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Zachary Franco, Christian Friesen, Ira M. Gessel, Jerrold R. Griggs, Jerrold Grossman,
Frederick W. Luttmann, Vania Mascioni, Frank B. Miles, Richard Pfiefer, Cecil C.
Rousseau, Leonard Smiley, John Henry Steelman, Kenneth Stolarsky, Richard Stong,
Walter Stromquist, Daniel Ullman, Charles Vanden Eynden, and Fuzhen Zhang.

Proposed problems and solutions should be sent in duplicate to the MONTHLY

problems address on the inside front cover. Submitted solutions should arrive at
that address before September 30, 2007. Additional information, such as gen-
eralizations and references, is welcome. The problem number and the solver’s
name and address should appear on each solution. An asterisk (*) after the num-
ber of a problem or a part of a problem indicates that no solution is currently
available.

PROBLEMS

11298. Proposed by Jakob Jonsson, MIT, Cambridge, MA, and James Propp, Univer-
sity of Massachusetts Lowell, Lowell, MA. Show that for n ≥ 3, if a convex n-gon ad-
mits a triangulation in which every vertex is incident with an odd number of triangles,
then n must be a multiple of 3. (A triangulation of a convex n-gon is a dissection of
that n-gon into n − 2 triangles using n − 3 non-crossing diagonals.)

11299. Proposed by Pablo Fernàndez Refolio, Universidad Autónoma de Madrid,
Madrid, Spain. Show that
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11300. Proposed by Ulrich Abel, University of Applied Sciences Giessen-Friedberg,
Friedberg, Germany. For integers k and n with 0 ≤ k ≤ n, let pn,k(t) = (n

k

)
t k(1 −

t)n−k . Let Kn(x, y) = ∑n
k=0(y − k/n)pn,k(x)pn,k(y). Prove that for 0 ≤ u ≤ 1 and

0 ≤ y ≤ 1,
∫ u

x=0 Kn(x, y) dx ≥ 0.

11301. Proposed by Finbarr Holland, University College Cork, Ireland. Find the least
real number M such that, for all complex a, b, and c,∣∣ab(a2 − b2) + bc(b2 − c2) + ca(c2 − a2)

∣∣ ≤ M(|a|2 + |b|2 + |c|2)2.

11302. Proposed by Horst Alzer, Waldbröl, Germany. Find

∞∑
k=2

(2k + 1)H 2
k

(k − 1)k(k + 1)(k + 2)
,

where Hk is the kth harmonic number, defined to be
∑k

j=1 1/j .
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11303. Proposed by M. Farrokhi D. G., Ferdowsi University of Mashad, Mashad, Iran.
Let A be an invertible matrix with nonnegative integer entries. Show that if the union
over all n of the set of entries of An is finite, then A is a permutation matrix.

11304. Proposed by Teodora-Liliana Rădulescu, Fraţii Buzeşti College, Craiova, and
Vicenţiu Rădulescu, University of Craiova, Romania.
(a) Find a sequence 〈zn〉 of distinct complex numbers, and a sequence 〈αn〉 of nonzero
real numbers, such that for almost all complex numbers z (excluding a set of measure
zero),

∑∞
n=1 αn|z − zn|−1 diverges to +∞, yet not all αn are positive.

(b) Let 〈βn〉 be a sequence of real numbers such that
∑∞

n=1 |βn| is finite and such that,
for almost all z in C,

∑∞
n=1 βn|z − zn|−1 converges to a nonnegative real number. Prove

that βn ≥ 0 for all n.
(c∗) Can there be a sequence 〈αn〉 of real numbers, not all positive, and a sequence 〈zn〉
of distinct complex numbers, such that for almost all complex z,

∑∞
n=1 αn|z − zn|−1

converges to a positive real number?

SOLUTIONS

Two Heads are Better than One

11173 [2005, 749]. Proposed by M. N. Deshpande, Institute of Science, Nagpur, India,
and J. P. Shiwalkar, Hislop College, Nagpur, India. A double-head in a sequence of
coin tosses is an occurrence of two consecutive heads (in HHHTHHTHHHH there
are six double-heads). A fair coin is flipped until r double-heads are obtained, and the
number Xr of flips made to this point is recorded. Show that if Er is the expected value
of Xr and Vr is the variance, then 5Er − Vr is constant, independent of r .

Solution by GCHQ Problem Solving Group, Cheltenham, U. K. Let Y1 = X1, and, for
r ≥ 2, let Yr = Xr − Xr−1. Partitioning according to whether the sequence begins T,
HT, or HH yields

E(Y1) = 1
2(1 + E(Y1)) + 1

4 (2 + E(Y1)) + 1
4 · 2.

Hence E(Y1) = 6. For r ≥ 2, E(Yr ) = 1
2 (1 + E(Y1)) + 1

2 · 1 = 4. Therefore

Er =
r∑

i=1

E(Yr ) = 2 + 4r.

Similarly,

E(Y 2
1 ) = 1

2 (1 + E(Y1))
2 + 1

4 (2 + E(Y1))
2 + 1

4 · 22 = 5
2 + 2E(Y1) + 3

4 E(Y 2
1 ).

This yields E(Y 2
1 ) = 58, and so V1 = E(X 2

1) − E(X1)
2 = 22. For r ≥ 2,

E(Y 2
r ) = 1

2
(1 + E(Y1))

2 + 1

2
· 1 = 1 + E(Y1) + 1

2
E(Y 2

1 ) = 36,

and so Var(Yr ) = E(Y 2
r ) − E(Yr )

2 = 20. Because the random variables Yr are inde-
pendent, Vr = ∑r

i=1 Var(Yr ) = 2 + 20r. Therefore 5Er − Vr = 8.

Editorial comment. The problem was generalized by many solvers to the case of a
biased coin and to the problem of runs of k heads for k > 2. Stephen Herschkorn gave
the most general statement: Let W1, W2, . . . be a sequence of independent identically
distributed discrete random variables, and let q be an n-tuple of values in the range

548 c© THE MATHEMATICAL ASSOCIATION OF AMERICA [Monthly 114



of W1. If Xr is the time of the r th appearance of q in the sequence, then E(Xr ) and
Var(Xr ) are both affine functions of r . Hence cE(Xr ) − Var(Xr ) is constant for some
choice of c.

Solved also by M. Andreoli, D. Beckwith, R. Chapman (U. K.), S. Herschkorn, V. Karwe, G. Keselman,
G. Lavau (France) R. Leitch (U. K.), J. H. Lindsey II, O. P. Lossers (Netherlands), D. Lovit, K. McInturff,
E. Omey & S. Van Gulck (Belgium), R. Pratt & F. Chen, J. Resing (Netherlands) K. Schilling, B. Schmuland
(Canada), D. Senft, A. Stadler (Switzerland), R. Stong, G. A. Stoops, BSI Problem Solving Group (Germany),
Hope College Problem Solving Group, Microsoft Research Problems Group, and NSA Problems Group.

Learning from Experience

11178 [2005, 750]. Proposed by Jon Bentley and Colin Mallows, Avaya Labs, Basking
Ridge, NJ. Balls are to be thrown independently into unequally likely boxes 1, 2, . . . ,
K , with P(ball lands in box j) = q j , until n balls have been thrown. The player bets
that when the next ball is thrown it will go into whichever box has received the most
balls out of the first n throws. (If there are ties, she breaks the tie at random.) Prove that,
whatever the values of q1, . . . , qk , her probability of winning is a strictly increasing
function of n.

Solution by Richard Stong, Rice University, Houston, TX. The claim is not quite cor-
rect. The probability of winning is a nondecreasing function of n, but it is not strictly
increasing. The probability of winning on the second throw is the same as the probabil-
ity of winning on the third throw. If K = 2 (or if K = 3 and one of the qi is zero), then
the probability of winning on any odd toss is the same as the probability of winning on
the previous even toss. If K = 2 and {q1, q2} = {0, 1}, then the probability of winning
is constant for n ≥ 2.

Consider player A, who follows the given strategy, and player B, who follows al-
most the same strategy but ignores the result of the nth throw. We are asked to show
that player A wins with probability at least as great as player B.

It suffices to consider the cases where A and B bet differently—that is, either the
nth throw broke a tie for first or created or enlarged a tie for first. By symmetry, we
may assume that the tie involved the first r boxes and let Q = ∑r

i=1 qi .
Given that boxes 1 through r are tied at step n − 1 and the tie is broken on step n,

the probability that the tie is broken in favor of box i is qi/Q. Hence A’s conditional
probability of winning is (q2

1 + q2
2 + · · · + q2

r )/Q, and B’s conditional probability of
winning is simply Q/r . By the Cauchy–Schwarz inequality, r(q2

1 + q2
2 + · · · + q2

r ) ≥
Q, so A is at least as likely to win as B.

Given that boxes 1 through r are tied at step n, any orders of putting the balls into
boxes that have the same totals are equally likely. Thus, given that one of the r tied
boxes was not part of the tie at step n − 1, each of the r boxes is equally likely to be
the one that received the last ball. If box i received the last ball, then B’s probability
of winning is (Q − qi )/(r − 1); hence B’s conditional probability of winning is

r∑
i=1

1

r
· Q − qi

r − 1
= Q

r − 1
− Q

r(r − 1)
= Q

r
.

Since A’s conditional probability of winning is also Q/r , the two players have equal
conditional probabilities of winning.

Finally, we analyze when equality can hold. For equality to hold in our application
of the Cauchy–Schwarz inequality, we must have q1 = · · · = qr . If any tie is possible,
then this contradicts the assumption of unequal qi . Thus the only cases where A does
not do strictly better are when no tie is possible after n − 1 tosses. This occurs when
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n = 2, when there are two boxes with positive probability and n is even, and when
there is only one box with positive probability. These correspond to the cases described
in the first paragraph.

Editorial comment. The Microsoft Research Problems Group and most of the solvers
pointed out that the problem as stated is not quite correct, as noted above.

Also solved by J. H. Lindsey II, R. E. Prather, GCHQ Problem Solving Group (U. K.), NSA Problems Group,
and the proposers.

A Determinant by Möbius Inversion

11179 [2005, 750]. Proposed by David Beckwith, Sag Harbor, NY. For positive integers

i and j let mi j =
{

−1 j | (i + 1)

0 j � (i + 1)
, and when n ≥ 2 let Mn be the (n − 1) × (n − 1)

matrix with (i, j)-entry mi j . Evaluate det Mn .

Solution by Li Zhou, Polk Community College, Winter Haven, FL. By convention, set
det M1 = 1 for the empty matrix. We show that det Mn = μ(n) for n ≥ 1, where μ

is the Möbius function (μ(n) = (−1)k if n is square-free with k prime divisors, and
otherwise μ(n) = 0).

For n ≥ 2, expanding along row n − 1 of Mn yields a contribution from each col-
umn d such that d | n and d < n. In the later columns, −1 moves to the diagonal
of the resulting smaller matrix. In the earlier columns, Md remains in the upper-
left corner. Hence the contribution is (−1)n−1+d(−1)n−d det Md . We conclude that
det Mn = − ∑

d|n and d<n det Md for n ≥ 2.
Letting f (1) = 1 and f (n) = 0 for n ≥ 2, we have f (n) = ∑

d|n det Md for all n.
The Möbius Inversion Formula immediately yields

det Mn =
∑
d|n

μ(d) f (n/d) = μ(n).

Editorial comment. Most solvers used Möbius inversion. Albert Stadler applied ele-
mentary column operations to reduce to a directly computable determinant.

Also solved by T. Achenbach, S. Amghibech (Canada), D. R. Bridges, R. Chapman (U. K.), W. Chu (Italy),
K. David, L. M. DeAlba, Y. Dumont (France), J.-P. Grivaux (France), E. A. Herman, J. H. Lindsey II,
O. P. Lossers (Netherlands), R. Martin (U. K.) M. Reyes, J. Singh (India), A. Stadler (Switzerland), A. Stenger,
R. Stong, Y. Tam & M. Tam, R. Tauraso (Italy), M. Tetiva (Romania), L. Wenstrom, GCHQ Problem Solving
Group (/uk), Microsoft Research Problems Group, Missouri State University Problem Solving Group, NSA
Problems Group, and the proposer.

Perfect Powers in an Arithmetic Progression

11182 [2005, 839]. Proposed by Shahin Amrahov, University of Economy and Tech-
nology, Ankara, Turkey. Let 〈an〉 be an arithmetic progression of positive integers for
which the common difference is prime. Given that the sequence includes both a term
that is a perfect j th power and a term that is a perfect kth power, and that j and k are
relatively prime, prove that there exists a term that is a perfect jkth power.

Solution by Nicholas C. Singer, Annandale, VA. If p is the common difference, then
an = a0 + np for n ≥ 0. The case a0 = 1 is trivial, so suppose a0 > 1. The integers in
the progression are those at least a0 that are congruent to a0 modulo p. We are given
positive integers α and β such that α j ≡ a0 ≡ βk (mod p) and α j , βk ≥ a0 > 1.

550 c© THE MATHEMATICAL ASSOCIATION OF AMERICA [Monthly 114



Since j and k are relatively prime, there exist integers t and u such that j t + ku = 1,
and thus positive integers r and s such that jr + ks ≡ 1 (mod (p − 1)). By Fermat’s
Little Theorem, for any such r and s,

(αsβr ) j k ≡ (α j )ks(βk) jr ≡ aks
0 a jr

0 ≡ aks+ jr
0 ≡ a0 (mod p).

All instances of (αsβr ) j k are perfect jkth powers in the progression.

Editorial comment. Singer notes that the argument given is also valid when p | a0,
but that the claim is trivial in that case, since pnjk then lies in the progression for
sufficiently large n.

Gerry Myerson, Byron Schmuland, and Marian Tetiva each observed that the con-
clusion is also valid for an arithmetic progression 〈an〉 with composite common dif-
ference m. When a0 is relatively prime to m or is a multiple of m, this can be proved
essentially as above, using Euler’s generalization of Fermat’s Little Theorem. When
1 < gcd(a0, m) < m, more difficult arguments are needed.

Also solved by M. R. Avidon, O. Bagdasar (Romania), P. Budney, R. Chapman (U. K.), J. Christopher, Y. Du-
mont (France), M. Goldenberg & M. Kaplan, L. Jones & R. Keller, G. Myerson (Australia), K. E. Schilling,
B. Schmuland (Canada), A. E. Stadler (Switzerland), A. L. Stenger, R. A. Stong, R. Tauraso (Italy), M. Tetiva
(Romania), the GCHQ Problem Solving Group (U. K.), the Houghton College Problem Solving Group, the
Microsoft Research Problems Group, the NSA Problems Group, the Northwestern University Math Problem
Solving Group, and the proposer.

Building Two Piles of Equal Height

11183 [2005, 839]. Proposed by David Beckwith, Sag Harbor, NY. The left and right
pillars of a triumphal arch are each to be built of blocks of height 1 or 2. Blocks of
height 2 may not sit upon blocks of height 1. How many designs are feasible if the lintel
must sit level upon the pillars and if exactly n blocks must be used in the construction
of the pillars? (Thus, if n = 3 there are two designs: left pillar of one height-two block
and right pillar of two height-one blocks, or vice-versa.)

Solution I by Vadim Ponomarenko, Trinity University, San Antonio, TX. Let cn be the
desired quantity. Let an be the number of symmetric arches and let bn be the number
of asymmetric arches with more 2-blocks on the left, so cn = an + 2bn . Since all 2-
blocks must be below all 1-blocks, we have an = 1 + n

2 for n even and nonnegative,
and clearly an = 0 for n odd (or n < 0).

For n ≥ 3, arches counted by bn arise from symmetric or asymmetric arches with
n − 3 blocks by inserting a 2-block at the bottom of the left pillar and two 1-blocks at
the top of the right pillar. Thus bn = an−3 + bn−3 for n ≥ 3, with bn = 0 for n < 3. If
n is even, then an−3 = 0, so bn = bn−3 = an−6 + bn−6, and thus bn = an−6 + an−12 +
an−18 + · · · . If n is odd, then bn = an−3 + bn−3 = an−3 + an−9 + an−15 + · · · . Setting
n = 6k + α, where 0 ≤ α < 6, we evaluate these sums to obtain

cn =
{

3k2 + (α + 2)k + 1
2α + 1 if n is even,

3k2 + (α + 2)k + α − 1 if n is odd.

Solution II by Rob Pratt, Raleigh, NC. Each design consists of copies of the following
four basic units, with all copies of unit 1 at the bottom of the pillars, all copies of unit
2 at the top, and copies of units 3 or 4 (only one type) in the middle:
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unit left pillar right pillar

1 one height-two block one height-two block
2 one height-one block one height-one block
3 one height-two block two height-one blocks
4 two height-one blocks one height-two block

Letting ni be the number of copies of unit i in an arch, we have a one-to-one
correspondence between n-block arches and nonnegative integer solutions of 2n1 +
2n2 + 3n3 + 3n4 = n with n3n4 = 0. Let cn be the number of such solutions. Letting
C(z) = ∑∞

n=0 cnzn , we have

C(z) = (1 + z2 + z4 + · · · )2(1 + 2z3 + 2z6 + · · · )

=
(

1

1 − z2

)2 (
2

1 − z3
− 1

)
= 1 + z3

(1 − z2)2(1 − z3)

= 1/6

1 − z3
+ 1/12

(1 − z)2
+ 3/4

1 − z2
− 2z/3

1 − z3
.

Thus

cn = 1

6

(
n + 2

2

)
+ 1

12

(
n + 1

1

)
+ 3

4
· 1 + (−1)n

2
− 2

3
· 1 + ωn−1 + ω2(n−1)

3

= 1

12
n2 + 1

3
n + 29

72
+ 3

8
(−1)n − 2

9
(ωn−1 + ω2n−2),

where ω is the principal cube root of unity.

Editorial comment. Solvers gave various formulas for cn . Many showed that cn =
1

12(n
2 + 4n + εn), where εn = 12, −5, 12, 3, 4, 3 according as cn ≡ 0, 1, 2, 3, 4, 5

(mod 6). Several showed that

cn =
{⌊

1
12(n

2 + 4n + 12)
⌋

, if n is even⌊
1

12(n
2 + 4n + 3)

⌋
, if n is odd.

The sequence cn is A008806 in the Online Encyclopedia of Integer Sequences.

Also solved by M. Avidon, J. Binz (Switzerland), M. Bowron, K. Calderhead, R. Chapman (U. K.), Y. Du-
mont (France), E. A. Herman, J. Hutchinson & S. Wagon, S. C. Locke, D. Lovit, O. P. Lossers (Netherlands),
A. Miller, C. R. Pranesachar (India), S. Seltzer, A. Stadler (Switzerland), R. Staum, R. Stong, R. Tauraso,
C. G. Wastun, GCHQ Problem Solving Group (/uk), Houghton College Problem Solving Group, NSA Prob-
lems Group, and the proposer.

When Does It Converge

11185 [2005, 840]. Proposed by Rainer Brück, University of Dortmund, Dortmund,
Germany, and Raymond Mortini, University of Metz, Metz, France. Find all natural
numbers n and positive real numbers α such that the integral

I (α, n) =
∫ ∞

0
log

(
1 + sinn x

xα

)
dx

converges.

Solution by Robin Chapman, University of Bristol, Bristol, U. K. The integral I (α, n)

converges if and only if n is even and α > 1 or n is odd and α > 1/2. It converges
absolutely if and only if α > 1.
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We first show that the integral always “converges at zero”; that is, the integral∫ 1
0 log

(
1 + x−α sinn(x)

)
dx is (absolutely) convergent. When α ≤ n the integrand ex-

tends to a continuous function on the closed interval [0, 1], so the integral converges.
If α > n, then

I (α, n) =
∫ 1

0
log

(
xα−n + sinn x

xn

)
dx + (n − α)

∫ 1

0
log x dx .

The first of these integrals is certainly convergent, and an integration by parts shows
that

∫ 1
0 log x dx = −1. Hence I (α, n) is convergent at zero, so we only need to deter-

mine whether it converges at ∞.
With L(t) = log(1 + t), we have L(t) = t + O(t2) in a neighborhood of zero, so

there is some a > 0 such that |t |/2 ≤ |L(t)| < 2|t | when |t | < a. Consider the integral∫ ∞
π

log
(
1 + x−α sinn(x)

)
dx , which we write as a sum

∑∞
k=1 Ik(α, n), where

Ik(α, n) =
∫ (k+1)π

kπ

L

(
sinn x

xα

)
dx .

For large enough k,

|Ik(α, n)| ≤ 2
∫ (k+1)π

kπ

| sinn x |
xα

dx ≤ 2
∫ (k+1)π

kπ

dx

xα
≤ 2πα−1

kα
.

When α > 1 the sum
∑∞

k=1 |Ik(α, n)| is convergent, so the integral I (α, n) is abso-
lutely convergent.

If n is even and α ≤ 1, then Ik(α, n) ≥ 0. For large enough k,

Ik(α, n) ≥ 1

2

∫ (k+1)π

kπ

sinn x

xα
dx ≥ 1

2(k + 1)α πα

∫ (k+1)π

kπ

sinn x dx

= 1

2(k + 1)α πα

∫ π

0
sinn x dx .

It follows that the series
∑∞

k=1 Ik(α, n) is divergent. We conclude that when n is even,
I (α, n) converges if and only if α > 1.

Suppose that n is odd. Setting M(t) = t − L(t), we have M(t) = t2/2 + O(t3) in a
neighborhood of zero. It follows that there is some a > 0 such that t2/3 ≤ M(t) ≤ t2

whenever |t | < a. We claim that the integral
∫ ∞

π
x−α sinn(x) dx converges. Putting

S(x) = ∫ x
π

sinn t dt , we have

S(x + 2π) − S(x) =
∫ x+2π

x
sinn t dt =

∫ x+π

x
sinn t dt +

∫ x+2π

x+π

sinn t dt = 0

because sinn(t + π) = − sinn t . Thus S is bounded. Integration by parts shows that∫ N

π

sinn x

xα
dx = S(N )

Nα
+ α

∫ N

π

S(x)

xα+1
dx,

which converges as N → ∞. Thus I (α, n) is convergent if and only if J (α, n) is
convergent, where

J (α, n) =
∫ ∞

π

M

(
sinn x

xα

)
dx .
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The integrand of J (α, n) is nonnegative. For sufficiently large b,∫ ∞

b
M

(
sinn x

xα

)
dx ≤

∫ ∞

b

sin2n x

x2α
dx ≤

∫ ∞

b

dx

x2α
.

Thus if α > 1/2, then J (α, n) is convergent and so is I (α, n). If α ≤ 1/2, then
J (α, n) = ∑∞

k=1 Jk(α, n), where

Jk(α, n) =
∫ (k+1)π

kπ

M

(
sinn x

xα

)
dx .

For large enough k,

Jk(α, n) ≥ 1

3

∫ (k+1)π

kπ

sin2n x

x2α
dx ≥ 1

3(k + 1)2α π2α

∫ π

0

sin2n x

x2α
dx,

so the series
∑∞

k=1 Jk(α, n) is divergent. We conclude that when n is odd, the integral
I (α, n) is convergent if and only if α > 1/2.

Also solved by P. Bracken, Y. Dumont (France), E. A. Herman, T. L. McCoy (Taiwan), A. Stadler (Switzer-
land), R. Stong, GCHQ Problem Solving Group (U. K.), and the proposers.

Tiling 4-Rowed Rectangles with Dominoes

11187 [2005, 929]. Proposed by Li Zhou, Polk Community College, Winter Haven, FL.
Find a closed formula for the number of ways to tile a 4 by n rectangle with 1 by 2
dominoes.

Solution I by Northwestern University Math Problem Solving Group. We find and
solve a recurrence for the number of tilings. Let fn be the number of domino-tilings
of a 4 × n rectangle. Also let gn be the number of domino-tilings of a defective 4 × n
rectangle missing the top two (or the bottom two) squares in the last column, and let
hn be the number of domino-tilings of a defective 4 × n rectangle missing the top and
bottom squares in the last column.

To establish a system of recurrences, consider the ways to cover the nth column of
a 4 × n rectangle, with n ≥ 2. If it uses two vertical dominoes, then there are fn−1

completions. If it uses one vertical domino and two adjacent horizontal dominoes (two
cases), then there are gn−1 completions. If one vertical domino and two nonadjacent
horizontal dominoes, then there are hn−1 completions. If four horizontal dominoes,
then there are fn−2 completions. Similar (simpler) case analysis gives recursive ex-
pressions for gn and hn. For n ≥ 2, we obtain

fn = fn−1 + fn−2 + 2gn−1 + hn−1

gn = gn−1 + fn−1

hn = hn−2 + fn−1,

with the initial conditions f (0) = f (1) = g(1) = h(1) = 1 and h(0) = 0. Next, we
eliminate g and h by algebraic manipulations (expand fn and fn−2, and then use
hn−1 − hn−3 = fn−2 and gn−3 = gn−2 − fn−3 and gn−1 − gn−2 = fn−2). The resulting
recurrence

fn = fn−1 + 5 fn−2 + fn−3 − fn−4

is valid for n ≥ 4. Hence we also compute f (2) = 5 and f (3) = 11 from the original
system.
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This determines 〈 f 〉, but to obtain a “closed formula” we solve the recurrence using
standard methods. The characteristic polynomial is

p(x) = x4 − x3 − 5x2 − x + 1,

with roots

x1 = 1
4

(
1 − √

29 −
√

14 − 2
√

29
)

, x2 = 1
4

(
1 − √

29 +
√

14 − 2
√

29
)

,

x3 = 1
4

(
1 + √

29 −
√

14 + 2
√

29
)

, x4 = 1
4

(
1 + √

29 +
√

14 + 2
√

29
)

.

Since the roots are distinct, the sequence has the form fn = ∑4
i=1 ai xn

i . We find the
coefficients by evaluating at n ∈ {0, 1, 2, 3} and solving the resulting system of four
linear equations. After simplification, the answer is

fn = 1√
29

(−xn+1
1 − xn+1

2 + xn+1
3 + xn+1

4 ).

Solution II by Christopher Carl Heckman, Arizona State University, Tempe, AZ. We
count the ways to tile a 4 × n rectangle with a possibly defective last column. There
are rn ways with no squares missing, an ways lacking squares (1, n) and (4, n), tn

ways lacking squares (2, n) and (3, n), and ln ways lacking squares (1, n) and (2, n).
Reasoning as in Solution I, we obtain

rn = rn−2 + 2ln−1 + an−1 + rn−1, an = rn−1 + tn−1

tn = an−1, ln = ln−1 + rn−1

for all n ≥ 2, with initial conditions r0 = r1 = a1 = l1 = 1 and t1 = 0.
With xn = (rn an tn ln rn−1)

T , we write the system as the matrix equation

xn =

⎛
⎜⎜⎜⎝

rn

an

tn

ln

rn−1

⎞
⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎝

1 1 0 2 1
1 0 1 0 0
0 1 0 0 0
1 0 0 1 0
1 0 0 0 0

⎞
⎟⎟⎟⎠

⎛
⎜⎜⎜⎝

rn−1

an−1

tn−1

ln−1

rn−2

⎞
⎟⎟⎟⎠ = Mxn−1

where M is the 5 × 5 matrix of coefficients (with eigenvalues 1 and the four x j from
the first solution). Thus xn = Mn−1x1. The initial conditions give x1, and multiplying
by (1 0 0 0 0) on the left extracts rn, so we obtain the “closed formula”(

1 0 0 0 0
)

Mn−1
(
1 1 0 1 1

)T
.

Solution III by Jerry Minkus, San Francisco, CA. Let m and n be positive integers with
mn even. Let km,n be the number of domino-tilings of an m × n rectangle. P. W. Kaste-
leyn proved (see “The statistics of dimers on a lattice. I. The number of dimer arrange-
ments on a quadratic lattice”, Physica 27 (1961) 1209–1225) that

km,n =

m/2�∏

j=1

cn+1
j − ĉn+1

j

2b j
,

where

b j =
√

1 + cos2
jπ

m + 1
, c j = b j + cos

jπ

m + 1
, ĉ j = −b j + cos

jπ

m + 1
.
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When m = 4,

cos
π

m + 1
= cos

π

5
= τ

2
and cos

2π

m + 1
= cos

2π

5
= 1

2τ
= − τ̃

2
,

where τ = (1 + √
5)/2 and τ̃ = (1 − √

5)/2. Thus in this case Kasteleyn’s formula
gives

k4,n = cn+1
1 − ĉn+1

1

2b1

cn+1
2 − ĉn+1

2

2b2
, where

b1 =
√

1 + τ 2

4
= 1

2

√
5 + τ , b2 =

√
1 + τ̃ 2

4
= 1

2

√
5 + τ̃ ,

c1 = 1

2

(√
5 + τ + τ

)
, c2 = 1

2

(√
5 + τ̃ − τ̃

)
,

ĉ1 = −1

2

(√
5 + τ − τ

)
, ĉ2 = −1

2

(√
5 + τ̃ + τ̃

)
.

Since 2b12b2 = √
5 + τ

√
5 + τ̃ = √

25 + 5(τ + τ̃ ) + τ τ̃ = √
25 + 5(1) + (−1) =√

29, the “closed formula” can be rewritten

k4,n = 1√
29

(cn+1
1 − ĉn+1

1 )(cn+1
2 − ĉn+1

2 ).

Editorial comment. The 3 × n case appeared as problem E2417 (solution published
in May, 1974). Douglas Rogers informed us that the 4 × n problem appeared as early
as N. W. Rymer, Project, problems and patience, Math. Gaz. 63 (1979) 1–7 (though
Kasteleyn’s general solution is even earlier). The sequence for the 4 × n problem is
A005178 in The On-Line Encyclopedia of Integer Sequences.

Some contributors submitted solutions that might not be considered “closed formu-
las” (such as a summation of n terms involving binomial coefficients). The criteria for
closed formulas are far from clear. Are binomial coefficients allowed? Does express-
ing the generating function as a rational function suffice? (As David Beckwith and
others showed, the generating function here is (1 − x2)/(1 − x − 5x2 − x3 + x4).)
Solution II is expressed as a “closed formula”, but it is really just a restatement of the
recurrences (any such linear system can be written in matrix form). One can therefore
argue that linear recurrence relations alone constitute a closed formula.

From a complexity viewpoint, with the four arithmetic operations as primitive, the
number of domino-tilings can be computed in O(n) time from a recurrence or from the
formulas given above. Using successive squaring to exponentiate in each formula, the
complexity can be reduced to O(log n). However, computing with irrational numbers
(Solutions I and III) leads to round-off problems, and each matrix multiplication in
Solution II requires over 100 primitive operations. A liberal interpretation of “closed
formula” guides our list of solvers.

Also solved by M. R. Avidon, D. Beckwith, J. C. Binz (Switzerland), R. Chapman (U. K.), M. Cornick and
N. Mecholsky, P. P. Dályay (Hungary), R. Ehrenborg, G. F. Feisner, E. A. Herman, O. P. Lossers (Netherlands),
K. McInturff, R. Pratt, R. Stong, R. Tauraso (Italy), M. Tetiva (Romania), L. Wenstrom, Don West, the GCHQ
Problem Solving Group (U. K.), the Microsoft Research Problems Group, the Missouri State University Prob-
lem Solving Group, the VMI Problem Solving Group, and the proposer.
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