∞, for some λ̃ > 0

}
.

Note that LΦ(Ω) is a Banach space equipped with the Luxemburg norm define by

∥u∥Φ = inf

{
λ̃ > 0 :

∫
Ω

Φ

(
|u|
λ̃

)
dx ≤ 1

}
.

Then there also holds the Hölder and Young type inequalities, namely

st ≤ Φ(t) + Φ̃(s), ∀s, t ≥ 0

and ∣∣∣∣∫
Ω

uvdx

∣∣∣∣ ≤ 2∥u∥Φ∥v∥Φ̃, for ∀u ∈ LΦ(Ω) and ∀v ∈ LΦ̄(Ω).

The space is the reflexive and separable space LΦ(Ω) provided that Φ, Φ̃ ∈ (∆2). Furthermore, the ∆2-condition shows
that

LΦ(Ω) =

{
u ∈ L1

loc(Ω) :

∫
Ω

Φ(|u|)dx < +∞
}

and

un → u in LΦ(Ω) ⇐⇒
∫
Ω

Φ (|un − u|) dx→ 0.

In addition, we recall some properties of N -functions. Let Φ be an N -function of C1 class and Φ̃ be its conjugate
function. If

1 < l ≤ Φ′(t)t

Φ(t)
≤ m, t ̸= 0, (2.1)

then Φ, Φ̃ ∈ (∆2). Finally, we consider the functions

ξ0(t) = min{tl, tm} and ξ1(t) = max{tl, tm}, ∀t ≥ 0.

By (2.1), we can see that the function Φ satisfies

ξ0 (∥u∥Φ) ≤ Φ(u) ≤ ξ1 (∥u∥Φ) , ∀u ∈ LΦ(Ω). (2.2)

In order to deal with the logarithmic nonlinearity in system (1.1), borrowing from the arguments of [6], we define the
functions F1 and F2 as follows

F1(s) =


F1(−s), s ≤ 0,

− 1
ps
p log sp, 0 < s < (p− 1)δ,

− 1
ps
p
[
log
(
(p− 1)δ

)p
+ p+ 1

]
+ pδsp−1 − 1

p(p−1)

(
(p− 1)δ

)p
, s ≥ (p− 1)δ,

and

F2(s) =

 0, |s| < (p− 1)δ,

1
p |s|

p log
(
|s|p/((p− 1)δ)p

)
+ pδ|s|p−1 − p+1

p |s|p − 1
p(p−1)

(
(p− 1)δ

)p
, |s| ≥ (p− 1)δ,

where δ > 0 is sufficiently small but fixed, and then we obtain the decomposition

|s|p log |s|p = F2(s)− F1(s). (2.3)

Furthermore, F1 and F2 satisfy the following properties:
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(F1) F1 is even with F ′
1(s)s ≥ 0 and F1(s) ≥ 0 for all s ∈ R. Moreover, F1 ∈ C1(R,R) is convex if δ ≈ 0+;

(F2) F2 ∈ C1(R,R) ∩ C2((δ,+∞),R) and for each q̃ ∈ (p, p+ p2

3 ), there exists a Cq̃ > 0 such that

|F ′
2(s)| ≤ Cq̃|s|q̃−1, ∀s ∈ R;

(F3) s 7→ F ′
2(s)
sp−1 is a nondecreasing function for s > 0 and a strictly increasing function for s > δ;

(F4) lim
s→∞

F ′
2(s)
sp−1 = ∞.

Lemma 2.1. [47, Lemma 2.2] The function F1 is an N -function. Moreover, if 2 ≤ p < N , it holds that F1, F̃1 ∈ (∆2).

Replacing Φ and Ω in the above discussions with F1 and R3, respectively, we define the Orlicz Space LF1(R3) and it
is standard to prove the following result.

Corollary 2.1. The functional Θ : LF1(R3) → R given by u 7→
∫
R3 F1(u)dx is of class C1(LF1(R3)) with

Θ′(u)v =

∫
R3

F ′
1(u)vdx, ∀u, v ∈ LF1(R3),

where LF1(R3) is the Orlicz space associated with F1 endowed with the Laremburg norm ∥ · ∥F1
.

In the sequel, in order to avoid the points u ∈W 1,p(R3) that satisfy F1(u) ̸∈ L1(R3), we should consider the workspace
X(R3) =W 1,p(R3) ∩ LF1(R3) equipped with the following norm

∥ · ∥ ≜ ∥ · ∥W 1,p(R3) + ∥ · ∥F1
,

where ∥ · ∥W 1,p(R3) denotes the usual norm in W 1,p(R3). Moreover, the space of radially symmetric functions Xrad(R3)
is defined by Xrad(R3) = {u ∈ X(R3) : u(x) = u(|x|)} with the norm ∥ · ∥.
In the following, we also define the functional space H1(R3) by

H1(R3) := {u ∈ L2(R3),∇u ∈ L2(R3)}

endowed with the norm

∥u∥2H1(R3) =

∫
R3

(|∇u|2 + |u|2)dx.

In addition, we also define D as the completion of C∞
0 (R3) with respect to the norm ∥ · ∥D introduced by the scalar

product

⟨u, v⟩D =

∫
R3

(∇u∇v + a2∆u∆v)dx.

Therefore, D is a Hilbert space, and there exists a continuous embeddings D ↪→ D1,2(R3) ↪→ L6(R3). Finally, we denote
Lr(R3) as the usual Lebesgue space endowed with the standard norm.

|u|rr :=
∫
R3

|u|rdx

for r ∈ [1,+∞).
As shown in d’Avenia and Siciliano [7], the continuous embedding D ↪→ L∞(R3) holds, where

D :=
{
ϕ ∈ D1,2(R3) : ∆ϕ ∈ L2(R3)

}
.

The energy functional Iε,a(u, ϕ) corresponding to system (1.1) is defined by

Iε,a(u, ϕ) =
1

p

∫
R3

|∇u|pdx+
1

p

∫
R3

V(εx)|u|pdx+
κ

2

∫
R3

ϕ|u|2dx− κ

16π
|∇ϕ|22 −

κa2

16π
|∆ϕ|22

− ϑ

p

∫
R3

|u|p log |u|pdx− 1

p∗

∫
R3

|u|p
∗
dx in X(R3)×D.
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Note that the critical points of Iε,a(u, ϕ) are weak solutions of system (1.1). By (2.3), the energy functional Iε,a(u, ϕ)
can be rewritten as

Iε,a(u, ϕ) =
1

p

∫
R3

|∇u|pdx+
1

p

∫
R3

(V(εx) + 1)|u|pdx+
κ

2

∫
R3

ϕu2dx− κ

16π
|∇ϕ|22 −

κa2

16π
|∆ϕ|22

+ ϑ

∫
R3

F1(u)dx− ϑ

∫
R3

F2(u)dx− 1

p∗

∫
R3

|u|p
∗
dx.

In fact, if (u, ϕ) ∈ X(R3)×D is a critical point of Iε,a, then for every (v, ζ) ∈ X(R3)×D, one has

0 = ∂uIε,a(u, ϕ)[v] =
1

p

∫
R3

|∇u|p−2∇u∇vdx+
1

p

∫
R3

(V(εx) + 1)|u|p−2uvdx

+ κ

∫
R3

ϕuvdx+ ϑ

∫
R3

(F ′
1(u)− F ′

2(u))vdx−
∫
R3

|u|p
∗−2

uvdx

and

0 = ∂ϕIε,a(u, ϕ)[ζ] =
µ

2

∫
R3

u2ζdx− µ

8π

∫
R3

∇ϕ∇ζdx− µa2

8π

∫
R3

∆ϕ∆ζdx

which implies that (u, ϕ) is a weak solution of system (1.1).
From this fact, together with the standard argument, we research for the critical points of a functional of a single

variable. Now, for every fixed u ∈ H1
(
R3
)
, the Lax-Milgram theorem implies that there exists a unique solution ϕu ∈ D

such that
−∆ϕ+ a2∆2ϕ = u2.

In order to write explicitly this solution (see Podolsky [41]), we consider

K(x) =
1− e−|x|/a

4π|x|
.

From d’Avenia and Siciliano [7], we have the fundamental properties for K.

Lemma 2.2. For every y ∈ R3, K(· − y) solves in the sense of distributions

−∆ϕ+ a2∆2ϕ = δy.

Moreover, we also have

(i) if f ∈ L1
loc(R3) and for a.e. x ∈ R3, the map y ∈ R3 → f(y)

|x−y| is summated, then K ∗ f ∈ L1
loc(R3),

(ii) if f ∈ Lp(R3) with 1 ≤ p < 3
2 , then K ∗ f ∈ Lq(R3) for q ∈ ( 3p

3−2p ,+∞].

In both cases K ∗ f solves
−∆ϕ+ a2∆2ϕ = δy

in the sense of distributions and we have the following distributional derivatives

∇(K ∗ f) = (∇K) ∗ f and ∆(K ∗ f) = (∆K) ∗ f a.e. in R3.

Then, if we fix u ∈ E, the unique solution of the second equation for system (1.1) in D is

ϕau(x) := K ∗ u2 =
1

4π

∫
R3

1− e−|x−y|/a

|x− y|
u2(y)dy.

Therefore, the function ϕu possesses the following good properties.

Lemma 2.3. [7, Lemma 3.4] For every u ∈ H1
(
R3
)
, then ϕau ∈ D and the following conclusions are satisfied:

(i) for every y ∈ R3, ϕau(·+y) = ϕau(·+ y);

(ii) ϕau ≥ 0;

8



(iii) for any t > 0, ϕatu = t2ϕau;

(iv) ∥ϕau∥D ≤ C|u|212
5

≤ C∥u∥pX and
∫
R3 ϕ

a
u|u|2dx ≤ C|u|412

5

≤ C∥u∥4X;

(v) if un ⇀ u in X(R3), then ϕaun
⇀ ϕau in D.

In what follows, We define a smooth functional P(u) : H1(R3) → R by

P(u) =

∫
R3

ϕuu
2dx.

In fact, the functional P(u) has the following useful properties, similar to the Brézis-Lieb Lemma [56, Lemma 1.32].

Lemma 2.4. [57, Lemma 2.3] Let un ⇀ u in H1(R3) and un → u a.e. in R3. Then

P(un − u) = P(un)− P(u) + o(1) as n→ ∞.

Now, taking the same arguments as d’Avenia and Siciliano [7], we can reduce system (1.1) into the following single
equation:

−∆pu+ V(εx)|u|p−2u+ κϕauu = λ|u|p−2u+ |u|p−2u log |u|p + |u|p
∗−2u in R3. (2.4)

It is standard that for any ρ > 0, a solution of problem (2.4) restricted to (1.2) can be regarded as a critical point of
the corressponding energy functional

Jε(u) :=Iε,a(u, ϕau) =
1

p

∫
R3

|∇u|pdx+
1

p

∫
R3

(V(εx) + 1)|u|pdx+
κ

4

∫
R3

ϕauu
2dx

+ ϑ

∫
R3

F1(u)dx− ϑ

∫
R3

F2(u)dx− 1

p∗

∫
R3

|u|p
∗
dx. (2.5)

Then the parameter λ ∈ R appears as a Lagrange multiplier. It is easy to verify that the energy functional Jε is well-
defined and is of class C1 on X(R3). Furthermore, the pair (u, ϕau) ∈ X(R3)×D is a critical point of Iε,a is equivalent
to the fact that u is a critical point of Jε and ϕ = ϕau.

In the following, we introduce the well-known Hardy-Littlewood-Sobolev inequality.

Lemma 2.5. ([39]) Let t, r > 1 and 0 < α < N with 1/t + α/N + 1/r = 2, f ∈ Lt
(
RN
)
and h ∈ Lr

(
RN
)
. There

exists a sharp constant C(t, n, α, r) independent of f, h such that∫∫
R2N

f(x)h(y)

|x− y|α
dxdy ≤ C(t,N, α, r)|f |t|h|r.

In fact, if r = t = 6
5 , then by the Hardy-Littlewood-Sobolev inequality, we deduce∫

R3

ϕau|u|2dx ≤
∫
R3

(
1

|x|
∗ u2

)
|u|2dx ≤ C|u|412

5
. (2.6)

In order to prove that the (PS)c condition are satisfied, we use the second concentration compactness principle and
the concentration compactness principle at infinity. Now, we recall the concentration compactness principle due to
Lions [40].

Lemma 2.6. ([40]) Let {un} be a weakly convergent sequence to u in W 1,p
(
R3
)
such that |un|p

∗
⇀ ν and |∇un|p ⇀ κ

in the sense of measures. Then, there exists a (at most countable) set of distinct points {xi} ⊂ R3, for some at most
countable index set I,

(i) ν = |u|p∗ +
∑
i∈I δxi

νi, νi > 0;

(ii) µ ≥ |∇u|p +
∑
i∈I δxiµi, µi > 0;

(iii) µi ≥ Sν
p/p∗

i ,
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where δxi are Dirac measures at xi, S is the best Sobolev constant defined by

S = inf
{∫

R3

|u|pdx :

∫
R3

|u|p
∗
dx = 1

}
(2.7)

and κi, νi are some positive constants.

However, Lemma 2.6 is only concerned with the possible concentration of a weakly convergent sequences at finite points
and it does not provide any information about the loss of mass of a sequence at infinity. The following concentration
compactness principle at infinity was established by Chabrowski [17] and provides some quantitative information about
the mass loss of the sequences at infinity.

Lemma 2.7. ([17]) Let {un} be a weakly convergent sequence to u in W 1,p
(
R3
)
, and define

(i) ν∞ = limR→∞ lim supn→∞

∫
|x|>R

|un|p
∗
dx;

(ii) µ∞ = limR→∞ lim supn→∞

∫
|x|>R

|∇un|p dx.

The quantities ν∞ and κ∞ exist and satisfy

(iii) lim supn→∞
∫
R3 |un|p

∗
dx =

∫
R3

dν + ν∞;

(iv) lim supn→∞
∫
R3 |∇un|p dx =

∫
R3

dµ+ µ∞;

(v) µ∞ ≥ Sν
p/p∗

∞ .

We will need the following Gagliardo-Nirenberg inequality, which plays a crucial role in proving that the truncated
functional Jε,T is bounded from below on Sρ.

Lemma 2.8. (Gagliardo-Nirenberg inequality) [2, 55] For every p < s < p∗, there exists an optimal constant Cp,s > 0
depending only on p and s such that

|u|s ⩽ Cp,s|∇u|βs
p |u|1−βs

p , ∀u ∈W 1,p(R3), (2.8)

where

βs := 3

(
1

p
− 1

s

)
=

3(s− p)

ps
. (2.9)

By (2.8), we see that

p̄ = p+
p2

3

is the Lp-mass critical exponent with respect to p-Laplace equations.

Lemma 2.9. Let (F1)− (F3) and (V1) be satisfied, then there exists a unique maximum point of Hρ(t), where

Hρ(t) =
1

p
tp − ϑCp,q̃ρ

q̃(1−βq̃)

p tq̃βq̃ − 1

p∗
S− p∗

p tp
∗

for all t > 0.

Proof. By Lemma 2.8, Lemma 2.3-(ii), (F1)− (F2) and (V1), for any u ∈ Sρ, we deduce that

Jε(u) ≥
1

p

∫
R3

|∇u|pdx− ϑ

∫
R3

F2(u)dx− 1

p∗

∫
R3

|u|p
∗
dx

≥ 1

p

∫
R3

|∇u|pdx− ϑ

∫
R3

|u|q̃dx− 1

p∗

∫
R3

|u|p
∗
dx

≥ 1

p

∫
R3

|∇u|pdx− ϑρ
q̃(1−βq̃)

p Cq̃,p|∇u|q̃βq̃
p − 1

p∗
S− p∗

p |∇u|p
∗

p

:= H (ρ, |∇u|p) . (2.10)
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Let

Hρ(t) = H(ρ, t) :=
1

p
tp − ϑCp,q̃ρ

q̃(1−βq̃)

p tq̃βq̃ − 1

p∗
S− p∗

p tp
∗

for all t > 0. Therefore, we deduce that

H′(ϱ, t) = tq̃βq̃−1
(
tp−q̃βq̃ − S− p∗

p tp
∗−q̃βq̃ − ϑCp,q̃βq̃ρ

q̃(1−βq̃)

p

)
= tq̃βq̃−1G1(t),

where

G1(t) = tp−q̃βq̃ − S− p∗
p tp

∗−q̃βq̃ − ϑCp,q̃βq̃ρ
q̃(1−βq̃)

p

for all t ∈ [0,∞). Moreover, we obtain that

lim
t→0+

G1(t) = −ϑCp,q̃βq̃ρ
q̃(1−βq̃)

p and lim
t→∞

G1(t) = −∞.

Therefore, there exists a local maximum point t0 ∈ (0,∞) of G1(t). It is clear to see that t0 is also a local maximum
point of G2(t) defined by

G2(t) = tp−q̃βq̃ − S− p∗
p tp

∗−q̃βq̃ = tp−q̃βq̃ (1− ϑS− p∗
p tp

∗−p)

and G2(t) > 0 for t > 0 sufficiently small. Therefore, G2(t0) > 0 and t0 is the unique maximum point of G2(t) since
G3(t) is a decreasing function on (0,∞), where

G3(t) := 1− S− p∗
p tp

∗−p.

Therefore, t0 is the unique maximum point of G1(t) on the interval (0,∞).

In the following, we may suppose that ϑCp,q̃βq̃ρ
q̃(1−βq̃)

p < G2(t0), then G1(t0) > 0. Clearly, t0 is the unique maximum
point of H′(ρ, t) with positive maximum value. Therefore, there exist 0 < t1 < t0 < t2 < +∞ such that H′(ρ, t) > 0
if t ∈ (t1, t2) and H′(ρ, t) < 0 if t ∈ (0, t1) ∪ (t2,∞). Then Hρ(t) attains the maximum point at t2 and local miminum

point at t1. For p < q < p+ p2

3 , we define the function

G(t) = 1

p
tp−q̃βq̃ − 1

p∗
S− p∗

p tp
∗−q̃βq̃ ,

where βq̃ is given in Lemma 2.8. Together with the definition of H(ρ, t), we obtain

H(ρ, t) = tq̃βq̃ (G(t)− ϑCp,q̃ρ
q̃(1−βq̃)

p ).

Therefore, we obtain that t2 is the unique maximum point of G(t). Moreover, we deduce that G(t) > 0 for t > 0 small

enough. Then if we assume that ϑCp,q̃ρ
q̃(1−βq̃)

p < G(t2), we can deduce that the maximum value Hρ(t) > 0 and there
exist 0 < R0 < t2 < R1 < +∞ such that

Hρ(R0) = Hρ(R1) = 0. (2.11)

In the following, we denote

ρ̃1 = min
{( G2(t0)

ϑCp,q̃βq̃

) p
q̃(1−βq̃)

,
( q̃G(t2)
ϑCp,q̃

) p
q̃(1−βq̃)

}
,

we have Hρ(t) < 0 in the intervals (0, R0), (R1,+∞) and Hρ(t) > 0 on (R0, R1) and all ρ1 ∈ (0, ρ̃1). Therefore, we finish
the proof of Lemma 2.9.

Let τ(x) ∈ C∞(R+, [0, 1]) be an non-increasing function such that

τ(x) =

{
1 if 0 ≤ x ≤ R0,

0 if x ≥ R1.
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Now, we study the following truncated functional

Jε,T (u) =
1

p

∫
R3

|∇u|pdx+
1

p

∫
R3

(V(εx) + 1)|u|pdx+
κ

4

∫
R3

ϕauu
2dx

+ ϑ

∫
R3

F1dx− ϑ

∫
R3

F2dx− τ (|∇u|p)
p∗

∫
R3

|u|p
∗
dx. (2.12)

By (F1)− (F2), Lemma 2.8 and (V1), we obtain

Jε,T (u) ≥
1

p

∫
R3

|∇u|pdx− ϑρ
q̃(1−βq̃)

p Cp,q̃|∇u|q̃βq̃
p − τ(|∇u|p)

p∗
S−p∗/p|∇u|p

∗

p

:= HT (ρ, |∇u|p),

that is,

HT (ρ, t) :=
tp

p
− ϑρ

q̃(1−βq̃)

p Cp,q̃tq̃βq̃ − τ(t)

p∗
S−p∗/ptp

∗
. (2.13)

In what follows, we give some properties of HT (ρ, t).

Lemma 2.10. Let (F1)− (F2) and (V1) be satisfied. Then the function Hρ,T satisfies the following properties:

(i) HT (ρ, t) ≡ Hρ(t) for all t ∈ (0, R0] ,

(ii) HT (ρ, t) is positive and strictly increasing in (R0,+∞).

Proof. In the following, we consider the sign of HT (ρ, t) as t ≥ R1. For all t ∈ [R1,+∞), we have

HT (ρ, t) = HT,ρ(t) :=
1

p
tp − ϑρ

q̃(1−βq̃)

p Cp,q̃tq̃βq̃ .

Now, we may suppose that

0 < ρ < min
{
ρ̃1,
( 1

ϑpCp,q̃

) p
q̃(1−βq̃)

R1

p(p−q̃βq̃)

q̃(1−βq̃)

}
.

Consequently, we have HT,ρ(t) > 0 for all t ≥ R1. In addition, we have that

H′
T (ρ, t) = t

(
1− ϑρ

q̃(1−βq)

p Cp,q̃βq̃tq̃βq̃−p
)
> 0

for all t ≥ R1 and 0 < ρ <
(

1
ϑCp,q̃βq̃

) p
q̃(1−βq̃)

R

p(p−q̃βq̃)

q̃(1−βq̃)

1 . Then we may suppose that

0 < ρ < ρ̃ := min
{
ρ̃1,
( 1

ϑpCp,q̃

) p
(1−βq̃)

R1

p(p−q̃βq̃)

q̃(1−βq̃) ,
( 1

ϑCp,q̃βq̃

) p
q̃(1−βq)

R

p(p−q̃βq̃)

q̃(1−βq̃)

1

}
.

Hence, we deduce that HT (ρ, t) has the following properties HT (ρ, t) ≡ Hρ(t) for all t ∈ (0, R0] ,

HT (ρ, t) is positive and strictly increasing in (R0,+∞).

Hence, we complete the proof of Lemma 2.10.

Without loss of generality, we may assume that we can take R0 > 0 sufficiently small such that

1

p
t21 −

1

p∗
S− p∗

p tp
∗

1 ≥ 0 for all t1 ∈ [0, R0] and Rp0 < S
3
p . (2.14)

In what follows, for any V1 ∈ [0, |V|∞], we denote by JV1
,JV1,T : X

(
R3
)
→ R the following functionals

JV1
(u) :=

1

p

∫
R3

|∇u|pdx+
(V1 + 1)

p

∫
R3

|u|pdx+
κ

4

∫
R3

ϕauu
2dx+ ϑ

∫
R3

F1(u)dx

− ϑ

∫
R3

F2(u)dx− 1

p∗

∫
R3

|u|p
∗
dx
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and

JV1,T (u) :=
1

p

∫
R3

|∇u|pdx+
(V1 + 1)

p

∫
R3

|u|pdx+
κ

4

∫
R3

ϕauu
2dx+ ϑ

∫
R3

F1(u)dx

− ϑ

∫
R3

F2(u)dx− τ(|∇u|p)
p∗

∫
R3

|u|p
∗
dx.

3 The autonomous problem with truncated.

In this section, we study the properties of the truncated functional JV1,T on Sρ.

Lemma 3.1. The functional JV1,T is bounded from below in Sρ and coercive.

Proof. For each u ∈ Sρ, we deduce that

JV1,T (u) ≥ HT,ρ(|∇u|p) ≥ inf
t>0

HT,ρ(t) > −∞.

Moreover, JV1,T (u) → ∞ as |∇u|p → ∞. Therefore, we obtain the desired result.

In the following, we can define that
d̃V1,T,ρ := inf

u∈Sρ

JV1,T (u). (3.1)

The following result presents an important property of cV1,T,ρ.

Lemma 3.2. For ρ < ρ̃, there exists V∗ > 0 such that d̃V1,T,ρ < 0 if V1 < V∗.

Proof. Fix ψ ∈ X(R3)\{0} and s > 0. By some calculations, we obtain that

JV1,T (e
3s
p ψ) =

e3s

p

∫
R3

|ψ|pdx+
V1 + 1

p
e3s
∫
R3

|ψ|pdx+
e

4
p ·3s

4

∫
R3

ϕaψψ
2dx

− ϑ
3s

p
e3s log |e|

∫
R3

|ψ|pdx− ϑe3s

p

∫
R3

|ψ|p log |ψ|pdx− e
p∗
p ·3s · τ(|∇e

3s
p ψ|p)
p∗

∫
R3

|ψ|p
∗
dx

=
e3s

p

∫
R3

|ψ|pdx+
V1 + 1

p
e3s
∫
R3

|ψ|pdx+
e

4
p ·3s

4

∫
R3

ϕaψ|ψ|2dx

− ϑ
3s

p
e3s log |e|

∫
R3

|ψ|pdx− ϑe3s

p

∫
R3

|ψ|p log |ψ|pdx− e
p∗
p ·3s

p∗

∫
R3

|ψ|p
∗
dx < 0

for s > 0 small enough. Therefore, we deduce that

e3s

p

∫
R3

|ψ|pdx+
e

4
p ·3s

4

∫
R3

ϕaψψ
2dx− ϑ

3s

p
e3s log |e|

∫
R3

|ψ|pdx− ϑe3s

p

∫
R3

|ψ|p log |ψ|pdx− e
p∗
p ·3s

p∗

∫
R3

|ψ|p
∗
dx := A < 0

for s > 0 small enough. Consequently, setting V1 < V∗ := −p(A +2)
ρp , we obtain that

JV1,T (e
3s
p ψ) ≤ A − (A + 2) + 1 < 0,

which shows that d̃V1,T,ρ < 0, and completes the proof of Lemma 3.2.

Lemma 3.3. Assume that V1 < V∗ holds. The energy functional JV1,T has the properties as follows:

(i) JV1,T ∈ C1(X(R3),R).

(ii) If JV1,T ≤ 0 then |∇u|p < R0, and JV1,T (v) = JV1
(v) for all v in a small neighborhood of u in X(R3).

Proof. The results of Lemma 3.3 can be obtained by the similar arguments to [33, Lemma 3.3], so we omit here.
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We recall the definition of HT (ρ, t) given in (2.13), and define

FT (ρ, t) :=
1

p
− ϑCp,q̃ρ

q̃(1−βq̃)
p tγ1 − τ(t)

p∗
S− p∗

p tp
∗−p,

where γ1 := q̃βq̃ − p < 0. At the same time, we also define the following function

F (ρ, t) =
1

p
− ϑCp,q̃ρ

q̃(1−βq̃)
p tγ1 − 1

p∗
S− p

p∗ tp
∗−p. (3.2)

In what follows, we study the properties of FT (ρ, t) for all t ∈ (0,∞).

Lemma 3.4. Let (ρ2, t2) ∈ (0,∞)× (0,∞) satisfy F(ρ2, t2) ≥ 0. Then for all ρ1 ∈ (0, ρ2], it holds that

FT (ρ1, t1) ≥ 0, ∀t1 ∈ [(
ρ1
ρ2

)
1
p t2, t2].

Proof. Since ρ→ FT (ρ, t) is an non-increasing function on the internal (0,∞), we can deduce that

FT (ρ1, t2) ≥ FT (ρ2, t2) ≥ F(ρ2, t2) ≥ 0 .

By some calculations, we infer that

FT

(
ρ1,

(
ρ1
ρ2

) 1
p

t2

)
≥ F

(
ρ1,

(
ρ1
ρ2

) 1
p

t2

)

=
1

p
− ϑCp,q̃

(
ρ1
ρ2

)γ2
ρ

q̃(1−βq̃)
p

2 tγ12 − 1

p∗

(
ρ1
ρ2

) p∗−p
p

S− p∗
p tp

∗−p
2

≥ 1

p
− ϑCp,q̃ρ

q̃(1−βq̃)
p

2 tγ12 − 1

p∗
S− p∗

p tp
∗−p

2

= F (ρ2, t2) ≥ 0,

where γ2 :=
q̃(1−βq̃)+γ1

p > 0 and γ1 is given in Lemma 3.3. Therefore, we obtain that

FT

(
ρ1,

(
ρ1
ρ2

) 1
p

t2

)
≥ 0 and FT (ρ1, t2) ≥ 0.

By the definition of τ , we conclude that FT (ρ1, t1) ≥ 0 for t1 ∈
[(

ρ1
ρ2

) 1
p

t2, t2

]
. Consequently, we complete the proof of

Lemma 3.4.

Lemma 3.5. For each u ∈ Sρ, we deduce that

JV1,T (u) ≥ |∇u|ppFT (ρ, |∇u|p).

Proof. By the Gagliardo-Nirenberg inequality (see Lemma 2.8), (V1), (F1)− (F2) and Lemma 2.3-(ii), we obtain that

JV1,T (u) ≥
1

p

∫
R3

|∇u|pdx− ϑρ
q̃(1−βq̃)

p Cp,q̃|∇u|q̃βq̃
p − τ (|∇u|p)

p∗
S− p∗

p |∇u|p
∗

p

= |∇u|pp
[
1

p
− ϑρ

q̃(1−βq̃)

p Cp,q̃|∇u|γ1p − τ (|∇u|p)
p∗

S− p∗
p |∇u|p

∗−p
p

]
= |∇u|ppFT (ρ, |∇u|2)

for each u ∈ Sρ. Therefore, the proof of Lemma 3.5 is finished.

We recall the definition of d̃V1,T,ρ in (3.1), and we will show that it possesses some nice properties.

Lemma 3.6. d̃V1,T,ρ is continuous with regard to ρ ∈ (0, ρ̃).

14



Proof. By the similar arguments to [26, Lemma 2.3], we can obtain the desired result. Therefore, we omit it here.

For any ρ < ρ̃, by setting of (2.11) and H(ρ̃, t) = tpF(ρ̃, t), it follows that F (ρ̃, R0) = 0. Moreover, ρ→ F(ρ, t) is an
non-increasing function. It follows that F (ρ,R0) ≥ 0 for all ρ ∈ (0, ρ̃).

Lemma 3.7.
ρp1
ρp2
d̃V1,T,ρ2 < d̃V1,T,ρ1 < 0, where 0 < ρ1 < ρ2 < ρ̃.

Proof. Set ζ =
(
ρ2
ρ1

) 1
p

> 1. Let {un} ⊂ Sρ1 be a minimizing sequence with respect to d̃V1,T,ρ1 , i.e., JV1,T (un) →
d̃V1,T,ρ1 < 0 as n→ +∞ by Lemma 3.2. Therefore, there exists n0 such that

JV1,T (un) < 0 for n ≥ n0. (3.3)

By Lemma 3.4, F (ρ2, R0) ≥ 0, and we obtain that FT (ρ1, t) ≥ 0 for any t ∈
[(

ρ2
ρ1

) 1
p

R0, R0

]
. Moreover, it follows from

(3.3) and Lemma 3.5 that

|∇u|p <
(
ρ2
ρ1

) 1
p

R0 for n ≥ n0. (3.4)

Let vn = ζun, so vn ∈ Sρ2 . Then we can obtain that |∇vn|p = ζ|∇un|p < R0 by Lemma 3.3. Consequently, we deduce
that

τ (|∇un|p) = τ (|∇vn|p) = 1.

Moreover, by ζ > 1, we obtain that

d̃V1,T,ρ2 ≤ JV1,T (un) ≤ ζp
2

JV1,T (un)−
ζp

p
log ζpρp1 < ζp

2

JV1,T (un).

Passing the limit as n→ ∞, we infer that d̃V1,T,ρ2 ≤ ζp
2

d̃V1,T,ρ1 , i.e.,

ρp1
ρp2
d̃V1,T,ρ2 ≤ d̃V1,T,ρ1 .

Therefore, we finish the proof of Lemma 3.7.

Lemma 3.8. Let {un} ⊂ Sρ be a minimizing sequence with respect to d̃V1,T,ρ < 0, then un → u in Lp
∗ (R3

)
.

Proof. Since |∇un|pp ≤ R0 for n large enough, by Lemma 2.6 and Lemma 2.7, there exist two positive measures ν and
µ such that

|∇un|2 ⇀ µ, and |un|p
∗
⇀ ν (3.5)

in the space M
(
R3
)
as n→ ∞.

We define that φϱ(x) := φ(x−xi

ϱ ) for all ϱ > 0, where xi is given in Lemma 2.6 and φ ∈ C∞
c (R3), φ = 1 in B1, φ = 0 in

Bc2 and |∇φ|L∞(R3) ≤ 2. Note that {unφϱ} is bounded in X(R3) and φϱ take values in R, we have ⟨J ′
V1
(un), φϱun⟩ → 0

as n → ∞, for n ∈ N sufficiently large. Together with these facts, (F1) − (F2), Lemma 2.3-(ii) and (V1), we deduce
that ∫

R3

|∇un|p φϱ(x)dx+

∫
R3

un|∇un|p−2∇unφϱ(x)dx ≤
∫
R3

|un|q̃φϱdx+

∫
R3

|un|p
∗
φϱ(x)dx+ on(1). (3.6)

By the Hölder inequality, we can obtain that∣∣∣ lim
ρ→0

lim sup
n→∞

∫
R3

un|∇un|p−2∇unφϱ(x)dx
∣∣∣ = 0. (3.7)

By q̃ ∈ (p, p+ p2

3 ) and the definition of φϱ, we have

lim
ϱ→0

lim sup
n→∞

∫
R3

|un|q̃φϱdx = 0.
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Therefore, by (3.5) and Lemma 2.6, we have

lim
ϱ→0

lim
n→∞

φϱ

∫
R3

|∇un|p dx = lim
ϱ→0

∫
R3

φϱdµ = µ ({xi}) = µi,

lim
ϱ→0

lim
n→∞

∫
R3

φϱ |un|p
∗
dx = lim

ϱ→0

∫
R3

φϱdν = ν ({xi}) = νi.

Letting ϱ→ 0, we obtain that µi = νi. Together with µi ≥ Sν
p
p∗

i , it implies that

(i) µi = 0 or (ii) µi ≥ S
3
p . (3.8)

Arguing by contradiction that there exists i0 ∈ I such that µi0 ≥ S
3
p , we obtain that

Rp0 ≥ lim
ϱ→0

lim
n→∞

|∇un|pp ≥ lim
ϱ→0

lim
n→∞

∫
R3

φϱ |∇un|p dx = lim
ϱ→0

∫
R3

φϱdµ = µi0 ≥ S
3
p ,

which contradicts (2.14). Therefore, we can deduce that

un → u in Lp
∗

loc

(
R3
)
.

In what follows, we define a cut off function η ∈ C∞ (R3
)
such that η = 0 in B1 and η = 1 in R3\B2, and we set

ηR(x) = η(x/R) for all R > 0. Note that {unηR} is also bounded in X(R3) and ηR takes values in R. By a direct
calculation, we deduce that ⟨J ′

V1
(un), ηRun⟩ → 0 as n → ∞, for n ∈ N sufficiently large. Combining with these facts,

(F1)− (F2), Lemma 2.3-(ii) and (V1), we deduce that∫
R3

|∇un|p ηR(x)dx+

∫
R3

un|∇un|p−2∇un∇ηR(x)dx

≤
∫
R3

|un|q̃ηR(x)dx+

∫
R3

|un|p
∗
ηR(x)dx+ on(1). (3.9)

From the Hölder inequality, it holds that∣∣∣ lim
R→+∞

lim sup
n→∞

∫
R3

un|∇un|p−2∇un∇ηR(x)dx
∣∣∣ = 0.

By the definition of ηR, we have∫
{x∈R3:|x|>R}

|∇un|p dx ≤
∫
R3

ηR |∇un|p dx ≤
∫
{x∈R3:|x|>R/2}

|∇un|p dx.

Thus, by Lemma 2.7, we obtain

lim
R→∞

lim
n→∞

∫
R3

ηR |∇un|p dx = µ∞. (3.10)

Similarly, we obtain that

lim
R→∞

lim
n→∞

∫
R3

ηR |un|p
∗
dx = ν∞

and

lim
R→∞

lim
n→∞

∫
R3

ηR |un|q̃ dx = lim
R→∞

∫
R3

ηR|u|q̃dx = lim
R→∞

∫
|x|>R/2

ηR|u|q̃dx = 0.

Letting R→ ∞, we deduce that µ∞ = ν∞. We obtain µ∞ ≥ Sν
p
p∗
∞ . Furthermore, we deduce that

(iii) µ∞ = 0 or (iv) µ∞ ≥ S
3
p . (3.11)

Similarly, we deduce that case (iv) cannot occur. Therefore, we have

un → u in Lp
∗ (

R3 \BR(0)
)
.

Hence, we know that
un → u in Lp

∗ (
R3
)
.

This completes the proof of Lemma 3.12.
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Lemma 3.9. (Compactness theorem on S(ρ)). Let {un} ⊂ Sρ be a minimizing sequence with respect to d̃V1,T,ρ. Then,
for some subsequence, either

(i) {un} is strongly convergent, or

(ii) there exists {yn} ⊂ R3 with |yn| → ∞ such that the sequence ũn(x) = un (x+ yn) is strongly convergent to a
function ũ ∈ Sρ with JV1,T (ũ) = d̃V1,T,ρ.

Proof. By Lemma 3.1 and Lemma 3.2, we obtain that {un} is bounded in X(R3). Therefore, there exists u ∈ X(R3)
such that un ⇀ u in X(R3) for some subsequence. In the following, we consider the following case:

Case 1. Assume u ̸≡ 0.
If |u|p := b ̸= ρ, then we must have b ∈ (0, ρ). Let vn := un−u. From Lemma 2.3, the Fatou’s Lemma, the Brézis-Lieb

Lemma [56, Lemma 1.32] and Lemma 2.4, we obtain that

|un|pp = |vn|pp + |u|pp + on(1),∫
R3

ϕaun
u2ndx =

∫
R3

ϕavnv
2
ndx+

∫
R3

ϕauu
2dx+ on(1),

|∇un|pp = |∇u|pp + |∇vn|pp + on(1)

and
|un|p

∗

p∗ = |vn|p
∗

p∗ + |u|p
∗

p∗ + on(1).

We suppose that en = |vn|p, then |vn|p → e, where ρp = ep+ bp. Noting that en ∈ (0, ρ) for n large enough, and by the
fact that τ is continuous, non-increasing function and Lemma 3.7, we deduce that

d̃V1,T,ρ + on(1) =JV1,T (un)

=
1

p

∫
R3

|∇vn|pdx+
1

p
(V1 + 1)

∫
R3

|vn|pdx+
κ

4

∫
R3

ϕavnv
2
ndx+ ϑ

∫
R3

F1(vn)dx

− ϑ

∫
R3

F2(vn)dx− τ (|∇vn|p)
p∗

∫
R3

|vn|p
∗
dx

+
1

p

∫
R3

|∇u|pdx+
1

p
(V1 + 1)

∫
R3

|u|pdx+
κ

4

∫
R3

ϕauu
2dx+ ϑ

∫
R3

F1(u)dx

− ϑ

∫
R3

F2(u)dx− τ (|∇u|p)
p∗

∫
R3

|u|p
∗
dx

≥JV1,T (vn) + JV1,T (u) + on(1)

≥d̃V1,T,en + d̃V1,T,b + on(1)

≥e
p
n

ρp
d̃V1,T,ρ + d̃V1,T,b + on(1).

Passing the limit as n→ +∞, by Lemma 3.7, we obtain that

d̃V1,T,ρ ≥
ep

ρp
d̃V1,T,ρ + d̃V1,T,b >

ep

ρp
d̃V1,T,ρ +

bp

ρp
d̃V1,T,ρ = d̃V1,T,ρ

which is impossible. This asserts that |u|p = ρ, or equivalently, u ∈ S(ρ).
As |un|p = |u|p = ρ, un ⇀ u in Lp(R3) and Lp(R3) is reflexive, we have that

un → u in Lp(R3). (3.12)

This combined with interpolation theorem in the Lebesgue space and (F2) gives∫
R3

F2(un)dx→
∫
R3

F2(u)dx. (3.13)

Moreover, by [7, Lemma 5.1], we obtain that ∫
R3

ϕaun
u2ndx→

∫
R3

ϕauu
2dx. (3.14)
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These above facts together with d̃V1,T,ρ = limn→+∞ JV1,T (un) and F1 ≥ 0 in (F1), we obtain that

d̃V1,T,ρ = lim
n→+∞

JV1,T (un)

= lim
n→+∞

(1
p

∫
R3

|∇un|pdx+
V1 + 1

p

∫
R3

|un|pdx+ κ

∫
R3

ϕaun
u2ndx+ ϑ

∫
R3

F1(un)dx

− ϑ

∫
R3

F2(un)dx− τ (|∇un|p)
p∗

|un|p
∗
dx
)

≥ JV1,T (u).

As u ∈ Sρ, we conclude that JV1,T (u) = d̃V1,T,ρ, then

lim
n→∞

JV1,T (un) = JV1,T (u),

together with (3.12) and (3.13), we obtain that

lim
n→∞

∫
R3

|∇un|pdx =

∫
R3

|∇u|pdx

and

lim
n→∞

∫
R3

F1(un)dx =

∫
R3

F1(u)dx.

Combining with the fact that F1 ∈ (∆2) by Lemma 2.1 and (3.12), we obtain that un → u in X(R3), which implies that
(i) occurs.

Case 2. Assume u ≡ 0, i.e., un ⇀ 0 in X
(
R3
)
.

Now we claim that there exists R1, ς > 0, and a sequence {yn} ⊂ R3 such that∫
BR1

(yn)

|un|p dx ≥ ς for all n. (3.15)

If not, we must obtain un → 0 in Ls
(
R3
)
for all s ∈ (p, p∗) by the Vanishing Lemma. Noting that |∇un|p ≤ R0 for n

large enough, by (F1)− (F2), Lemma 2.3-(ii) and (3.2), we have that

0 > JV1,T (un) ≥
1

p

∫
R3

|∇un|pdx− ϑ

∫
R3

F2(u)dx− 1

p∗

∫
R3

|un|p
∗
dx+ on(1)

≥ 1

p

∫
R3

|∇un|pdx− ϑCp,q̃
∫
R3

|u|q̃dx− 1

p∗

∫
R3

|un|p
∗
dx+ on(1)

≥ 1

p
|∇un|pp −

1

p∗
S− p∗

p |∇un|p
∗

p + on(1)

≥ |∇un|pp
(1
p
− ϑCp,q̃Cρ

q̃(1−βq̃)

p |∇u|q̃βq̃−p
p − 1

p∗
S− p∗

p |∇un|p
∗−p
p

)
+ on(1)

≥ |∇un|pp
(1
p
− ϑCp,q̃Cρ

q̃(1−βq̃)

p R
q̃βq̃−p
0 − 1

p∗
S− p∗

p Rp
∗−p

0

)
+ on(1)

= |∇un|ppF(ρ,R0) ≥ 0

which is impossible. Therefore, (3.15) holds and |yn| → +∞. Consequently, we may define ũn(x) = un (x+ yn). It is
obvious to see that {ũn} ⊂ Sρ and it is also a minimizing sequence of d̃V1,T,ρ. Moreover, there exists ũ ∈ X

(
R3
)
\{0}

such that ũn ⇀ ũ in X
(
R3
)
. Following the similar arguments to the first part of this proof, we deduce that ũn → ũ in

X
(
R3
)
, which implies that (ii) is true. Therefore, we complete the proof of Lemma 3.9.

Lemma 3.10. d̃V1,T,ρ is attained.

Proof. From Lemma 3.1 and Lemma 3.9, there exists a bounded minimizing sequence {un} ⊂ Sρ and un → u in X
(
R3
)

with respect to d̃V1,T,ρ = JV1,T (u) < 0. Therefore, it follows from Lemma 3.3 that {un} is also a minimizing sequence

for JV1(u) and d̃V1,T,ρ(u) = JV1(u). Consequently, we finish the proof of Lemma 3.10.

The following result is a consequence of Lemma 3.10.

Corollary 3.1. If V1 < V2 < V∗, then d̃V1,T,ρ < d̃V2,T,ρ.

Proof. Let u ∈ Sρ satisfy JV2,T (u) = d̃V2,T,ρ. Therefore, d̃V1,T,ρ ≤ JV1,T (u) < JV2,T (u) = d̃V2,T,ρ.
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4 The nonautonomous problem

Now we denote by J0,T ,J∞,T : X(R3) → R the following functionals:

J0,T (u) =
1

p

∫
R3

|∇u|pdx+
1

p

∫
R3

|u|pdx+
κ

4

∫
R3

ϕauu
2dx+ ϑ

∫
R3

F1(u)dx

− ϑ

∫
R3

F2(u)dx− τ (|∇u|p)
p∗

∫
R3

|u|p
∗
dx

and

J∞,T (u) =
1

p

∫
R3

|∇u|pdx+
1

p

∫
R3

(V∞ + 1)|u|pdx+
κ

4

∫
R3

ϕauu
2dx+ ϑ

∫
R3

F1(u)dx

− ϑ

∫
R3

F2(u)dx− τ (|∇u|p)
p∗

∫
R3

|u|p
∗
dx.

By (V1)− (V3) ,V∞ < V∗ and Lemma 3.10, we define the minimum value d̃0,T,ρ and d̃∞,T,ρ

d̃0,T,ρ := inf
u∈Sρ

J0,T (u) and d̃∞,T,ρ := inf
u∈Sρ

J∞,T (u),

respectively, which are attained. Therefore, there exist u0, u∞ ∈ Sρ such that J0,T (u0) = d̃0,T,ρ and J∞,T (u∞) =

d̃∞,T,ρ, respectively. Furthermore, by Corollary 3.1 and V0 < V∞, we know that

d̃0,T,ρ < d̃∞,T,ρ < 0. (4.1)

In what follows, we consider the truncated functional Jε,T : X(R3) → R given in (2.12). Note that we study the
following the minimum value:

d̃ε,T,ρ := inf
u∈Sρ

Jε,T (u),

where d̃ε,T,ρ is well defined since d̃0,T,ρ < d̃ε,T,ρ < d̃∞,T,ρ < 0 and Jε,T is coercive on Sρ being greater than J0,T .

Lemma 4.1. Let ρ > 0, then lim supε→0+ d̃ε,T,ρ ≤ d̃0,T,ρ and there exists ε∗ > 0 such that Jε,ρ < J∞,ρ for all ε ∈ (0, ε∗).

Proof. Let u0 ∈ Sρ with J0,T (u0) = d̃0,T,ρ. Therefore, we deduce that

d̃ε,T,ρ ≤ Jε,T (u0) =
1

p

∫
R3

|∇u0|pdx+
1

p

∫
R3

(V(εx) + 1)|u0|pdx+
κ

4

∫
R3

ϕau0
u20dx

+ ϑ

∫
R3

F1(u0)dx− ϑ

∫
R3

F2(u0)dx− τ (|∇u0|p)
p∗

∫
R3

|u0|p
∗
dx.

Taking the limit as ε→ 0+, we have that

lim sup
ε→0+

d̃ε,T,ρ ≤ lim sup
ε→0+

Jε,T (u0) = J0,T (u0) = d̃0,T,ρ.

Together with (4.1), then there exists ε∗ > 0 small enough such that

d̃ε,T,ρ < d̃∞,T,ρ for all ε ∈ (0, ε∗)

which completes the proof of Lemma 4.1.

Taking the same arguments as Lemma 3.3, we obtain the following result.

Lemma 4.2. The energy functional Jε,T satisfies the following properties:

(i) Jε,T ∈ C1
(
X(R3),R

)
.

(ii) If Jε,T (u) ≤ 0 then |∇u|p < R0, and Jε,T (v) = Jε(v) for all v in a small neighborhood of u in X(R)3.
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Let {un} ⊂ Sρ be a minimizing sequence of Xε,T (un) with respect to any c̃ < d̃∞,T,ρ < 0. Taking the same
arguments as Lemma 3.1 and Lemma 3.2, we can deduce that {|∇un|p} is bounded. Therefore, there exists u ∈ X(R3)
and a subsequence of {un}, still denoted by itself, such that

un ⇀ uε in X(R3) and un(x) → uε(x) a.e. in R3.

Lemma 4.3. For ε > 0, the weak limit uε of {un} is nontrivial.

Proof. By contradiction, we suppose that that uε = 0. Therefore,

c̃+ on(1) = Jε,T (un) = J∞,T (un) +
1

p

∫
R3

(V(εx)− V∞) |un|p dx.

From (V1)− (V3), for any given ξ > 0, there exists R > 0 such that

V(x) ≥ V∞ − ξ for all |x| ≥ R.

Therefore, we deduce that

c̃+ on(1) = Jε,T (un) ≥ J∞,T (un) +
1

p

∫
BR/ε(0)

(V(εx)− V∞) |un|p dx− ξ

p

∫
Bc

R/ε
(0)

|un|p dx.

Recalling that {un} is bounded in X(R3) and un → 0 in Lp
(
BR/ε(0)

)
, it holds that

c̃+ on(1) ≥ J∞,T (un)− ξC ≥ d̃∞,T,ρ − ξC. (4.2)

By the arbitrariness of ζ > 0, we obtain that c̃ ≥ d̃∞,T,ρ, which is impossible. So we deduce that the weak limit uε of
{un} is nontrivial.

Lemma 4.4. Let {un} be a (PS)c̃ sequence of Jε,T restricted to Sρ with c̃ < d̃∞,T,ρ and uε is the weak limit of {un}
in X(R3). If un ↛ uε in X(R3), then there exists γ > 0 independent of ε such that

lim inf
n→+∞

(∫
R3

|un − uε|p dx
) 1

p ≥ γ.

Proof. From Lemma 4.2 and c̃ < d̃∞,T,ρ < 0, we obtain that |∇un|p < R0 for n sufficiently large. Therefore, the
sequence {un} is also a (PS)c̃ sequence of Jε constrained to Sρ, i.e.,

Jε (un) → c̃ and
∥∥∥Jε|Sρ

(un)
∥∥∥′
(X(R3))∗

→ 0 as n→ +∞.

Define Ψ : X(R3) → R by Ψ(u) = 1
p

∫
R3 |un|p dx, we observe that Sρ = Ψ−1(ϱ/p). By [56, Proposition 5.12], then there

exists a sequence {λn} ⊂ R such that

∥J ′
ε (un)− λnΨ

′ (un)∥(X(R3))∗ → 0 as n→ +∞. (4.3)

Due to the boundedness of {un} in X(R3), we obtain that un ⇀ uε. Let vn := un − uε, then {λn} is also bounded. For
some subsequence, there exists λε such that λn → λε as n→ +∞. Together with (4.2), we deduce that

J ′
ε (uε)− λεΨ

′ (uε) = 0 in (X(R3))∗, ∥J ′
ε (vn)− λεΨ

′ (vn)∥(X(R3))∗ → 0 as n→ +∞. (4.4)

By (2.6) and Lemma 2.8, choosing κ > 0 small enough, then there exists Cκ > 0 such that

0 > d̃∞,T,ρ > lim
n→∞

Jε(un)

= lim
n→∞

(
Jε(un)−

1

p
J ′
ε(un)un +

λn
p
|u|pp + on(1)

)
≥ λε

p

∫
R3

|u|pdx+ κ(
1

4
− 1

p
)

∫
R3

ϕauu
2dx

≥ λε
p

∫
R3

|u|pdx+ κ(
1

4
− 1

p
)CpR

4β12/5

0

(∫
R3

|u|pdx
)4(1−β12/5)

= (
λε
p

+ κC̃)min{ρp, ρ4p(1−β12/5)}

≥ Cκλεmin{ρp, ρ4p(1−β12/5)}, (4.5)
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where C̃ := 1
4 − 1

pCpR
4β12/5

0 < 0. By (4.4), the above facts imply that

|∇vn|pp +
∫
R3

V(εx) |vn|p dx+

∫
R3

ϕavnv
2
ndx− λε|vn|pp = ϑ

∫
R3

F ′
2(vn)vndx− ϑ

∫
R3

F ′
1(vn)vndx+ |vn|p

∗

p∗ + on(1).

Together with (4.5) and (F1)− (F2), we obtain that

|∇vn|pp +
∫
R3

V(εx) |vn|p dx− pd̃∞,T,ρ

ρ
|vn|pp ≤ ϑ |vn|q̃q̃ + |vn|p

∗

p∗ + on(1). (4.6)

Invoking (4.6) and the Sobolev inequality, we can get that

C0 ∥vn∥pε ≤ ϑ |vn|q̃q̃ + |vn|p
∗

p∗ + on(1) ≤ ϑC1 ∥vn∥q̃ε + C2 ∥vn∥p
∗

ε + on(1).

Since vn ↛ 0 in X(R3), there exists C4 independent of ε such that ∥vn∥ε ≥ C4. Moreover, we have that

lim inf
n→+∞

(
ϑ ∥vn∥q̃ε + ∥vn∥p

∗

ε

)
≥ C5 (4.7)

for some C5 > 0. By (4.7) and the Gagliardo-Nirenberg inequality (see Lemma 2.8) and the Sobolev inequality, there
exists γ > 0 independent of ε ∈ (0, ε0) such that

lim inf
n→+∞

|vn|p ≥ γ.

Therefore, we complete the proof of Lemma 4.4.

From now on, we fix

0 < ϱ̃0 < min

{
d̃∞,T,ρ − d̃0,T,ρ,

γp

ρp

(
d̃∞,T,ρ − d̃0,T,ρ

)}
.

Lemma 4.5. Jε,T satisfies the (PS)c̃ condition restricted to Sρ if c̃ < d̃0,T,ρ + ϱ̃0.

Proof. Let {un} ⊂ Sρ be a (PS)c̃ sequence of Jε,T on Sρ. Noting that c̃ < d̃∞,T,ρ < 0, we obtain the boundedness of
{un} in X(R3) by Lemma 4.2. Let un ⇀ uε in X(R3) and uε ̸≡ 0 from Lemma 4.3. A straightforward computation gives
that vn := un−uε also is a (PS)c̃′ sequence of Jε,T on Sρ and c̃

′ < c̃. If vn ↛ 0 in X(R3), we have lim infn→+∞ |vn|p ≥ γ
due to Lemma 4.4.
In what follows, let b = |uε|p , en = |vn|p and assume that |vn|p → e, so we get e ≥ γ > 0 and ρp = bp + ep. By the

fact that vn ⇀ 0, and the similar arguments to (4.2), we have that Jε,T (vn) ≥ d̃∞,T,ρ + on(1). From en ∈ (0, ρ) for n
large enough, we obtain that

c̃+ on(1) = Jε,T (un) ≥ Jε,T (vn) + Jε,T (uε) ≥ d̃∞,T,en + d̃0,T,b + on(1). (4.8)

By Lemma 3.7 and (4.7), we obtain that

d̃0,T,ρ + ϱ̃0 ≥ c̃+ on(1) ≥
epn
ρp
d̃∞,T,ρ +

bp

ρp
d̃0,T,ρ.

Passing the limit as n→ +∞, we have that

ϱ̃0 ≥ ep

ρp

(
d̃∞,T,ϱ − d̃0,T,ϱ

)
≥ γp

ρp

(
d̃∞,T,ρ − d̃0,T,ρ

)
which contradicts ϱ̃0 <

γp

ρp

(
d̃∞,T,ρ − d̃0,T,ρ

)
. Therefore, we obtain un → uε in X(R3). Consequently, we finish the proof

of Lemma 4.5.
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4.1 Multiplicity result

In this section, we shall apply some arguments found in Alves [4] to obtaining the multiplicity result of system (1.1).
In what follows, we fix ϱ̂, r̃ > 0 satisfying

� Bϱ̂ (ci) ∩Bϱ̂ (cj) = ∅, for i, j and ci, cj are defined in (V3).

�

⋃l
i=1Bϱ̂ (ci) ⊂ Br̃(0).

� Kϱ̂/p =
⋃l
i=1Bϱ̂/p (ci).

Set the function Qε : X(R3)\{0} → R3 by

Qε(u) :=

∫
R3

X (εx)|u|2dx∫
R3

|u|2dx
,

where X : R3 → R3 is given by

X (x) :=

{
x if |x| ≤ r̃,

r̃ x
|x| if |x| > r̃.

The following lemmas play essential roles in obtaining (PS) sequences of Jε,T on Sρ.

Lemma 4.6. There exist ε1 ∈ (0, ε0] and ϱ1 ∈ (0, ϱ̃0] such that if ε ∈ (0, ε1) , u ∈ Sρ and Jε,T (u) ≤ d̃0,T,ρ + ϱ1, then
Qε(u) ∈ Kϱ̂/p.

Proof. Arguing by contradiction that there exist sequences ϱn → 0, εn → 0 and {un} ⊂ Sρ such that

Jεn,T (un) ≤ d̃0,T,ρ + ϱn, Qεn (un) /∈ Kϱ̂/p. (4.9)

Therefore, we obtain that
d̃0,T,ρ ≤ J0,T (un) ≤ Jεn,T (un) ≤ d̃0,T,ρ + ϱn.

This implies that {un} ⊂ Sρ is a minimizing sequence of J0,T (un) . From Lemma 3.9, passing to a subsequence if
necessary, we consider two cases:

(i) there exists a function u ∈ Sϱ such that un → u in X(R3) as n→ ∞, or

(ii) there exists {yn} ⊂ R3 with |yn| → +∞ such that vn(x) = un (x+ yn) converges to some v ∈ Sρ.

Analysis of (i). By the Lebesgue dominated convergence theorem, we obtain that

Qεn (un) =

∫
R3

X (εnx) |un|p dx∫
R3

|un|p dx
→

∫
R3

X (0)|u|pdx∫
R3

|u|pdx
= ci ∈ Kϱ̂/p

which contradicts Qεn (un) /∈ Kϱ̂/p.

Analysis of (ii). Now, we shall consider two cases:

(I) |εnyn| → +∞ and (II) εnyn → y for some y ∈ R3.

For case (I), from the limit vn → v in X(R3), we obtain

Jεn,T (un) =
1

p

∫
R3

|∇vn|pdx+
1

p

∫
R3

V (εnx+ εnyn) |vn|p dx+
1

4

∫
R3

ϕavnv
2
ndx

+ ϑ

∫
R3

F1(u)dx− ϑ

∫
R3

F2(u)dx− τ (|∇vn|p)
p∗

∫
R3

|vn|p
∗
dx

→ J∞,T (v). (4.10)
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Since Jεn,T (un) ≤ d̃0,T,ρ + ϱn, we obtain that

d̃∞,T,ρ ≤ J∞,T (v) ≤ d̃0,T,ρ

which is impossible.
For case (II), taking the similar arguments of (4.10), we can deduce Jεn,T (un) → Jy,T (v), which combined with

Jεn,T (un) ≤ d̃0,T,ρ+ ϱn implies that d̃y,T,ρ ≤ Jy,T (v) ≤ d̃0,T,ρ. It follows from Corollary 3.1 that V(y) = V0 and y = ci
for some i = 1, 2, · · · , l. Therefore, we deduce that

Qεn (un) =

∫
R3

H (εnx+ εnyn) |vn|p dx∫
R3

|vn|p dx
→

∫
R3

H (y)|v|pdx∫
R3

|v|pdx
= ci ∈ Kϱ̂/p

which yields that Qεn (un) ∈ Kϱ̂/p for n sufficiently large. This contradicts (4.9), so we finish the proof of Lemma
4.6.

In what follows, we give some notations which will be used later.

� Υiε := {u ∈ Sρ : |Qε(u)− ci| < ϱ̂} , ∂Υiε := {u ∈ Sρ : |Qε(u)− ci| = ϱ̂}.

� γiε := infu∈Υi
ε
Jε,T (u), γ̃iε := infu∈∂Υi

ε
Jε,T (u).

Lemma 4.7. There exists ε2 ∈ (0, ε1] such that

γiε < d̃0,T,ρ +
ϱ1
p

and γiε < γ̃iε for any ε ∈ (0, ε2) . (4.11)

Proof. Let u ∈ Sρ satisfy J0,T (u) = d̃0,T,ρ. Now, for i ∈ {0, 1, · · · , l}, we define the function ûiε : R3 → R as

ûiε(x) := u
(
x− ci

ε

)
.

Therefore, ûiε ∈ Sρ for all ε > 0 and i ∈ {0, 1, · · · , l}. By the change of variable, it holds that

Jε,T
(
ûiε
)
=

1

p

∫
R3

|∇u|pdx+
1

p

∫
R3

V (εx+ ci) |u|pdx+
1

4

∫
R3

ϕauu
2dx

+ ϑ

∫
R3

F1(u)dx− ϑ

∫
R3

F2(u)dx− τ (|∇u|p)
p∗

∫
R3

|u|p
∗
dx

and
lim
ε→0+

Jε,T
(
ûiε
)
= J0,T (u) = d̃0,T,ρ. (4.12)

Noting that as ε → 0+,Qε

(
ûiε
)
→ ci, we obtain that ûiε ∈ Υiε as ε is small enough. By (4.12), there exists ε2 ∈ (0, ε1]

such that
γiε < d̃0,T,ρ +

ϱ1
p

for any ε ∈ (0, ε2)

showing the first inequality in (4.11).
For any v ∈ ∂Υiε, we deduce that Qε(v) /∈ Kϱ̂/p. Therefore, it follows from Lemma 4.6 that

Jε,T (v) > d̃0,T,ρ + ϱ1 for all v ∈ ∂Υiε and ε ∈ (0, ε2) .

This implies that
γ̃iε = inf

v∈∂Υi
ε

Jε,T (v) ≥ d̃0,T,ρ + ϱ1

for all ε ∈ (0, ε2). Moreover, we deduce that

γiε < γ̃iε for all ε ∈ (0, ε2) .

Therefore, this completes the proof of Lemma 4.7.
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Proposition 4.1. Suppose ε ∈ (0, ε̃) to be fixed, where ε̃ := ε2 is given in Lemma 4.7, decreasing ε̃ > 0 if necessary,
then Jε|S(ρ) has at least l different nontrivial critical points.

Proof. For each i ∈ {1, 2, · · · , l}, we can apply the Ekeland’s variational principle to finding a sequence
{
uin
}
⊂ Υiε

satisfying

Jε,T
(
uin
)
→ γiε and

∥∥∥Jε,T |′Sρ

(
uin
)∥∥∥

(X(R3))∗
→ 0 as n→ +∞.

Since γiε < d̃0,T,ρ + ϱ0 and by Lemma 4.5, we can obtain that there exists ui such that uin → ui in X(R3). Therefore,

ui ∈ Υiε, Jε,T
(
ui
)
= γiε and Jε,T |′Sρ

(
ui
)
= 0.

For
Qε

(
ui
)
∈ Bϱ̂ (ci), Qε

(
uj
)
∈ Bϱ̂ (cj) and Bϱ̂ (ci) ∩Bϱ̂ (cj) = ∅ for i ̸= j,

then ui ̸≡ uj for i ̸= j, where 1 ≤ i, j ≤ l. This shows that Jε,T possesses at least l nontrivial critical points for any
ε ∈ (0, ε̃).

Using Lemma 4.2 and the fact that Jε,T
(
ui
)
< 0 for any i = 1, 2, · · · , l, we obtain that ui are in fact the critical

points of Jε on Sρ with Jε
(
ui
)
= γiε < 0 and J ′

ε

(
ui
)
ui = λiρ. Then, taking the similar arguments to (4.5), we can

obtain that λi < 0.
Now, we will study the concentrating behavior of positive solutions for system (1.1). To this end, by Proposition 4.1,

we know that there are k couples of (viε, λ
i
ε) ∈ X× R such that

viε ∈ Θiε, Jε(viε) = γiε and J ′
ε(v

i
ε)− λiεΨ

′(viε) = 0 in X,

where i ∈ {1, 2, · · · , l}, viε(x) > 0 for all x ∈ R3 and λi < 0.

Lemma 4.8. Suppose ε ∈ (0, ε̃) to be fixed, decreasing ε̃ > 0 if necessary, there are yiε ∈ R3, Ri0 > 0 and γi0 > 0 such
that ∫

BR0
(yiε)

|viε|pdx ≥ γi0

for i ∈ {1, 2, · · · , l}. Moreover, the family {εyiε}i is bounded and, passing to a subsequence if necessary, εyiε → xi as
ε→ 0+.

Proof. By contradiction, we suppose that there exists a sequence {εn}n with εn → 0+ such that

lim
n→∞

sup
y∈R3

∫
Br(y)

|viεn |
2dx = 0

for all R > 0. It follows from Lion’s Vanishing Lemma [11] that

viεn → 0 in Ls(R3) for all s ∈ (p, p∗). (4.13)

Taking the same arguments as Lemma 3.9, together with the fact that F1(t) ≥ 0 for all t ∈ R by (F1), we have
lim
n→∞

Jε(viεn) ≥ 0 which contradicts the fact that

lim
n→∞

Jεn(viεn) = lim
n→∞

γiεn ≤ d̃0,T,ρ + ϱ1 < 0. (4.14)

Consequently, we may define ṽiε(·) = viε(·+ yiε) and {ṽiε}i is bounded with respect to ε ∈ (0, ε̃). Therefore, there exists
ṽ ∈ X(R3)\{0} such that ṽiε ⇀ ṽi in X(R3) as ε→ 0+ along a subsequence. Since {ṽiε}i ⊂ Sρ and

Jε(viε) ≥ J0(v
i
ε) = J0(ṽ

i
ε) ≥ d̃0,T,ρ

jointly with (4.12), it yields that lim
ε→0+

J0(ṽ
i
ε) = d̃0,T,ρ. Applying Lemma 3.9, we know that ṽiε → ṽ in X(R3) as

ε → 0+. Suppose that {εyiε}i is unbounded with respect to ε ∈ (0, ε̃), then there exists a subsequence {εnyiεn}i such
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that |εnyiεn | → +∞ as n→ ∞. Exploiting ṽiεn → ṽ in X(R3),

Jεn(viεn) =
1

p

∫
R3

|∇viεn |
pdx+

1

p

∫
R3

V(εnx)|viεn |
pdx+

κ

4

∫
R3

ϕviεn (v
i
εn)

2dx

+ ϑ

∫
R3

F1(u)dx− ϑ

∫
R3

F2(u)dx− 1

p∗

∫
R3

|viεn |
p∗dx

=
1

p

∫
R3

|∇viεn |
pdx+

1

2

∫
R3

V(εnx+ εnyn)|ṽiεn |
2dx+

κ

4

∫
R3

ϕṽiεn (ṽ
i
εn)

2dx

+ ϑ

∫
R3

F1(ṽ
i
εn)dx− ϑ

∫
R3

F2(ṽ
i
εn)dx− 1

p∗

∫
R3

|ṽiεn |
p∗dx

→J∞(ṽ).

Combined with (4.14), it holds that
d̃0,T,ρ + ϱ1 ≥ J∞(ṽ) ≥ d̃∞,T,ρ.

From Lemma 3.7, it contradicts the definition of ϱ1 given in Lemma 4.6. Therefore, up to a subsequence, εyiε → xi0 in
R3 as ε→ 0+.
In what follows, we verify that xi0 = xi. In fact, we may take a similar argument to the case (ii) in Lemma 4.6, and we

have that V(xi0) = V0. Recalling v
i
ε ∈ Υiε, we know that lim

n→∞
Qεn(v

i
ε) = xi0. Furthermore, we deduce that |xi− xi0| ≤ ρ̂.

Therefore, we obtain that xi0 = xi. The proof of Lemma 4.8 is finished.

Lemma 4.9. Let ε ∈ (0, ε̃) be fixed, decreasing ε∗ > 0. There exists viε possessing a maximum ηiε satisfying V(εηiε) →
V(xi) as ε→ 0+ for i ∈ {1, 2, · · · , l}.

Proof. Since ṽiε(·) = viε(· + yiε), the definition of viε implies that a couple of weak solution (ṽiε, λ
i
ε) solves the following

problem
−∆pṽ

i
ε + V(εx+ εxiε)|ṽiε|p−2ṽiε + κϕaṽiε ṽ

i
ε = λiε|ṽiε|p−2ṽiε + ϑ|ṽiε|p−2ṽjε log |ṽiε|p + |ṽiε|p

∗−2ṽiε in R3,∫
R3

|ṽiε|pdx = ρp.
(4.15)

Arguing as Proposition 4.1 and Lemma 4.8, it holds that ṽiε → ṽi in X(R3), λiε → λi in R3 and εxiε → xi in R3 as
ε→ 0+. Therefore, by (4.15), we obtain that (ṽi, λi) is a nontrivial solution to the problem of type:

−∆pṽ
i + V0|ṽi|p−2ṽi + ϕaṽi ṽ

i = λi|ṽi|p−2ṽi + ϑ|ṽi|p−2ṽi log |ṽi|p + |ṽi|p
∗−2ṽi in R3.

In what follows, we shall divide the proof into two steps.

Step 1. We verify that |ṽiε|∞ ≥ ϱi and
lim

|x|→∞
ṽiε(x) = 0, (4.16)

where ϱi > 0 is independent of ε ∈ (0, ε̃).
We prove the first conclusion. Arguing by contradiction that |ṽiε|∞ → 0 as ε → 0+ in the sense of a subsequence.

Then, we obtain that ṽiε → 0 in X(R3) which is impossible. Consequently, we have

|ṽiε|∞ ≥ ϱi,

where ϱi > 0 is independent of ε ∈ (0, ε̃).
In what follows, we verify that (4.16) holds. Indeed, for every R > 0 and 0 < r ⩽ R

2 , we choose a cut-off function
ψ ∈ C∞

0 (R3, [0, 1]) such that ψ(x) = 1 if |x| ⩾ R, and ψ(x) = 0 if |x| ⩽ R− r as well as |∇ψ| ⩽ 2
r . Given ε ∈ (0, ε̃) and

h > 1, define

ṽiε,h(x) =

 ṽiε(x), ṽiε(x) < h,

h, ṽiε(x) ≥ h,

and
z̃iε,h = ψp(ṽiε,h)

p(ϑ−1)ṽiε and ω̃iε,h = ψṽiε(ṽ
i
ε,h)

θ−1
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with θ > 1 to be determined later. Let z̃iε,h be a test function in (4.15), we have∫
R3

ψp(ṽiε,h)
p(θ−1)|∇ṽiε|pdx+

∫
R3

ψpϕaṽiε(ṽ
i
ε)

2(ṽiε,h)
p(θ−1)

= −p(θ − 1)

∫
R3

(ṽiε,h)
pθ−p−1ψpṽiε|∇ṽiε|p−2∇ṽiε∇ṽiε,hdx

− p

∫
R3

ψp−1(ṽiε,h)
p(θ−1)ṽiε|∇ṽiε|p−2∇ṽiε∇ψdx

+

∫
R3

g(ṽiε)ψ
p(ṽiε,h)

p(ϑ−1)ṽiεdx−
∫
R3

Vε(x)|ṽiε|pψp(ṽiε,h)p(θ−1)dx,

where Vε(x) = V(εx+ εxiε) and

g(ṽiε) = λiε|ṽiε|p−2ṽiε + |ṽiε|p−2ṽiε log |ṽiε|p − κϕaṽiε ṽ
i
ε + |ṽiε|p

∗−2ṽiε

= (λiε − 1)|ṽiε|p−2ṽiε + ϑF ′
2(ṽ

i
ε)− ϑF ′

1(ṽ
i
ε)− κϕaṽiε ṽ

i
ε + |ṽiε|p

∗−2ṽiε.

By (F1), (F2) with q̃ ∈ (p, p∗) and Lemma 2.3-(ii), we obtain that∫
R3

g(ṽiε)ṽ
i
εdx ≤

∫
R3

(λiε − 1)|ṽiε|pdx+ pCq̃

∫
R3

|ṽiε|q̃dx+

∫
R3

|ṽiε|p
∗
dx.

Therefore, we can deduce that∫
R3

ψp(ṽiε,h)
p(θ−1)|∇ṽiε|pdx ≤ p

∫
R3

ψp−1(ṽiε,h)
p(θ−1)ṽiε|∇ṽiε|p−1|∇ψ|dx

+ϑpCq̃

∫
R3

ψp(ṽiε,h)
p(θ−1)|ṽiε|q̃dx+ (λiε − 1− V0)

∫
R3

|ṽiε|pψp(ṽiε,h)p(θ−1)dx+

∫
R3

ψp(ṽiε,h)
p(θ−1)|ṽiε|p

∗
dx.

It follows from the Young’s inequality that∫
R3

[
ψp(ṽiε,h)

p(θ−1)|∇ṽiε|p − (λiε − 1− V0)|ṽiε|pψp(ṽiε,h)p(θ−1)
]
dx

≤ Cp

∫
R3

(ṽiε,h)
p(θ−1)|ṽiε|p|∇ψ|pdx+ ϑpCpCq̃

∫
R3

ψp(ṽiε,h)
p(θ−1)|ṽiε|q̃dx+

∫
R3

ψp(ṽiε,h)
p(θ−1)|ṽiε|p

∗
dx.

Arguing as the proof of (4.5), we have that λiε < 0 for all ε ∈ (0, ε̃). By (V2), it holds that V0 + 1 > 0. Moreover, it
holds that

|∇ω̃iε,h|p ≤ Cpϑ
p
(
ψp(ṽiε,h)

p(θ−1)|∇ṽiε|p + |∇ψ|p(ṽiε,h)p(θ−1)|ṽiε|p
)
.

Together with the Sobolev inequality, we deduce that(∫
R3

|ω̃iε,h|p
∗
dx

) p
p∗

≤ C̃pϑ
p
(∫

R3

(ṽiε,h)
p(θ−1)|ṽiε|p|∇ψ|pdx+

∫
R3

ψp(ṽiε,h)
p(θ−1)|ṽiε|q̃dx

+

∫
R3

ψp(ṽiε,h)
p(θ−1)|ṽiε|p

∗
dx
)

≤ C̃p,rϑ
p
(∫

R−r≤|x|≤R
|ṽiε|pϑdx+

∫
|x|≥R−r

(ṽiε)
p(ϑ−1)|ṽiε|q̃dx

+

∫
|x|≥R−r

(ṽiε)
p(ϑ−1)|ṽiε|p

∗
dx
)
.
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In the following, we shall fix t =
√
r, p∗ > pt

t−1 and χ = p∗(t−1)
pt > 1. Therefore,

(∫
R3

|ω̃iε,l|p
∗
dx

) p
p∗

≤ C̃pϑ
p

{(∫
R−r≤|x|≤R

|ṽiε|
pθt
t−1 dx

) t−1
t
(∫

R−r≤|x|≤R
dx

) 1
t

+

(∫
|x|≥R−r

|ṽiε|
pθt
t−1 dx

) t−1
t
(∫

|x|≥R−r
|ṽiε|(q̃−p)tdx

) 1
t

+

(∫
|x|≥R−r

|ṽiε|
pθt
t−1 dx

) t−1
t
(∫

|x|≥R−r
|ṽiε|(p

∗−p)tdx

) 1
t
}
.

Taking q̃ = p(1+t)
t and using the Sobolev inequality, we obtain that

(∫
R3

|ω̃iε,h|p
∗
dx

) p
p∗

≤ C̃p,ρθ
p

(∫
|x|≥R−r

|ṽiε|
pθt
t−1 dx

) t−1
t

.

Since ω̃iε,h = ψṽiε(ṽ
i
ε,h)

θ−1, we obtain that(∫
|x|≥R

|ṽiε,h|p
∗ϑdx

) p
p∗

≤

(∫
|x|≥R

ψp
∗
|ṽiε|p

∗
|ṽiε,h|p

∗(θ−1)dx

) p
p∗

≤
(∫

R3

|ω̃iε,h|p
∗
dx

) p
p∗

≤ C̃p,ρθ
p

(∫
|x|≥R−r

|ṽiε|
pθt
t−1 dx

) t−1
t

.

Passing the limit as h → +∞ in the above inequality, we deduce that(∫
|x|≥R

|ṽiε|p
∗θdx

) p
p∗

≤ C̃p,ρθ
p

(∫
|x|≥R−r

|ṽiε|
pθt
t−1 dx

) t−1
t

. (4.17)

Setting χ = p∗(t−1)
pt and s = pt

t−1 , by (4.17), we obtain that

|ṽiε|χm+1s(|x|≥R) ≤ C̃
∑m

i=j χ
−j

p,ρ χ
∑m

j=1 iχ
−j

|ṽiε|p∗(|x|≥R−r).

Therefore, we can deduce that

|ṽiε|L∞(|x|≥R) ≤ C̃
∑m

j=1 χ
−j

p,ρ χ
∑m

j=1 iχ
−j

|ṽiε|p∗(|x|≥R−r). (4.18)

Since ṽiε → ṽi in X(R3), (4.18) implies that we obtain the desired result.

Step 2. We verify that viε possesses a maximum ηiε satisfying V(εηiε) → V(xi).
In the following, letting αiε be a maximum of ṽiε, we have that |ṽiε(αiε)|∞ ≥ ϱi. By the fact that lim|x|→∞ ṽiε(x) = 0

uniformly in ε, then there exists Ri
0 > 0 independent of ε such that |αiε| ≤ Ri

0. Recalling ṽ
i
ε(·) = viε(·+yiε), then yiε+αiε

is a a maximum of of viε. Define ηiε = yiε + αiε, according to Lemma 4.8 and |αiε| ≤ Ri
0, we obtain that εηiε → xi as

ε→ 0+ and hence V(εηiε) → V(xi) by the continuity of V. Therefore, we complete the proof of Lemma 4.9.

Proof of Theorem 1.1. From Proposition 4.1 and Lemma 4.9, we obtain that system (1.1) possesses at least l different
couples of solutions(viε, λ

i
ε) ∈ X(R3) × R with viε(x) > 0 for every x ∈ R3 and λiε < 0, where i ∈ {1, 2, · · · , l}. Let

uiε(·) = viε (·/ε) and ziε = εηiε for i ∈ {1, 2, · · · , l}, then (uiε, λ
i
ε) is the desired solution for i ∈ {1, 2, · · · , l}. The proof of

Theorem 1.1 is completed.
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4.2 Proof of Theorem 1.2

Fixing a suitable parameter a∗ > 0, we take (ua
∗

ε,λ, λ) to be a family of weak solutions of system (1.1) by Theorem 1.1.

Obviously, we can obtain the boundedness of {ua∗ε,λ} in X(R3). Then, going to a subsequence if necessary, there exists

ua
∗

ε,0 ∈ X(R3) satisfying ua
∗

ε,λ → ua
∗

ε,0 as λ→ 0.

In the following, for any ω ∈ X(R3), we have that∫
R3

|∇ua
∗

ε,λ|p−2∇ua
∗

ε,λ∇ωdx+

∫
R3

(V(εx) + 1)|ua
∗

ε,λ|p−2ua
∗

ε,λωdx− λ

∫
R3

|ua
∗

ε,λ|p−2ua
∗

ε,λωdx+

∫
R3

ϕa
ua∗
ε,λ
ua

∗

ε,λωdx

= ϑ

∫
R3

F ′
2(u

a∗

ε,λ)ωdx− ϑ

∫
R3

F ′
1(u

a∗

ε,λ)ωdx+

∫
R3

|ua
∗

ε,λ|p
∗−2ua

∗

ε,λωdx. (4.19)

From Lemma 4.3, Lemma 4.5, and Lemma 3.12, letting λ→ 0, we have∫
R3

|∇ua
∗

ε,λ|p−2∇ua
∗

ε,λ∇ωdx→
∫
R3

|∇ua
∗

ε,0|p−2∇ua
∗

ε,0∇ωdx,
∫
R3

ϕa
ua∗
ε,λ
ua

∗

ε,λωdx→
∫
R3

ϕa
ua∗
ε,0
ua

∗

ε,0ωdx,∫
R3

F ′
2(u

a∗

ε,λ)u
a∗

ε,λωdx→
∫
R3

F ′
1(u

a∗

ε,0)u
a∗

ε,0ωdx,

∫
R3

F ′
2(u

a∗

ε,λ)u
a∗

ε,λωdx→
∫
R3

F ′
1(u

a∗

ε,0)u
a∗

ε,0ωdx

and ∫
R3

|ua
∗

ε,λ|p
∗−2ua

∗

ε,λωdx→
∫
R3

|ua
∗

ε,0|p
∗−2ua

∗

ε,0ωdx.

From this fact, we get∫
R3

|∇ua
∗

ε,0|p−2∇ua
∗

ε,0∇ωdx− λ

∫
R3

|ua
∗

ε,0|p−2ua
∗

ε,0ωdx+

∫
R3

(V(εx) + 1)|ua
∗

ε,0|p−2ua
∗

ε,0ωdx+

∫
R3

ϕa
ua∗
ε,0
ua

∗

ε,0ωdx

= ϑ

∫
R3

F ′
2(u

a∗

ε,0)u
a∗

ε,0ωdx− ϑ

∫
R3

F ′
1(u

a∗

ε,0)u
a∗

ε,0ωdx+

∫
R3

|ua
∗

ε,0|p
∗−2ua

∗

ε,0u
a∗

ε,0ωdx

which implies that ua
∗

ε,0 is solutions of system (1.9).

Finally, with the same arguments as in the proof of Theorem 1.1, the solutions ua
∗

ε,0 of system (1.9) have a maximum
point z̄ε ∈ R3 such that V(z̄ε) → V(z̄) = V0 as ε→ 0+.

4.3 Proof of Theorem 1.3

Let (uaε,λ∗ , λ∗) be a family of weak solutions of system (1.1) obtained in Theorem 1.1 for a suitable fixed parameter

λ∗ < 0. On the other hand, by [22, Lemma 6.1], as a → 0, we have ϕaua
ε,λ∗

→ ϕ0
u0
ε,λ∗

in D1,2
(
R3
)
, which solves

−∆ϕ0
u0
ε,λ∗

= (u0ε,λ∗)2. Finally, as in the proof of Theorem 1.2, we conclude that u0ε,λ∗ is a solution of system (1.10).
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