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GROUND STATES OF BIHARMONIC EQUATIONS

ON LATTICE GRAPHS

Chao Ji — Vicenţiu D. Rădulescu

Abstract. In this paper, we are concerned with the existence of ground

states to the following biharmonic equation on the lattice graph

∆2u−∆u + V (x)u = f(x, u), x ∈ ZN .

The analysis is performed if the potential V and the reaction f are T -
periodic in x, and the mapping u 7→ f(x, u)/|u| is non-decreasing on R\{0}.
By using the variational methods, we establish the existence of ground

states for the above problem. Moreover, if the potential V has a bounded
potential well and f(x, u) = f(u) with u 7→ f(u)/|u| non-decreasing on

R\{0}, the ground states are also obtained for the above equation. Finally,

we extend the main results on the lattice graph ZN to quasi-transitive
graphs. In our analysis, the mappings u 7→ f(x, u)/|u| or u 7→ f(u)/|u| are

only non-decreasing on R \ {0}, which allows to consider larger classes of

nonlinearities in the reaction.
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1. Introduction

There is a vast literature concerning the existence of ground state solutions to

nonlinear Schrödinger equations. First of all, let us recall the following semilinear

Schrödinger equation

(1.1) −∆u+ V (x)u = f(x, u), u ∈ H1
(
RN
)
.

The functional corresponding to (1.1) is

Φ(u) :=
1

2

∫
RN

(
|∇u|2 + V (x)u2

)
dx−

∫
RN

F (x, u) dx.

Assume that the following assumption holds.

(S1) V is continuous, 1-periodic in x1, . . . , xN and 0 /∈ σ(−∆ + V ), the spec-

trum of −∆ + V .

Let E := H1
(
RN
)
. By (S1), there is an equivalent inner product 〈 · , · 〉 in E

such that

Φ(u) =
1

2

∥∥u+
∥∥2 − 1

2

∥∥u−∥∥2 −
∫
RN

F (x, u) dx

where E = E+⊕E− corresponds to the spectral decomposition of −∆ +V with

respect to the positive and negative part of the spectrum, and u = u+ + u− ∈
E+ ⊕ E−. If σ(−∆ + V ) ⊂ (0,+∞), then dimE− = 0, otherwise E−is infinite-

dimensional. Pankov in [8, Section 2.2] introduced the following set:

M :=
{
u ∈ E \ E− : Φ′(u)u = 0 and Φ′(u)v = 0 for all v ∈ E−

}
.

It is clear to see that M contains all nontrivial critical points of Φ. If f ∈ C1,∣∣f ′u(x, u)
∣∣ ≤ ã

(
1 + |u|p−2

)
where ã > 0, 2 < p < 2∗, 2∗ = 2N/(N − 2) if N ≥ 3

and 2∗ = +∞ if N = 1, 2, and

(1.2) 0 <
f(x, u)

u
< θf ′u(x, u) for some θ ∈ (0, 1) and all u 6= 0.

Pankov [8] showed that M is a C1-manifold, and it is a natural constraint in

the sense that u is a nontrivial critical point of Φ if and only if u ∈M and it is

a critical point of Φ|M. Since c := inf Φ|M > −∞, Ekeland’s variational principle

yields a Palais–Smale sequence (a (PS) sequence for short) for Φ|M at the level c.

Then, by (1.2), Pankov showed that this (PS) sequence is bounded, and he ob-

tained a minimizer by the concentration-compactness arguments. After that, in

the seminar paper [10], Szulkin and Weth did not assume that f is differentiable

and satisfies (1.2), M need not be of class C1, and therefore Pankov’s method

was not applicable. Nevertheless, M is still a topological manifold, naturally

homeomorphic to the unit sphere in E+. In this case, the following assumption:

(f′4) u 7→ f(x, u)

|u|
is increasing on (−∞, 0) and on (0,∞),
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is very important. For any u ∈ E \ E−, assume that the convex subset Ê(u) :=

E− ⊕ R+u = E− ⊕ R+u+ of E, where R+ = [0,∞). Because of (f′4), Ê(u)

intersects M at a unique point which is the unique global maximum of Φ|Ê(u).

If (f′4) is replaced by (f4) below, that is

(f4) u 7→ f(x, u)

|u|
is non-decreasing on (−∞, 0) and on (0,∞),

an explicit example in [14] show Ê(u) and M may intersect on a finite line

segment. More precisely, Ê(u) ∩M 6= ∅ and, if w ∈ Ê(u) ∩M, then there exist

σw > 0, τw ≥ σw such that Ê(u) ∩M = [σw, τw]w. Thus, the Nehari manifold

(it may not be a manifold) M may not be homeomorphic to the unit sphere as

in [10] and the generalized Nehari manifold method [9], [10] can not be applied.

To solve the problem, Tang [11], [12] developed a non-Nehari manifold method.

The main idea of his approach lies on finding a minimizing Cerami sequence for

the energy functional outside the Nehari–Pankov manifold by using the diagonal

method. We also observed that de Paiva, Kryszewski and Szulkin [1] introduced

a nonsmooth approach to overcome this difficulty. Their results generalize results

of Szulkin and Weth [10]. Recently, using the Schrödinger equation with the zero

mass as a model, Mederski, Schino and Szulkin [7] introduced a smooth method

to show the existence of ground state solutions.

In recent years, the various mathematical problems on graphs have been

extensively investigated (see [2]–[6] and references therein). In particular, in the

monograph [2], Grigor’yan introduced the discrete Laplace operator on finite and

infinite graphs; in [5], Hua and Xu studied the nonlinear Schrödinger equation

−∆u + V (x)u = f(x, u) on the lattice graph ZN . They proved the existence

of ground state solutions when the potential function V is periodic or bounded

via the method of Nehari manifold. In order to apply the method in [10], the

authors in [5] assume that (f′4) holds. A natural question is, if the assumption

(f′4) is replaced by (f4), does the results in [5] still hold? Due to our scope, we

would like to mention the recent contribution [3] where Han, Shao and Zhao

studied the following nonlinear biharmonic equation

(1.3) ∆2u−∆u+ (λa(x) + 1)u = |u|p−2u

on a locally finite graph G = (V, E). Here λ > 1 and p > 2 are constants and

a(x) : V → R is a potential satisfying:

(A1) a(x) ≥ 0 and the potential well Ω = {x ∈ V : a(x) = 0} is a non-empty,

connected and bounded domain in V .

(A2) There exists a vertex x0 ∈ V such that a(x)→ +∞ as d(x, x0)→ +∞.

One of the significant challenges in studying problem (1.3) is the absence of com-

pactness. However, under the assumption (A2) (corresponding to the coercive

potential in the continuous case), they have the compact embedding theorem
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they need. Therefore, a natural question is to investigate problem (1.3) without

the coercive potential, that is, the assumption (A2) does not hold. In this case, it

is more difficult to overcome the lack of compactness. In this paper, we will make

some crucial attempts to study problem (1.3) on the lattice graph, we also believe

that the research method in this paper can be applied to the exploration of other

related problems. On the other hand, |u|p−2u/|u| is increasing on (−∞, 0) and

on (0,∞). If the function |u|p−2u is replaced by a general nonlinearity f(x, u),

and the weaker assumption (f4) (compared to (f′4)) is imposed, then studying

the ground state solutions of problem (1.3) become a very challenging task.

In this paper, we are concerned with the biharmonic equation with potentials

on graphs

(1.4) ∆2u−∆u+ V (x)u = f(x, u), x ∈ V.

LetG = (V,E) be a simple, undirected, locally finite graph, where V denotes a set

of vertices and E denotes a set of edges. Let us write x ∼ y(x is a neighbour

of y) if {x, y} ∈ E. The graph G is undirected means that each {x, y} ∈ E
is unordered. A graph is called locally finite if each vertex has finitely many

neighbours. Denote the set of functions on G by C(V). For any functions

u, v ∈ C(V), define the associated gradient form as

Γ(u, v)(x) :=
∑
y∼x

1

2
(u(y)− u(x))(v(y)− v(x)).

Write Γ(u) = Γ(u, u) and

|∇u |(x) :=
√

Γ(u)(x) =

(∑
y∼x

1

2
(u(y)− u(x))2

)1/2

.

The Laplacian on G = (V,E) is defined for any function u ∈ C(V) and x ∈ V as

∆u(x) :=
∑

y∈V, y∼x
(u(y)− u(x))

and ∆2u = ∆(∆u). For the more details, we refer to [4].

Let µ be the counting measure on V, i.e. for any subset A ⊂ V, µ(A) :=

#{x : x ∈ A}. For any function f on V, we write∫
V
f dµ :=

∑
x∈V

f(x)

whenever it makes sense.

Let Cc(V) be the set of all functions of finite support, from [3, Proposi-

tion 2.2], we know that H2(V) be the completion of Cc(V) under the norm

‖u‖H2 =

(∫
V

(
|∆u|2 + |∇u|2 + u2

)
dµ

)1/2

.
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Clearly, H2(V) is a Hilbert space with the inner product

〈u, v〉H2 =

∫
V

(∆u∆v +∇u∇v + uv) dµ, for all u, v ∈ H2(V).

Let V (x) ≥ V0 > 0 for all x ∈ V. We define a space of functions

HV =

{
u ∈ H2(V) :

∫
V
V (x)u2 dµ < +∞

}
with a norm

‖u‖ =

(∫
V

(
|∆u|2 + |∇u|2 + V (x)u2

)
dµ

)1/2

.

It is clear that for a bounded uniformly positive function V : V → R, i.e. there

exist V0, V1 > 0, such that

V0 ≤ V (x) ≤ V1, for all x ∈ V,

the norms are equivalent between ‖ · ‖H2 and ‖ · ‖.
For any p ∈ [1,∞], let `p(V) be the space of `p summable functions on V and

we write ‖ · ‖p as the `p(V) norm, i.e.

‖u‖p :=


(∑
x∈V
|u(x)|p

)1/p

, 1 ≤ p <∞,

sup
x∈V
|u(x)|, p =∞.

Let us denote by ZN the standard lattice graph with the set of vertices

{x = (x1, . . . , xN ) : xi ∈ Z, 1 ≤ i ≤ N}

and the set of edges{
{x, y} : x, y ∈ ZN ,

N∑
i=1

|xi − yi| = 1

}
.

For T ∈ N, a function g on ZN is called T -periodic if g (x+ Tei) = g(x), for

all x ∈ ZN , 1 ≤ i ≤ N , where ei is the unit vector in the i-th coordinate.

Throughout this paper, we always assume that inf
x∈ZN

V (x) = V0 > 0. Moti-

vated by [7], [5], in this present paper, we aim to consider the existence of ground

states to the biharmonic equation (1.4) on the lattice graph. More precisely, we

study two cases of the potentials, one is periodic; nd the other corresponds to

the case where V has a bounded potential well.

The first result of this paper is as follows.

Theorem 1.1. If V is the lattice graph ZN , suppose the following assump-

tions hold :

(V1) V is T -periodic in x1, . . . , xN .

and
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(f1) f(x, u) is continuous in u ∈ R, and T -periodic in x1, . . . , xN and

|f(x, u)| ≤ a
(
1 + |u|p−1

)
for some a > 0 and p > 2;

(f2) f(x, u) = o(u) uniformly in x as |u| → 0;

(f3)
F (x, u)

u2
→∞ uniformly in x as |u| → ∞, where F (x, u) :=

∫ u

0

f(x, s)ds;

(f4) u 7→ f(x, u)

|u|
is non-decreasing on (−∞, 0) and on (0,∞).

Then problem (1.4) has a ground state solution u ∈ HV with J(u) = c > 0, c is

defined as

c = inf
N
J > 0 where N := {u ∈ HV \ {0} : J ′(u)u = 0} .

Moreover, we will consider the case that the potential V has a bounded

potential well in the sense that lim
|x|→∞

V (x) exists and is equal to sup
x∈ZN

V . In this

case, we consider that the nonlinearity is autonomous, that is, f(x, u) = f(u).

More precisely, we have the result as follows.

Theorem 1.2. If V is the lattice graph ZN , and the following assumptions

hold :

(V2) 0 < inf
x∈ZN

V (x) ≤ lim
|x|→∞

V (x) = sup
x∈ZN

V (x) <∞.

(f5) f(u) is continuous in u ∈ R, and |f(u)| ≤ a(1 + |u|p−1) for some a > 0

and p > 2;

(f6) f(u) = o(u) as |u| → 0;

(f7)
F (u)

u2
→∞ as |u| → ∞;

(f8) u 7→ f(u)

|u|
is non-decreasing on (−∞, 0) and on (0,∞).

Then problem (1.4) has a ground state solution u ∈ HV with J(u) = c > 0, c is

defined as

cN = inf
N
J > 0 where N := {u ∈ HV \ {0} : J ′(u)u = 0} .

In our study, u 7→ f(x, u)/|u| or u 7→ f(u)/|u| is only non-decreasing on

R \ {0}, which allows to consider larger classes of nonlinearities in the reaction.

Finally, we think that the method in this paper is also applicable to the nonlinear

Schrödinger equation −∆u + V (x)u = f(x, u) on the lattice graph ZN if u 7→
f(x, u)/|u| is non-decreasing on R \ {0}.

Finally, we shall extend the results on lattice graph ZN to quasi-transitive

graphs. We call G is a quasi-transitive graph if there are finitely many orbits for

the action of Aut(G) on G where Aut(G) is the set of automorphisms of G. For

more details on quasi-transitive graphs, see [13].
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Theorem 1.3. Let G = (V,E) be a quasi-transitive graph, Γ ≤ Aut(G). As-

sume that the action of Γ on G has finitely many orbits. Then Theorem 1.2 holds

on G. By substituting T -periodicity of f and V with Γ-invariance, Theorem 1.1

holds on G.

The paper is organized as follows. In Section 2 we present some preliminaries

on graphs. In Section 3, we give the proof of Theorem 1.1. In Section 4, we prove

Theorem 1.2. In the last section, we complete the proof of Theorem 1.3.

2. The variational framework and some preliminaries

Throughout this paper, we always assume that

#{y ∈ V : y ∼ x} ≤ C, for all x ∈ V,

where C is a uniform constant which is independent of x ∈ V. Under this

assumption, we may show that H2(V) and `2(V) are equivalent. In fact, for any

u ∈ `2(V), by the Cauchy–Schwarz inequality, we have

|∆u(x)|2 =

∣∣∣∣∑
y∼x

(u(y)− u(x))

∣∣∣∣2
≤ C

∑
y∼x
|u(y)− u(x)|2 ≤ 2C2|u(x)|2 + 2C

∑
y∼x
|u(y)|2.

Thus ∫
V
|∆u|2 dµ =

∑
x∈V
|∆u(x)|2 6 4C2

∑
x∈V
|u(x)|2 = 4C2‖u‖22.

Similarly, we have∫
V
|∇u|2 dµ =

1

2

∑
x∈V

∑
y∼x

(u(y)− u(x))
2 ≤

∑
x∈V

∑
y∼x

(
u2(y) + u2(x)

)
≤ 2C‖u‖22.

Hence, we conclude that u ∈ H2(V) and

‖u‖2 ≤ ‖u‖H2 ≤
(
4C2 + 2C + 1

)1/2‖u‖2.
From [5], we know that H1(V) and `2(V) are equivalent. Thus, H1(V), H2(V)

and `2(V) are mutually equivalent.

We now provide a Sobolev embedding theorem, which will be very useful for

our problems.

Lemma 2.1. H2(V) is continuously embedded into `q(V) for any q ∈ [2,+∞].

Namely, there exists a constant Cq depending only on q such that

‖u‖q ≤ Cq‖u‖H2 for any u ∈ H2(V).
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Moreover, for any bounded sequence {un} ⊂ H2(V), there exists u ∈ H2(V) such

that, up to a subsequence, if necessary,un ⇀ u in H2(V);

un(x)→ u(x) pointwisex ∈ V.

Proof. For any u ∈ H2(V) and any vertex x0 ∈ V, we have

‖u‖2H2 =

∫
V

(
|∆u|2 + |∇u|2 + u2

)
dµ ≥

∫
V
u2 dµ ≥ u2(x0)

which gives

|u(x0)| ≤ ‖u‖H2 .

Therefore, H2(V) ↪→ `∞(V) continuously. Thus H2(V) ↪→ `q(V) continuously

for any 2 ≤ q < ∞ by the interpolation inequality. In fact, for any u ∈ H2(V),

we have u ∈ `2(V). Then, for any 2 ≤ q <∞,∫
V
|u|q dµ =

∫
V
|u|2|u|q−2 dµ ≤ ‖u‖q−2

∞

∫
V
|u|2 dµ < +∞,

which implies that u ∈ `q(V), 2 ≤ q <∞.

SinceH2(V) is a Hilbert space, it is reflexive. Thus, for any bounded sequence

{un} ⊂ H2(V), up to a subsequence if necessary, un ⇀ u in H2(V). From the

previous arguments, we know that {un} ⊂ H2(V) is also bounded in `2(V) and

we have un ⇀ u in `2(V), which shows that, for any v ∈ `2(V),

(2.1) lim
n→∞

∫
V

(un − u) v dµ = lim
n→∞

∑
x∈V

(un(x)− u(x)) v(x) = 0.

Take any x0 ∈ V and let

v0(x) =

1 x = x0,

0 x 6= x0.

Obviously, v0 ∈ `2(V). By substituting v0 into (2.1), one has

lim
n→∞

(un (x0)− u (x0)) = 0.

Since x0 ∈ V is arbitrary, we complete the proof of theorem. �

Now, we introduce a formula of integration by parts on graphs, which is

fundamental when applying methods in the calculus of variations. For the detail

of proof, please refer to [3, Lemma 2.3]

Lemma 2.2. Suppose that u ∈ H2(V). Then, for any v ∈ Cc(V), we have∫
V

(
∆2u

)
v dµ =

∫
V

∆u∆v dµ where ∆2u = ∆(∆u).
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The functional associated with (1.4) is

J(u) =
1

2

∫
V

(
|∆u|2 + |∇u|2 + V (x)u2

)
dµ−

∫
V
F (x, u) dµ.

From (f1), (f2) and Lemma 2.1, it is easy to verify that J ∈ C1 (HV ,R) and

J ′(u)v =

∫
V

(∆u∆v +∇u∇v + V (x)uv) dµ−
∫
V
f(x, u) v dµ, for all v ∈ HV .

By Lemma 2.2, for any given y ∈ V, one can take the test function φ = δy(x)

and obtain

∆2u(y)−∆u(y) + V (y)u(y) = f(y, u(y))

Since y is arbitrary, we conclude that u is a pointwise solution of problem (1.4).

3. The periodic case

Lemma 3.1. For all t ∈ R,
1

2
f(x, t) t− F (x, t) ≥ 0.

Proof. If t = 0, it is clear that f(x, 0) = F (x, 0) = 0 and f(x, 0)t/2 −
F (x, 0) = 0. Now we only need to prove the case t > 0, because the proof for

t < 0 is similar. By (f2) and (f4), f(x, t) ≥ 0 for any t > 0. Thus, we have

F (x, t) ≥ 0 for any t > 0, where F (x, t) =
∫ t

0
f(x, s) ds. Moreover, for t > 0,

using (f4) again, one has

F (x, t) =

∫ t

0

f(x, s) ds =

∫ t

0

f(x, s)

s
s ds ≤ f(x, t)

t

∫ 1

0

s ds ≤ 1

2
f(x, t)t. �

Lemma 3.2.

(a) There exists α > 0 such that J(u) ≥ α for ‖u‖ = δ small enough.

(b) Fix u ∈ HV \ {0}. J(tu)→ −∞ as t→ +∞.

Proof. (a) First of all, by (f1), (f2), (f4), for any ε > 0, there exists Cε > 0

such that, for any x ∈ V and u ∈ R, we have

|f(x, u)| ≤ ε|u|+ Cε|u|p−1,(3.1)

|F (x, u)| ≤ ε

2
|u|2 +

Cε
p
|u|p.(3.2)

Since V (x) ≥ V0 > 0 for all x ∈ V, for ε > 0 small, by (3.2) and Lemma 2.1, we

have

J(u) ≥ 1

2
‖u‖2 − ε

2
|u|22 − Cε|u|pp ≥

1

4
‖u‖2 − Cεc2‖u‖p ≥ α,

if ‖u‖ = δ is small enough.

(b) Fix u ∈ HV \ {0}. Then

J(tu)

t2
=

1

2
‖u‖2 −

∫
{u(x)6=0}

F (x, tu)

(tu)2
u2 dµ.
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By (f3), we have

lim
t→+∞

(
1

2
‖u‖2 −

∫
{u(x)6=0}

F (x, tu)

(tu)2
u2 dµ

)
= −∞,

thus lim
t→+∞

J(tu) = −∞. This completes the proof. �

From Lemma 3.2, we can define

cM := inf
γ∈Γ

max
t∈[0,1]

J(γ(t))

where Γ := {γ ∈ C([0, 1], HV ) : γ(0) = 0, J(γ(1)) < 0}.
It is easy to see that cM ≥ α. Moreover, there exists a (PS) sequence {un}

of J with the level cM, that is

(3.3) J(un)→ cM, J ′(un)→ 0, as n→∞.

Lemma 3.3. If u ∈ N , then u is a (not necessarily unique) maximizer of J

on R+u.

Proof. Let u ∈ N . For any t ≥ 0, by an explicit computation, one has

J(tu) = J(tu)− J ′(u)

(
t2 − 1

2
u

)
≤ J(u).

In fact, we only need to prove the following inequality

(3.4)
t2 − 1

2

∫
V
f(x, u)u dµ−

∫
V
F (x, tu) dµ ≤ −

∫
V
F (x, u) dx.

From (f2), (f4), it is easy to verify (3.4) and this concludes the proof. �

From Lemma 3.3, we can define

cN := inf
N
J where N := {u ∈ HV \ {0} : J ′(u)u = 0} .

Now we reveal that the relation between cN and cM.

Lemma 3.4. Under the assumptions (f1)–(f4), we have cN = cM > 0.

Proof. For any u ∈ HV \ {0} and let g(t) = J(tu) for t > 0. By Lem-

ma 3.2 (a), 0 is a strict local minimizer of J in HV and J(tu)→ −∞ as t→ −∞.

Hence max
t>0

J(tu) ≥ α. By Lemma 3.3, it is possible that there exist t1, t2 > 0

with t1 6= t2, t1u, t2u ∈ N , and J (t1u) = J (t2u). Consequently, there exist

0 < tmin ≤ tmax such that tu ∈ N if and only if t ∈ [tmin, tmax] and J(tu)

has the same value for any t ∈ [tmin, tmax]. Hence g′(t) > 0 for 0 < t < tmin

and g′(t) < 0 for t > tmax. It follows that HV \N consists of two connected

components and therefore each path in Γ must intersect N . Therefore cM ≥ cN .

Since cN = inf
u∈HV \{0}

max
t>0

J(tu), cM ≤ cN , so cM = cN . �

Now we prove the boundedness of the (PS) sequence {un} of J with the

level cM.
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Lemma 3.5. Under the assumptions (V1)and (f1)–(f4), If (un) is a (PS)

sequence of J with the level cM, then (un) is bounded in HV .

Proof. Assume that (un) is a (PS) sequence of J with the level cM, that is

J(un)→ cM and J(un)→ 0 as n→∞.

Now we show that the sequence {un} is bounded in HV . Argue by contradiction,

assume that ‖un‖ → ∞ as n → ∞. Let vn = un/ ‖un‖, up to a subsequence

if necessary, we may assume that vn ⇀ v in HV . By Lemma 2.1, one has

sup
n∈N
‖vn‖p < ∞. Suppose that vn → 0 in `p

(
ZN). By (3.2), for any R > 0,

one has

|F (x,R vn)| ≤ ε

2
|Rvn|2 +

Cε
p
|Rvn|p

and, for n large enough,∣∣∣∣ ∫
ZN

F (x,R vn) dµ

∣∣∣∣ ≤ ε

2

∫
ZN

|Rvn|2 dµ+
Cε
p

∫
ZN

|Rvn|pdµ ≤ Cε.

Now, fix an R >
√

2cM, by Lemmas 3.3, 3.4 and definition of cM, for any

tn ∈ R+ such that tnun ∈ N , we have for n large enough

J (un) + on(1) = J (tnun) ≥ J (Rvn) =
1

2
R2 −

∫
ZN

F (x,R vn) dµ.

Let n → ∞. One has cM ≥ R2/2 which is a contradiction. Thus, vn 6→ 0 in

`p
(
ZN
)
. From the boundedness of the sequence {vn} in `p(ZN ), we have

(3.5) lim
n
‖vn‖p = c1 > 0

for some positive constant c1. By the interpolation inequality, we have

‖vn‖p ≤ ‖vn‖
2/p
2 ‖vn‖(p−2)/p

∞ ≤ c2/p2 ‖vn‖(p−2)/p
∞ ,

where c2 > 0 is a constant. Thus, there exists η > 0 such that

lim
n→∞

‖vn‖∞ ≥ η.

Moreover, there exists a sequence of (yn) ∈ ZN such that

|vn(yn)| ≥ η

2

for all n ∈ N. Now, we define ṽn(x) = vn (x+ knT ) with kn =
(
k1
n, . . . , k

N
n

)
to

ensure that {yn − knT} ⊂ Ω where Ω = [0, T )N ∩ZN is a bounded domain in ZN

and ṽn(x) = ũn(x)/‖ũn‖. Since V (x) and f(x, t) are T -periodic in x, J and J ′

are invariant under the translation. Thus, we have

J (ũn)→ c, J ′ (ũn)→ 0 and ṽn → ṽ 6= 0 pointwise in ZN .

Without loss of generality, let x0 ∈ ZN with ṽ(x0) 6= 0 and

ũn(x0) = ‖ũn‖ ṽn(x0)→∞ as n→∞.
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Moreover, from (f3), we have

0 <
J (ũn)

‖ũn‖2
=

1

2
−
∫
ZN

F (x, ũn)

‖ũn‖2
dµ ≤ 1

2
− F (x0, ũn (x0))

|ũn (x0) |2
|ṽn (x0) |2 → −∞,

as n→∞, which is a contradiction. �

It is the position to present the proof of Theorem 1.1.

Proof of Theorem 1.1. By Lemmas 3.2 and 3.5, there exists a bounded

(PS) sequence {un} for J with the level cM. We may assume that un ⇀ u

in HV , and un → u pointwise in ZN as n → ∞, thus u is a weak solution of

problem (1.4). If un → 0 in `p(ZN), for p > 2, by (3.1), we have

(3.6)

∫
ZN

f (x, un)un dµ = on(1).

By (3.6), we have

on(1) = J ′ (un)un = ‖un‖2 −
∫
ZN

f (x, un)un dµ = ‖un‖2 + on(1)

and therefore un → 0 in HV . However, this contradicts cM ≥ α > 0. Thus,

un 9 0 in `p(ZN), for p > 2. From the boundedness of the sequence {un} in

`p(ZN), we have

(3.7) lim
n
‖un‖p = c1 > 0

for some positive constant c1. By the interpolation inequality, we have

‖un‖p ≤ ‖un‖
2/p
2 ‖un‖(p−2)/p

∞ ≤ c2/p2 ‖un‖(p−2)/p
∞ ,

where c2 > 0 is a constant. Thus, there exists η > 0 such that

lim
n→∞

‖un‖∞ ≥ η.

Moreover, there exists a sequence of (yn) ∈ ZN such that |un(yn)| ≥ η/2 for all

n ∈ N. Now, we define ũn(x) = un (x+ knT ) with kn =
(
k1
n, . . . , k

N
n

)
to ensure

that {yn − knT} ⊂ Ω where Ω = [0, T )N ∩ZN is a bounded domain in ZN . Since

V (x), f(x, t) are T -periodic in x, J and J ′ are invariant under the translation.

Thus, we have

J (ũn)→ c, J ′ (ũn)→ 0 and ũn → ũ 6= 0 pointwise in ZN

and ũ is a nontrivial solution of problem (1.4).
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Finally, we show that J(ũ) = cN = inf
N
J . By Lemma 3.4, Fatou’s lemma

and Lemma 3.1, one has

cN + o(1) = J (ũn)− 1

2
J ′ (ũn) ũn

=

∫
ZN

(
1

2
f (x, ũn) ũn − F (x, ũn)

)
dµ

≥
∫
ZN

(
1

2
f
(
x, ũ

)
ũ− F

(
x, ũ

))
dµ+ on(1)

= J
(
ũ
)
− 1

2
J ′
(
ũ
)
ũ+ o(1) = J

(
ũ
)

+ on(1).

Hence J(ũ) ≤ cN . The reverse inequality is obvious, and we complete the proof

of Theorem 1.1. �

4. The potential well case

In this section, we need to consider the limit equation

∆2u−∆u+ V∞u = f(u), x ∈ ZN

and define its associated energy functional as

J∞(u) =
1

2

∫
ZN

(
|∆u|2 + |∇u|2 + V∞u

2
)
dµ−

∫
ZN

F (u) dµ.

Note that the ground state energy of J∞ can be characterized as

c∞ = inf
N∞

J∞(u) = inf
w∈H2(ZN )\{0}

max
s>0

J∞(sw)

where

N∞ :=
{
u ∈ H2(ZN ) \ {0} : J ′∞(u)u = 0

}
.

Similar to Section (3), under the assumptions (V2) and (f5)–(f8), we can show

that

cN = inf
N
J = inf

γ∈Γ
max
t∈[0,1]

J(γ(t))

where

N := {u ∈ HV \{0} : J ′(u)u = 0} ,

Γ := {γ ∈ C([0, 1], HV ) : γ(0) = 0, J(γ(1)) < 0}.

Now we show relation between c∞ and cN .

Lemma 4.1. Under the assumptions(V2) and (f5)–(f8), we have c∞ ≥ cN .

Proof. From (V2), we know that V∞ = sup
x∈ZN

V (x). It is clear that c∞ ≥ cN .

If V (x) ≡ V∞, then this is a special case of periodic potential and c∞ ≥ cN .

Otherwise, V (x) < V∞ on some subset of ZN . By Theorem 1.1, we know that
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c∞ can be attained at some point u ∈ N∞, i.e. J∞(u) = c∞. Then, for any

s > 0,

c∞ = J∞(u) ≥ J∞(su) > J(su),

i.e.

c∞ > max
s>0

J(su) ≥ inf
u∈HV \{0}

max
s>0

J(su) = cN . �

Now we complete the proof of Theorem 1.2.

Proof of Theorem 1.2. Similar to Section 3, we can show that J satisfies

the mountain pass geometry. Thus, there exists a (PS) sequence of {un} for

J with J(un) → cN and J ′(un) → 0 as n → ∞. First of all, we show the

boundedness of {un} in HV . Suppose ‖un‖ → ∞ as n → ∞. Letting vn =

un/‖un‖, up to a subsequence if necessary, we have vn ⇀ v in HV and vn(x)→
v(x) for all x ∈ ZN. Since sup

n∈N
‖vn‖p <∞. By a similar argument in the proof of

Lemma 3.5, vn 9 0 in `q
(
ZN
)
. Again, by the interpolation inequality, one has

a subsequence {vn} and corresponding {yn} ⊂ ZN such that |vn (yn)| ≥ δ > 0

for all n. If {yn} is bounded, we get a contradiction similar to the proof of

Lemma 3.5. Otherwise, there exists a subsequence |yn| → ∞ as n → ∞. Let

ṽn(x) := vn (x− yn). Then {ṽn} is bounded in HV , for ‖vn‖ = 1. By passing

to a subsequence, one can assume that ṽn ⇀ ṽ in HV and ṽn(x) → ṽ(x) for all

x ∈ ZN with ṽ 6= 0. Moreover, from (f3), we have

0 <
J (un)

‖un‖2
=

1

2
−
∫
ZN

F (un)

u2
n

v2
n dµ =

1

2
−
∫
ZN

F (ũn)

ũ2
n

ṽ2
n dµ→ −∞,

as n→∞. This is a contradiction, so that (un) is bounded in HV .

By similar arguments, we obtain a subsequence {un} and corresponding se-

quence {yn} ⊂ ZN such that |un (yn)| ≥ η > 0 for all n. Therefore, ûn ⇀ û 6= 0

with ûn(x) := un (x− yn). It suffices to prove that {yn} is bounded. Suppose

|yn| → ∞ as n → ∞, we claim that J ′∞(û) = 0. In fact, for any w ∈ Cc
(
ZN
)
,

let wn(x) := w (x− yn), we have

|J ′ (un)wn| ≤ ‖J ′ (un)‖(HV )∗ ‖wn‖ = ‖J ′ (un)‖(HV )∗ ‖w‖ → 0, as n→∞.

Moreover,

J ′ (un)wn =

∫
ZN

(
∆un ∆wn +∇un∇wn + V (x)unwn

)
dµ

−
∫
ZN

f(x, un)wn dµ,

=

∫
ZN

(
∆ûn ∆w +∇ûn∇w + V (x− yn) ûn(x)w

)
dµ

−
∫
ZN

f (ûn)w(x) dµ



Ground States of Biharmonic Equations on Lattice Graphs 15

→
∫
ZN

(
∆û∆w +∇û∇w + V∞(x) û(x)w(x)

)
dµ

−
∫
ZN

f(û)w(x) dµ = J ′∞(û)w.

Hence

cN + o(1) = J
(
un
)
− 1

2
J ′
(
un
)
un =

∫
ZN

(
1

2
f
(
un
)
un − F

(
un
))
dµ

=

∫
ZN

(
1

2
f
(
ûn
)
ûn − F

(
ûn
))
dµ ≥

∫
ZN

(
1

2
f
(
û
)
û− F

(
û
))
dµ+ o(1)

= J∞(û)− 1

2
J ′∞(û)û+ o(1) = J∞(û) + o(1) ≥ c∞ + o(1),

as n → ∞. This is a contradiction, so that {yn} is bounded. We conclude the

proof of Theorem 1.2. �

5. The quasi-transitive graphs

In this section, we prove the main results on quasi-transitive graphs.

Proof of Theorem 1.3. Let G/Γ = {ρ1, . . . , ρm} denote the set of finitely

many orbits, Ω = {z1, . . . , zm} ⊂ V where zi ∈ ρi, 1 ≤ i ≤ m. Replace the

translations in the proof of Theorems 1.1 and 1.2 with Γ-action on functions,

respectively. For instance, suppose |vn (yn)| ≥ δ > 0. For each yn and n ∈ N,

there exists gn ∈ Γ such that gnyn = zi ∈ Ω. Set ṽn := vn ◦ g−1
n , then we

obtain a subsequence {ṽn} such that ‖ṽn‖`∞(Ω) ≥ δ with Ω being a finite subset.

By similar arguments in Theorems 1.1 and 1.2, we can complete the proof of

Theorem 1.3 on quasi-transitive graph G. �

References

[1] F.O. de Paiva, W. Kryszewski and A. Szulkin, Generalized Nehari manifold and semi-

linear Schrödinger equation with weak monotonicity condition on the nonlinear term,

Proc. Amer. Math. Soc. 145 (2021), 4783–4794.

[2] A. Grigor’yan, Introduction to analysis on graphs, University Lecture Series, 71, vol. 8,

American Mathematical Society, Providence, RI, 2018, pp. viii+150.

[3] X.L. Han, M.Q. Shao and L. Zhao, Existence and convergence of solutions for nonlinear

biharmonic equations on graphs, J. Differential Equations 268 (2020), 3936–3961.

[4] B.B. Hua and R. Li, The existence of extremal functions for discrete Sobolev inequalities

on lattice graphs, J. Differential Equations 305 (2021), 224–241.

[5] B.B. Hua and W.D. Xu, Existence of ground state solutions to some nonlinear

Schrödinger equations on lattice graphs, Calc. Var. Partial Differential Equations 62

(2023), no. 127, 17 pp.

[6] A. Huang, Y. Lin and S.-T. Yau, Existence of solutions to mean field equations on

graphs, Comm. Math. Phys. 377 (2020), 613–621.

[7] J. Mederski, J. Schino and A. Szulkin, Multiple solutions to a nonlinear curl-curl

problem in RN , Arch. Ration. Mech. Anal. 236 (2020), 253–288.



16 C. Ji — V.D. Rădulescu
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