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1. Introduction

The development of fixed point theory is closely related with the study
of various problems arising in the theory of ordinary differential equations.
One of the first contributions to this field is due to the French mathematician
Henri Poincaré® (1854-1912) in his famous paper [14] of 1890 on the three-
body problem crowned by King Oscar Prize. This problem concerns the free
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motion of multiple orbiting bodies and Poincaré reduced the study to the
qualitative analysis of the T—periodic solutions of a differential system in R™

o' = f(t, ) (1)
to the study of the fixed points of the operator Pr : R" — R" defined by

Pr(y) = p(T;0,y),
where p(t; s,y) denotes the solution of equation (1) verifying the initial condi-
tion x(s) = y. We refer to the survey paper by Mawhin [11] for more details
and related results.

As early as 1883, Poincaré stated in [13] a theorem shown much later to
be equivalent with a fixed point theorem for continuous functions on a closed
ball into itself, published by L.E..J. Brouwer") in 1912 (see [4]). In its simplest
one-dimensional case (see Figure ), the Brouwer fixed point theorem asserts
the following property: any continuous function f : [a,b] — [a,b] has at least
o fized point. The proof combines very simple arguments, which strongly rely
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Fig. 1. Brouwer’s fixed point theorem (one dimensional case)

on the main continuity assumption combined with the order structure of the
set of real numbers. In the general form, the Brouwer fixed point theorem
asserts that any continuous function with domain the closed unit ball B in
R and range contained in B must have at least one fixed point. This result
was first applied in 1943 to some forced Liénard equations by Lefschetz [9]
and Levinson [10]. If N > 2, the proof of the the Brouwer theorem is much
more complicated. However, simpler proofs have been found by means of
powerful topological tools, such as the topological degree.

In this paper we are concerned with the following natural related ques-
tions:

— what happens if the continuity hypothesis in the Brouwer fixed point
theorem is replaced with a monotonicity assumption;

— what about the approximation of the fixed point by means of two
classical successive approximations:

Tni1 = flan) (Picard sequence)

DDutch mathematician (1881-1966).
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Tn + f(zn)

2

If f is continuous, these sequences provide fixed points, provided that
they are convergent. Indeed, taking the function f : R — R defined by
f(z) =1 — =z, let us consider zy € [0,1] and xp+1 = f(zy), for all n > 0.
Then the Picard sequence (z,) converges if and only if g = 1/2. However,
if we construct the Krasnoselski sequence xy,4+1 = [z, + f(2,,)]/2, then (z,,)
converges for any initial value zg € [0, 1].

We also establish in the present paper related fixed point properties.
A particular interest is given to the cobweb method arising in mathemat-
ical economics, in strong relationship with successive approximations. We
refer to the recent problem books [15], [16] for further results and relevant
applications.

Tpg1 = (Krasnoselski sequence).

2. Knaster fixed point theorem

In this section we argue that the fixed point property stated in the
Brouwer theorem remains true if the continuity assumption is replaced with
the hypothesis that the function f : [a,b] — [a,b] is non-decreasing. The
same property does not hold provided that if f is decreasing. In the non-
decreasing case, the proof strongly relies on the order structure of the real
axis.

Theorem 1. Let f : [a,b] — [a,b] be a non-decreasing function.
(i) Then f has at least one fized point.
(i) There are decreasing function f : [a,b] — [a,b] with no fized points.

Proof. (i) Set
A={a<z<b; f(z)>x}

and xg = sup A. The following situations may occur.
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Fig. 2. Knaster’s fixed point theorem
Case 1: xg € A. By the definition of zg it follows that f(z¢) > z¢. If

f(xo) = x0, then the proof is concluded. If not, we argue by contradiction and
assume that f(xg) > xg. By the definition of zg we obtain f(z) < x, Va > xo.



80 ARTICOLE

On the other hand, for any zop < = < f(xg) we have x > f(z) > f(xo),
contradiction since x € (xq, f(x0)), that is, < f(z¢). It follows that the
assumption f(xg) > xg is false, so f has a fixed point.

Case 2: xg ¢ A. We prove that, in fact, it is impossible to have zo & A,
8o xg € A, which reduces the problem to Case 1. If g € A then there exists
a sequence x, — Ig, T, < g, such that x,, € A. Since f is increasing, it
follows that nh_)n(r)lo f(xy) = zg. On the other hand, from f(zg) < z¢ we deduce

that there exists =, < x¢ such that f(z,) > f(x0), contradiction with the
fact that f is increasing.
(ii) Consider the function

1
1—z if O§x<§

fl@)=9 1 & 1
—— = if =<z<l1.

2 2 2

Then f:[0,1] — [0, 1] is decreasing but does not have any fixed point. O

A related counterexample is depicted in Figure 3.
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Fig. 3. Knaster’s fixed point theorem fails for decreasing functions

3. Further fixed point properties

We start with some simple facts regarding the hypotheses of the Brouwer
fixed point theorem on the real axis.

(i) While a fixed point in [a,b] exists for a continuous function
f :la,b] — la,b], it need not be unique. Indeed, any point = € [a,b] is
a fixed point of the function f : [a,b] — [a,b] defined by f(z) = .

(ii) The condition that f is defined on a closed subset of R is essential
for the existence of a fixed point. For example, if f : [0,1) — R is defined by
f(z) = (1+x)/2, then f maps [0, 1) into itself, and f is continuous. However,
f has no fixed point in [0, 1).

(iii) The condition that f be defined on a bounded subset of R is es-
sential for the existence of a fixed point. For example, if f : [1,00) — R is
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defined by f(x) = x + 27!, then f maps [1,00) into itself, f is continuous,
but f has no fixed point in [1, c0).

(iv) The condition that f be defined on an interval in R is essential
for the existence of a fixed point. For example, if D = [-2,—1] U [1,2]
and f : D — R is defined by f(xr) = —z, then f maps D into itself, f is
continuous, but f has no fixed point in D.

We prove in what follows some clementary fixed point properties of
real-valued functions.

Proposition 1. Let f : [0,1] — [0,1] be a continuous function such that
f(0)=0, f(1) =1. Denote f" := fofo---of (n times) and assume that
there exists a positive integer m such that f™(z) = x for all x € [0,1]. Then
f(z) =z for any z € [0, 1].

Proof. Our hypothesis implies that f is one-to—one, so increasing
(since f is continuous). Assume, by contradiction, that there exists « € (0, 1)
such that f(z) > z. Then, for any n € N, we have f*(z) > f* 1(z) > - >
f(x) > . For n = m we find a contradiction. A similar argument shows
that the case f(x) < x (for some x) is not possible. O

Proposition 2. Let a, b be real numbers, a < b and consider a continuous
function f : [a,b] — R.

(i) If [a,b] C f([a,b]) then f has a fized point.

(i1) Assume that there exists a closed interval I' C f([a,b]). Then
I' = f(J), where J is a closed interval contained in [a,b].

(iii) Assume that there exists n closed intervals Iy, ..., I,—1 contained
in [a,b] such that for all0 < k <n—2, Ix41 C f(I) and Iy C f(I,—1). Then
f™ has a fixed point (f" = fo...of).

Proof. (i) Denote f ([a,b]) = [m, M] and let z,, xpr € [a,b] be such
that f(z,) = mand f(xp) = M. Since f(zp)—2m < 0and f(zp)—2m > 0,
it follows by the intermediate value property that f has at least a fixed point.

(ii) Set I' = [¢, d] and consider u, v € I such that f(u) = cand f(v) = d.
Assume, without loss of generality, that u < v.

The set A = {z € [u,v]; f(x) = ¢} is compact and non-empty, so
there exists & = max{z; = € A} and, moreover, « € A. Similarly, the set
B ={z € o, v]; f(z)=d} has a minimum point 3. Then f(a) =¢, f(8) =d
and for all z € (o, 8) we have f(x) # c and f(z) # d. So, by the intermediate
value property, [c,d] C f ((o, 8)) and f ((e, 8)) is an interval which contains
neither ¢ nor d. It follows that I’ = f(J), where J = [a, §].

(iii) Since Iy C f(Ip—1), it follows by b) that there exists a closed interval
Jn_1 C I_1 such that Iy = f(Jnfl) But J,. 1 C I,_1 C f([n,Q) SO, by
(ii), there exists a closed interval J,_o C I,—9 such that J,—1 = f (Jp—2).
Thus, we obtain n closed intervals Jy, ..., J,_1 such that

Ji C I, foral0<k<n-1
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and
Jrr1 = f(Jk), forall 0 <k <mn—2and Ip = f (Jp_1).
Consequently, Jy is included in the domain of the nth iterate f™ and
Jo € Iy = f™(Jp). By a) we deduce that f™ has a unique fixed point in
Jo. O

Proposition 3. Suppose that f : R — R satisfies |f(z) — f(y)] < |z — y]
whenever © # y. Then there is some € in [—00,4+00| such that, for any real
x, f"(x) = & as n — oo.

Proof. We suppose first that f has a fixed point, say &, in R. Then,
from the contracting property of f, £ is the only fixed point of f. We may
assume that & = 0, and this implies that |f(z)] < |z| for all nonzero x.
Thus, for any z, the sequence |f™(z)| is decreasing, so converges to some
nonnegative number p(z). We want to show that p(z) = 0 for every z, so
suppose now that x is such that p(z) > 0. Then f maps u(x) and —p(z) to
points y; and yo, say, where y; < |p(x)| for each j. Thus, as f is continuous,
there are open neighborhoods of +u(x) that are mapped by f into the open
interval I = (—p(x), p(z)) that contains y; and y2. This implies that, for
sufficiently large n, f™(x) lies in I, which contradicts the fact that |f™(z)| >
w(x) for all n. Thus, for all z, p(z) =0 and f™(z) — 0.

Now suppose that f has no fixed point in R. Then the function f(z)—=z
is continuous and nonzero in R. By the intermediate value theorem, f(z) > =
for al z, or f(z) < x for all x. We may assume that f(z) > z for all z, as
similar argument holds in the other case. Now the sequence f"(x) is strictly
increasing, hence converges to some &€ in RU {+00}. Moreover, £ € R, else £
would be a fixed point of f. Thus f™(x) — +oo for all . dJ

We conclude this paper with the following elementary property, which
is due to M.W. Botsko [2].

Proposition 4. Let f : [0,1] — [0,1] be a function such that
|f(z) — f(y)] <l|z—y| for all x, y € [0,1]. Then the set of all fized points of
f s either a single point or an interval.

Proof. Let F' = {z € [0,1]; f(z) = x}. Since F is continuous, it
follows that F' is compact. Let a be the smallest number in ' and b the
largest number in F. It follows that F C [a,b]. Fix arbitrarily x¢ € [a,b].
Since a is a fixed point of f, we have

f(o) —a < |f(wo) —al = [f(zo) = fla)| < mo—a.

Therefore, f(xg) < zg. Similarly,

b— flxo) < [b— f(zo)| = [f(b) — flzo)| <b— o,

which shows that f(xzg) > xg. It follows that f(xg) = xo, hence zg is a fixed
point of f. Thus, F = [a, b]. O
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4. Approximation of fixed points

We have observed that if f : [a,b] — [a,b] is a continuous function then
f must have at least one fixed point, that is, a point = € [a,b] such that
f(xz) = z. A natural question in applications is to provide an algorithm for
finding (or approximating) this point. One method of finding such a fixed
point is by successive approximation. This technique is due to the French
mathematician Emile Picard (1856-1941) and was introduced in his classical
textbook on analysis [12]. More precisely, if 1 € [a, b] is chosen arbitrarily,
define z,41 = f(x,) and the resulting sequence (z,,)n>1 is called the sequence
of successive approximations of f (or a Picard sequence for the function f).
If the sequence (xy,),>1 converges to some z, then a direct argument based
on the continuity of f shows that z is a fixed point of f. Indeed,

fl@)y=f ( lim .Ijn) =f ( lim .I}n_l) = lim f(zp—1)= lim z, =z.
n—oo n—o0 n—o0 n—o0

The usual method of showing that the sequence (z,),>1 of successive
approximations converges is to show that it satisfies the Cauchy convergence
criterion: for every € > 0 there is an integer N, such that for all integers
J, k> N, we have |x; — x| < . The next exercise asserts that it is enough
to set 7 = k+ 1 in the Cauchy criterion.

Proposition 5. Let f : [a,b] — [a,b] be a continuous function. Let x1 be
a point in [a,b] and let (zn)n>1 denote the resulting sequence of successive
approzimations. Then the sequence (xy,)n>1 converges to a fized point of f if
and only if limy o0 (Tpt1 — zn) = 0.

Proof. Clearly lim (z,11 — x,) = 0 if (,),>1 converges to a fixed
n—oo -
point. Suppose lim (z,4+1 — x,) = 0 and the sequence (z,)n>1 does not
n—o0 -

converge. Since [a,b] is compact, there exist two subsequences of (z)n>1
that converge to & and & respectively. We may assume & < &o. It suffices
to show that f(z) = « for all x € (£1,&2). Suppose this is not the case, hence
there is some x* € (&1, &2) such that f(z*) # 2*. Then a § > 0 could be found
such that [x* —d,z* +J] C (&1,&2) and f(Z) # T whenever T € (z*—4,x*+0).
Assume Z— f(Z) > 0 (the proof in the other case being analogous) and choose
N so that |f™(x) — f"*(x)| < § for n > N. Since & is a cluster point, there
exists a positive integer n > N such that f"(x) > x*. Let ng be the smallest
such integer. Then, clearly,

frotz) <o < fro(x)
and since f™(z) — f"~(z) < § we must have
o Hx) — fmo(x) > 0 so that f"(z) < f Hx) < 2%,

a contradiction. O
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The usual method of showing that the sequence (zy)n>0 of successive
approximations converges is to show that it satisfies the Cauchy convergence
criterion. The next result establishes that this happens if and only if the
difference of two consecutive terms in this iteration converges to zero. The
American mathematician Felixz Browder has called this condition asymptotic
regularity.

The next result is due to H.G. Barone [1] and was established in 1939.

Theorem 2. Let (z)n>0 be a sequence of real numbers such that the sequence
(Tnt1 — xp) converges to zero. Then the set of cluster points of (xn)n>0 is a
closed interval in R, eventually degenerated.

Proof. Set ¢_ := hm 1nf Tn, Uy = hmsup xn and choose a € (£_,0,).

By the definition of Z_, there exists xp, < a Let ny be the least integer
greater than ny such that x,, > a (the existence of ng follows by the definition
of £1). Thus, ©p,—1 < a < x,,. Since _ < a, there exists a positive integer
ng > ng such that z,, < a. Next, by the definition of £, there exists an
integer Ny > ng such that zn, > a. If ny denotes the least integer with
these properties, then z,,_ 1 < a < x,,. In this manner we construct an
increasing sequence of positive numbers (no);~, such that, for all k& > 1,
Tngp—1 < @ < Tp,,. Using the hypothesis we deduce that the sequences
(Tnop—1)p>q and (zp,, ).~ converge to a, so a is a cluster point. O

The following convergence result was established by B.P. Hillam [7] in
1976.

Theorem 3. Let f : [a,b] — [a,b] be a continuous function. Consider the
sequence (Tpn)n>0 deﬁned by zg € [a,b] and, for any positive integer n, T, =
f(zn—1). Then the sequence (Tn)n>0 converges if and only if (Tpy1 — Tn)
converges to zero.

Proof. Assume that the sequence of successive approximations (zy)n>0
satisfies xp41 — z, — 0, as n — oco. With the same notations as above,
assume that ¢_ < ¢,. The proof of (i) combined with the continuity of f
imply @ = f(a), for all @ € (¢_,¢1). But this contradicts our assumption
¢_ < (4. Indeed, choose /— < ¢ < d < ¢y and 0 < ¢ < (d — ¢)/3. Since
Tp+1 — Tn — 0, there exists N, such that for all n > N, —¢ < 41 —xp < €.
Let N3 > N; > N be such that zy, < ¢ < d < zp,. Our choice of € implies
that there exists an integer n € (N7, N2) such that a := x,, € (¢,d). Hence
Znt1 = f(a) = a, xpy9 = a, and so on. Therefore xy, = a, contradiction.

The reversed assertion is obvious. O

The following result is a particular case of a fixed point theorem due to
Krasnoselski (see [8]). We refer to [6] for the general framework corresponding
to functions defined on a closed convex subset of strictly convex Banach
spaces.
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Theorem 4. Let f : [a,b] — [a,b] a function satisfying | f(z)—f(y)| < |z—yl,
for all x, y € [a,b]. Define the sequence (zn)n>1 by x1 € [a,b] and, for all
n>1, xpy1 = [zn + f(an)] /2. Then the sequence (zy)n>1 converges to some
fized point of f.

Proof. We observe that it is enough to show that (z,)n>1 converges.
In this case, by the recurrence relation and the continuity of f, it follows
that the limit of (x,,),>1 is a fixed point of f. We argue by contradiction and
denote by A the set of all limit points of (z,,),>1, that is,

A = {l € [a,b]; there exists a subsequence (zp, )r>1 of
(Zn)n>1 such that z,, — (}.

By our hypothesis and the compactness of [a,b], we deduce that A
contains at least two elements and is a closed set.

We split the proof into several steps.

(i) For any ¢ € A we have f(¢) # ¢. Indeed, assume that £ € A and fix
e > 0 and ny € N such that |z,, — (| <e. Then

L+ [0 xny + fon,)

| — 2y i1] = 5 2 -

and so on. This shows that |z, — ¢] < e, for all n > ng. Hence (2,)n>1
converges to ¢, contradiction.
(ii) There exists ¢y € A such that f(¢y) > £¢y. Indeed, arguing by

contradiction, set {_ = Ielli}‘l ¢. Then ¢_ € A and f(¢_) < ¢_. The variant
€

f0_) = £_ is excluded, by (i). But f(¢_) < £_ implies that % €A
W < £_, which contradicts the definition of ¢_.

(iii) There exists € > 0 such that |f(¢) — ¢| > ¢, for all £ € A. For if
not, let £, € A such that [f(¢,) — £, < L, for all n > 1. This implies that
any limit point of (¢)n>1 (which lies in A, too) is a fixed point of f. This
contradicts (i).

(iv) Conclusion. By (ii) and (iii), there exists a largest ¢y € A such
that f(€y) > £4. Let ¢/ = w and observe that f(¢y) > ¢ > ¢, and
f(¢') < ¢. By (iii), there exists a smallest ¢/ € A such that ¢’ > ¢, and
F")y < £". 1t follows that ¢4 < £"” < f(¢1). Next note that f(¢") < £4; for,
if not, £ = w satisfies £, < £ < " and, by definitions of £, and £”,
it follows that f(¢”) = ¢", contrary to (i). Thus f(£") < {y < 0" < f(£y). Tt
then follows that |f(¢”) — f(¢4)| > |¢” — £4|. This contradicts the hypothesis
and concludes the proof. O

and

Remark. The iteration scheme described in the above Krasnoselski’s pro-
perty does not apply to arbitrary continuous mappings of a closed interval
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into itself. Indeed, consider the function f : [0,1] — [0, 1] defined by

3 1

1,3 if 0<e<

1 1

p— —_— — .f — —
fx) 3x+2, i le<x<2
0, if §§x§1.

Then the sequence defined in the above statement is defined by
Top = % and xop+1 = ;11, for any n > 1. So, (xn)n>1 is a divergent sequence.

The contraction mapping theorem states that if f : R — R (or
f:[a,00) = [a,0)) is a map such that for some & in (0, 1) and all z and y in
R, |f(z) — f(y)| < k|z — y|, then the iterates f™ = fo...o f (n terms) of f
converge to a (unique) fixed point & of f. This theorem can be accompanied
by an example to show that the inequality cannot be replaced by the weaker
condition |f(z) — f(y)| < |x — y|. The most common example of this type
is f(z) = x + 1/ acting on [1,00). Then f(z) > x, so that f has no fixed
points. Also, for every x, the sequence z, f(x), f%(x), ... is strictly increa-
sing and so must converge in the space [—oo, +o0]. In fact, f*(z) — +oo,
for otherwise f(x) — a for some real a, and then f(f"(x)) — f(a) (because
f is continuous) so that f(a) = a, which is not so. Thus we define f(+o00)
to be +00 and deduce that this example is no longer a counterexample. The
following property clarifies these ideas and provides an elementary, but inter-
esting, adjunct to the contraction mapping theorem. We just point out that
a mapping f : R — R satisfying | f(z) — f(y)| < |z — y| for all = # y is called
a contractive function.

We say that a function f : [a,b] — R satisfies the Lipschitz condition
with constant L > 0 if for all z and y in [a, b], | f(z)— f(y)| < L|z—y|. A func-
tion that satisfies a Lipschitz condition is clearly continuous. Geometrically,
if f:[a,b] — R satisfies the Lipschitz condition

[fl@) = fI <Llz—y| forallz,y € a,b],
then for any z, y € [a,b], x # y, the inequality

’f(:c)—f(y) .
r—vy B

indicates that the slope of the chord joining the points (x, f(z)) and (y, f(y))
on the graph of f is bounded by L.

Using the fact that the real line is totally ordered, the following more
general theorem with much more elementary proof is possible.

Proposition 6. Let f : [a,b] — [a,b] be a function that satisfies a Lipschitz
condition with constant L. Let x1 in [a,b] be arbitrary and define xp41 =
=(1—Nzp+ Af(zn) where X\ =1/(L+1). If (xp)n>1 denotes the resulting
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sequence then (Tn)n>1 converges monotonically to a point z in [a,b] where
1) ==

Proof. Without loss of generality we can assume f(x,) # x, for all n.
Suppose f(x1) > 21 and let p be the first point greater than x; such that
f(p) = p. Since f(x1) > x1 and f(b) < b, the continuity of f implies there is
such a point.

Next, we prove the following claim. If 21 < 29 < ... < 7z, < p and
flay) > x; for i = 1,2,...,n, then f(2,11) > Tpy1 and 41 < p. Indeed,
suppose p < Tpyt1, then x, < p < Tp41, hence 0 < p —xp < Tpgp1 — Ty =
A f(zn) — zpn). Therefore

1
0 < X|mn_p|:([’+1)|xn_p|< |f(xn)_mn| <

< [f(zn) = fW+1p— 20
It follows that
Llzn —p| < |f(xs) — f(P)]

which contradicts the fact that f is a Lipschitz function. Thus x,+; < p and
f(@nt1) > xpy1 by the choice of p, and the claim is proved.

Using the induction hypothesis it follows that x, < x,4+1 < p for all in-
tegers n. Since a bounded monotonic sequence converges, (z,)p>1 converges
to some point z. By the triangle inequality it follows that

e SR < 12— aal o+ o — Fan)| + |flz) — £2)] =
= |zl 4 5 fones — ol + () — £

Since the right-hand side tends to 0 as n — oo, we conclude that f(z) = z.
If f(z1) < 21 a similar argument holds. O

Applying a somewhat more sophisticated argument, one can allow A to
be any number less than 2/(L + 1) but the resulting sequence (zy,),>1 need
not converge monotonically. The following example shows this last result is
best possible.

Let f:[0,1] — [0, 1] be defined by

1 0<z<l™
i
’ = oL
1 L1 L+1
={ “Le+-(L+1), =———<g<='-
f(x) v+ 5(L+1), - <es o7
L+1
- <1
0, Y7 <z <1,

where L > 1 is arbitrary. Note that f satisfics a Lipschitz condition with
constant L. Let A = 2/(L 4+ 1) and let 23 = (L — 1)/2L. Then zy =
= (1 — )\).111 + )\f(xl) = (L + 1)/2L, xr3 = (1 — )\)IQ + )\f(IQ) = (L — 1)/2L,
etc.
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5. Picard sequences versus the cobweb model and qualitative
analysis of markets

We start with the following elementary geometric interpretation of the
Picard method. First, take a point A(x1, f(x1)) on the curve y = f(z).
Next, consider the point Bi(f(x1), f(21)) on the diagonal line y = z and
then, project the point Bj vertically onto the curve y = f(z) to obtain a
point As(za, f(x2)). Again, project Ay horizontally to By on y = x and
then, project Bs vertically onto y = f(x) to obtain As(zs, f(x3)). This
process can be repeated a number of times. Often, it will weave a cobweb
in which the fixed point of f, that is, the point of intersection of the curve
y = f(z) and the diagonal line y = z, gets trapped. In fact, such trapping
occurs if the slopes of tangents to the curve y = f(x) are smaller (in absolute
value) than the slope of the diagonal line y = z. The situation described
above is illustrated in Figure 4.

a Y= y=x
y p‘ Q‘
A P3 Q3
Q, " P,
P,
Q.4 P,
P X
0 »

Fig. 4. Picard sequence converging to a fixed point

When the slope condition is not met, then the points A;, As,... may
move away from a fixed point. This case is depicted in Figure 5.

y4 y=f(x)
AP
y=x,
P, Qz,,,/'/
P, Qa
p 1 Q P, v
Q.7 P,
. X
o B

Fig. 5. Picard sequence diverging away from a fixed point
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In mathematical economics, the behaviour described in Figure 4 cor-
responds to the convergence to an equilibrium point, while the framework
described in Figure 5 describes the divergence from equilibrium.

A sufficient condition for the convergence of a Picard sequence, which
is a formal analogue of the geometric condition of slopes mentioned above, is
stated in the following result, which is also referred as the Picard convergence
theorem.

Theorem 5. Let f : [a,b] — [a,b] be a continuous function which is diffe-
rentiable on (a,b), with |f'(z)| < 1 for all x € (a,b).

Then f has a unique fized point. Moreover, any Picard sequence for f
is convergent and converges to the unique fized point of f.

Proof. We first observe that the Brouwer fixed point theorem implies
that f has at least one fixed point. Next, assuming that f has two fixed
points z, and x*, the Lagrange mean value theorem implies that there exists
¢ € (a,b) such that

|22 — 27 = |f(zs) = f@)] = [F O] Joe — ™| < | — 2],

a contradiction. Thus, f has a unique fixed point.

We point out that the condition |f’(z)| < 1 for all x € (a,b) is essential
for the uniqueness of a fixed point. For example, if f : [a,b] — [a, b] is defined
by f(z) = x, then f'(x) = 1 for all x € [a,b] and every point of [a,b] is a
fixed point of f.

We prove in what follows that the corresponding Picard sequence con-
verges. Let x* denote the unique fixed point of f. Consider arbitrarily
z1 € [a,b] and let (z,)n>1 C [a,b] be the Picard sequence for f with its
initial point z1. This means that z, = f(z,_1) for all n > 2. Fix an integer
n > 1. Thus, by the Lagrange mean value theorem, there exists &, between
z, and x* such that

Tpp1 — 2" = f(an) — f(2z¥) = f/(fnxxn —a").

This implies that |z,+1 — 2*| < |z, — *|. Next, we prove that z,, — x*
as n — 0o. Since (Tp)n>1 is bounded, it suffices to show that every conver-
gent subsequence of (z,),>1 converges to z*. Let € R and (z,, )r>1 be a
subsequence of (z,)n>1 converging to x. Then

|xnk+1 - I*| < |Ink+1 - I*| < |.11nk - I*|
But |zy,,,, —2*] = |z — 2*| and

Ty — 27 = [f (@) = f(2)] = [f(2) = f(@%)],  ask—oo.

It follows that |f(x) — f(a*)| = |z —2*|. Now, if x # z*, then by the Lagrange
mean value theorem, there exists £ € (a, b) such that

|z — 2" = [f(2) = f@@)| = [f'(©)] - |o — 2"| < Jo — 27|,
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which is a contradiction. This proves that = # x*. O

Remark. If the condition |f/(z)| < 1 for all x € (a,b) is not satisfied, then f
can still have a unique fixed point z* but the Picard sequence (2, )n>1 with
initial point x; # x* may not converge to x*.
Example. Let f:[-1,1] — [-1,1], f(z) = —x. Then f is differentiable,
|f'(x)] = 1 for all z € [-1,1], and z* = 0 is the unique fixed point of f.
If 1 # 0 then the corresponding Picard sequence is x1, —x1, 1, —T1, .- .
which oscillates between x1 and —z; and never reaches the fixed point. In
geometric terms, the cobweb that we hope to weave just traces out a square
over and over again.

When the hypotheses of the Picard convergence theorem are satisfied,
a Picard sequence for f : [a,b] — [a,b] with arbitrary z; € [a, b] as its initial
point, converges to a fixed point of f. It is natural to expect that if zq is
closer to the fixed point, then the convergence rate will be better. A fixed
point of f lies not only in the range of f but also in the ranges of the iterates
fof, fofof,and so on. Thus, if R, is the range of the n—fold composite
fo---of (n times), then a fixed point is in each R,. If only a single point

o0
belongs to (| Ry, then we have found our fixed point. In fact, the Picard
n=1
method amounts to starting with any x1 € [a,b] and considering the image
of z1 under the n—fold composite fo---o f.
Example. If f : [0,1] — [0,1] is defined by f(z) = £, then the nth iterate
of f is given by
} 3r 44" —1
.. t == -
fo- o f(n times)(x) 3 4

SHEDE ]

o0
Thus, (| R, = {%}, hence % is the unique fixed point of f. In general,
n=1

and

it is not convenient to determine the ranges R, for all n. So, it is simpler
to use the Picard method, but this tool will be more effective if the above
observations are used to some extent in choosing the initial point.

The Picard convergence theorem was extended in [5] to a framework
arising frequently in mathematical economics. This corresponds to the cob-
web model that concerns a qualitative analysis of markets in which supply
adjustments have a time lag and demand adjustments occur with no delay.
We briefly describe in what follows the cobweb model and we conclude with
the cobweb theorem, which is a generalization of Theorem 5. Let s(p) de-
note the total quantity of the product that sellers are willing to supply at a
given price level p > 0. Assume the demand function d(p) represent the total
quantity of the product that buyers are willing to purchase at a given price



T.-L. T. RADULESCU, V. D. RADULESCU, PICARD AND KRASNOSELSKI SEQUENCES 91

level p. The situation described in the next result corresponds to price con-
verging to an equilibrium price and it is described by economists as a “stable
equilibrium”. This means that if a small extraneous disturbance occurs in
the market, eventually price will again converges to some equilibrium price.
The same result shows that disturbance should be be large enough to remove
the equilibrium. Such a disturbance might be a depression, drought, or large
recession.

Theorem 6. (Cobweb Theorem) Let s and d be real-valued functions of the
real variable p > 0, and suppose that the graphs of s and d intersect at the
point (p*,q*) where ¢* > 0. Let I be a closed interval centered at p* on
which functions s and d have monvanishing continuous derivatives. Define
sequences (pn) and (gn) by letting po be any element of I, ¢, = $(pp—1) and
pn = d (qn) for alln > 1. Assume that |s'(p)| < |d'(p)| for allp in I. Then

limy, Pn = P* and limy, o0 qn = q*-

The proof of Theorem 6 relies on the Cauchy mean value theorem; we
refer to [5] for details and related properties.
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