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1 Introduction

Let @ € R" be a bounded domain with a C2-boundary <. In this paper we study
the following nonlinear Neumann elliptic differential inclusion

div (a(u(2)) Du(2)) € d¢(u(z)) + F(z, u(z), Du(z)) in 2,

g—;zo on 0. M

In this problem, ¢ € I'g(R) (thatis, ¢ : R — R=RU {+o00} is proper, convex and
lower semicontinuous, see Sect. 2) and d¢(x) is the subdifferential of ¢(-) in the sense
of convex analysis. Also F(z, x, &) is a multivalued term with closed convex values
depending on the gradient of u. So, problem (1) incorporates variational inequalities
with a multivalued reaction term.

By a solution of problem (1), we understand a function u € H 1(Q) such that we
can find g, f € L?(S2) for which we have

g(z) € dp(u(z)) and f(z) € F(z,u(z), Du(z)) for almost all z € €,
/ a(u(z))(Du, Dh)gndz +/ (g(2) + f(2)h(z)dz =0 forallh € H' ().
Q Q

The presence of the gradient in the multifunction F, precludes the use of variational
methods in the analysis of (1). To deal with such problems, a variety of methods have
been proposed. Indicatively, we mention the works of Amann and Crandall [1], de
Figueiredo, Girardi and Matzeu [5], Girardi and Matzeu [8], Loc and Schmitt [13],
Pohozaev [20]. All these papers consider problems with no unilateral constraint (that
is, ¢ = 0) and the reaction term F is single-valued. Variational inequalities (that is,
problems where ¢ is the indicator function of a closed, convex set), were investigated
by Arcoya, Carmona and Martinez Aparicio [2], Matzeu and Servadei [15], Mokrane
and Murat [17]. All have single valued source term.

Our method of proof is topological and it is based on a slight variant of Theorem 8 of
Bader [3] (a multivalued alternative theorem). Also, our method uses approximations
of ¢ and the theory of nonlinear operators of monotone type. In the next section, we
recall the basic notions and mathematical tools which we will use in the sequel.

2 Mathematical Background
Let X be a Banach space and X™* be its topological dual. By (-, -) we denote the duality
brackets for the pair (X*, X). By I'g(X) we denote the cone of all convex functions

¢ : X = R = R U {400} which are proper (that is, not identically +oc) and lower
semicontinuous. By dom ¢ we denote the effective domain of ¢, that is,

domg :={u e X : p(u) < +00}.
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Given ¢ € I'g(X), the subdifferential of ¢ at u € X is the set
dp(u) = {u* € X* : (u*, h) < p(u+h) — u) forall h € X}.

Evidently dp(u) € X*is w*-closed, convex and possibly empty. If ¢ is continuous
atu € X, then dp(u) € X* is nonempty, w*-compact and convex. Moreover, if ¢ is
Gateaux differentiable at u € X, then dp(u) = {¢; (1)} (¢ (u) being the Gateaux
derivative of ¢ at u). We know that the map d¢ : X — 2% * is maximal monotone. If
X = H = aHilbert space and ¢ € I'g(H), then for every A > 0, the “Moreau- Yosida
approximation” ¢, of ¢, is defined by

1
@.(u) = inf [go(h) + ﬁ||h —ull*>:he H:| forallu € H.

We have the following properties:

e ¢, is convex, dom ¢, = H;
e ¢, is Fréchet differentiable and the Fréchet derivative <p§L is Lipschitz continuous
with Lipschitz constant 1/A;

o ifA, > 0, u, > uin H, (pin(un) % u*in H, then u* € dp(u).

We refer for details to Gasinski and Papageorgiou [6] and Papageorgiou and Kyritsi
[19].

We know thatif ¢ € I'g(X), then ¢ is locally Lipschitz in the interior of its effective
domain (that is, on int dom ¢). So, locally Lipschitz functions are the natural candidate
to extend the subdifferential theory of convex functions.

We say that ¢ : X — R is locally Lipschitz if for every u € X we can find U a
neighborhood of u and a constant k > 0 such that

lp(v) = < kllv—yl[forall v, y € U.

For such functions we can define the generalized directional derivative ¢°(u; ) by

/ )\.h _ li
©°(u; h) = lim sup o+ k) o) .

u —u

A0

Then ¢°(u; -) is sublinear continuous and so we can define the nonempty w*-
compact set 9. (1) by

dep(u) = {u* € X* : (u*, h) < °(u; h) forall h € X}.

We say that d.¢(u) is the “Clarke subdifferential” of ¢ at # € X. In contrast to the
convex subdifferential, the Clarke subdifferential is always nonempty. Moreover, if ¢
is convex, continuous (hence locally Lipschitz on X), then the two subdifferentials
coincide, that is, dp(u) = d.¢(u) for all u € X. For further details we refer to Clarke
[4].
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Suppose that X is a reflexive Banach space and A : X — X* a map. We say that
A is “pseudomonotone”, if the following two conditions hold:
e A is continuous from every finite dimensional subspace V of X into X* furnished
with the weak topology;

o ifu, = uin X, A(up) — u* in X* and lim sup (A(un), un — u) < 0, then for
n— 00
every y € X, we have

(A(u), u — y) < liminf (A(u,), u, —y).
n—oo

If A: X — X* is maximal monotone, then A is pseudomonotone.
A pseudomonotone map A : X — X* which is strongly coercive, that is,

(Au), u)

] — 400 as ||u|| — oo,
u

it is surjective (see Gasinski and Papageorgiou [6, p. 336]).
Let V beasetand let G : V — 257\ {#} be a multifunction. The graph of G is the
set

GrG={(v,u) e VxX:ueG®Ww)}

(a) If V is a Hausdorff topological space and Gr G € V x X is closed, then we say
that G is “closed”.

(b) If there is a o-field ¥ defined on V and Gr G C ¥ x B(X), with B(X) being the
Borel o-field of X, then we say that G is “graph measurable”.

As we already mentioned in the Introduction, our approach uses a slight variant
of Theorem 8 of Bader [3] in which the Banach space V is replaced by its dual V*
equipped with the w*-topology. A careful reading of the proof of Bader [3], reveals
that the result remains true if we make this change.

So, as above X is a Banach space, V* is a dual Banach space, G : X — 2V7 s
a multifunction with nonempty, w*-compact, convex values. We assume that G(-) is
“upper semicontinuous” (usc for short), from X with the norm topology into V* with
the w*-topology (denoted by V;.), that is, for all U € V* w*-open, we have

G (U)y={xeX:Gx)NU # @} is open.

Note thatif Gr G C X x V;:* is closed and G (+) is locally compact into V;;* , that is,

for all u € X we can find U a neighborhood of u such that G(U )w is w*-compact in
V* then G is usc from X into Vlj* .Also,letK : Vlj* — X be asequentially continuous
map. Then the nonlinear alternative theorem of Bader [3], reads as follows.

Theorem 1 Assume that G and K are as above and S = K o G : X — 2X\ {0} maps
bounded sets into relatively compact sets. Define

E={ueX:uectSwu)forsomet € (0, 1)}.

Then either E is unbounded or S(-) admits a fixed point.
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3 Existence Theorem

In this section we prove an existence theorem for problem (1). We start by introducing
the hypotheses on the data of problem (1).
H(a): a : R — R is a function which satisfies

la(x) —a(y)| <klx —y|forall x, y € R, some k > 0,
0<c <alx) <cpforallx € R.

H(p): ¢ € To(R) and 0 € 9¢(0).

Remark 1 Werecall thatin R x R, every maximal monotone set is of the subdifferential
type. In higher dimensions this is no longer true (see Papageorgiou and Kyritsi [19, p.
175)).

H(F): F: QxR xRN — P/ (R) is a multifunction such that

(i) forall (x,&) e R x RY, 7> F(z,x, &) is graph measurable;
(i) for almostall z € @2, (x,&) — F(z, x, &) is closed;
(iii) for almost all z € €2 and all (x, &, v) € Gr F(z, -, -), we have

vl < vi(z, |x]) + v2(z, [xDIE]
with

sup[y1(z,5) : 0 < s
sup[y2(z,5) : 0 < s
and 11k, ok € L(Q);

]
]

k] < n1.x(z) for almost all z € €,
k] <

NN
3 3

2.k(z) for almost all z € €2,

(iv) there exists M > 0 such that if |xo| > M, then we can find § > Oand n > 0
such that

inf[vx +c1|§‘| Dx—xol+H|El <8, v e F(z,x,&)] = n > 0foralmostall z € 2,

with ¢; > 0 as in hypothesis H(a);
(v) foralmost all z € Q and all (x, &, v) € Gr F(z, -, ), we have

vx > —c3lx|? — calx €] — y3(2) x|
with ¢3, ¢4 > 0and y3 € L1(Q),.

Remark 2 Hypothesis H(F)(iv) is an extension to multifunctions of the Nagumo-
Hartman condition for continuous vector fields (see Hartman [9, p. 433], Knobloch
[11] and Mawhin [16]).
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Leta : H' () — H'(L)* be the nonlinear continuous map defined by
(&(u),h):/a(u)(Du,Dh)RNdz forallu,h € H'(Q). )
Q

Proposition 2 If hypotheses H (a) hold, then the map a : H (Q) — H'(Q)* defined
by (2) is pseudomonotone.

Proof Evidently a(-) is bounded (that is, maps bounded sets to bounded sets), see
hypotheses H (a) and it is defined on all of H'(2). So, in order to prove the desired
pseudomonotonicity of a(-), it suffices to show the following:

(GP): “Tfu, —> uin H'(), a(u,) - u*in H'(2)* andlim sup (a(u,), u, — u) <

n—oo
09

then u* = a(u) and (a(uy), un) — (@), u)”

(see Gasinski and Papageorgiou [6], Proposition 3.2.49, p. 333).
So, according to (GP) above we consider a sequence {u,},>1 € H 1(©) such that

Uy > win HY(), a(u,) = u* in H'(Q)* and limsup (@(uy), up —u) < 0. (3)

n—oo

‘We have

(&(un), Uy — u) = / a(un)(Duy, Du, — Du)pndz
Q

= / a(uy)|Duy — Dul*dz +/ a(uy)(Du, Du, — Du)gndz.
Q Q

“)
Hypotheses H(a) and (3) imply that
/ a(un)(Du, Du, — Du)gndz — 0 asn — oo. (®)]
Q
Also we have
/ a(up)|Du, — Du|>dz > c1||Du, — Dul||3 (see hypotheses H (a)),
Q
= Du, — Duin L*(2,R"Y) (see(3), (4), (5))
= u, — uin H (Q) (see(3)). (6)
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Forall 1 € H' (), we have

(a(un), n) = /Qa(u,,)(Du,,, Dh)pndz — /Qa(u)(Du, Dh)gndz = (a(u), h)
(see (3) and hypotheses H(a)),
= a(uy) = a(u) in H(Q)*,
= a(u) = u* (see(3)).

From (6) and the continuity of a(-) (see hypotheses H (a)), we have
(&(un)» Mn) - (&(u), M) .

Therefore property (GP) is satisfied and so we conclude that a(-) is
pseudomonotone. O

Next we will approximate problem (1) using the Moreau- Yosida approximations of
¢ € I'o(R). For this approach to lead to a solution of problem (1), we need to have a
priori bounds for the approximate solutions. The proposition which follows is a crucial
step in this direction. Its proof is based on the so-called “Moser iteration technique”.
So, we consider the following nonlinear Neumann problem:

du _ () on d%2. )

an

[ —div (a(u(z))Du(z)) = g(z, u(z)) in Q, ]

The conditions on the reaction term g(z, x) are the following:
H(g) : g : 2 xR — R is a Carathéodory function (that is, for all x € R,
z — g(z, x) is measurable and for almost all z € 2, x — g(z, x) is continuous) and

lg(z, x)| < a1+ Ix|"~1) for almost all z € Q, all x € R,
AN >3

+o0if N=1,2
By a weak solution of problem (7), we understand a functionu € H 1(Q) such that

witha € L®(Q)4,2 <r <2* = H (the critical Sobolev exponent).

/a(u)(Du, Dh)gndz =/ g(z, u)hdz forallh € H'(Q).
Q Q

Proposition 3 If hypothesis H(g) holds andu € H Y(Q) is a nontrivial weak solution
of (7), thenu € L*() and ||ulloc < M = M(||allco, N, 2, [|u]l2#).

Proof Let pog = 2* and pp+1 = 2* + 2—2*(19,, —r) forall n € Ny. Evidently {p,},>0
is increasing. First suppose that # > 0. For every k € N we set

up = minfu, k} € H'(Q). (8)
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*

Let 9 = p, —r > 0 (note that p, > 2* > r). We have

a(u) = Ng(u) in H'(Q)* 9)

with No(u)(-) = g( u(-)) € L"(2) € H'(* 1 + 1 = 1 (the Nemytskii map
corresponding to g). On (9) we act with uﬂJrl (see (8)). Then

<a(u) uﬂ+]> /g(z u)uk+]dz. (10)
Q
Note that
<a(u) u§+1> :/Qa(u) (Du,DuZH)RN dz

= (0 + 1)/ uZa(u)(Du, Duy)pndz

>(19+1)/ uy Y e1|Dug|*dz (see hypothesis H(a) and recall that u > 0)

dz. 1D

_c1(19+1)—/ ‘Duk
Also we have

/ gz wuydz
Q

< / a()(1 +u"~Hu’*t'dz (see hypothesisH (g), (8) and recall u > 0)
Q

<c3 (1 +/ u”"dz) forsome ¢z > 0 (since® +1 < +r =p,). (12)
Q

We return to (10) and use (11) and (12). Then

2 42 2
Cl(ﬁ_‘_l)ﬁ/ ‘Duk dz

c4 (1 +/ up”dz) for some ¢4 > 0 (since ¥ +r = p;)
Q

2
+ |u

942
2
Uy

942

= ||ukT||2 < cs (1 +/ u”"dz) for some ¢s > 0, allk € N, and n € Nj.
Q

Here || - || denotes the norm of H'() (recall that |[v]| = [|[v]|3 + || Dv||3]"/? for
allv e HY(Q)).

@ Springer



Appl Math Optim (2018) 78:1-23 9

2ppt1
By the Sobolev embedding theorem (see (8) and note that H Q) — L o (2))
we have

||ukl|ﬁzJrl < 6 (1 —i—/Qu"’"dz) for some ¢ > 0, allk € Ngandn € N.

Letk — oo. Then uy(z) 1 u(z) for almostall z € €2 (see (8)). So, by the monotone
convergence theorem, we have

ot
(/ upn+ldz) < ¢ (1 +/ up"dz) for all n € Ny. (13)
Q Q

Recall that pg = 2* and by the Sobolev embedding theorem we have u € L¥(Q).
So, from (13) and by induction we infer that u € LP»(R2) for all n € Ny. Also we
have

ullhr,, < ce(1 =+ [lu]l!) forall n € Ny (see(13)).

Since p, < pp+1, using the Holder and Young inequalities (the latter with € > 0
small), we obtain
lullp, < c7forsomecy >0, alln € Ny. (14)

Claim 1.p, — oo.
Arguing by contradiction, suppose that the Claim is not true. Since {p,},en, 18
increasing, we have
Pn — ps > 2% (15)

By definition
2*
Pyl =2" + ?(Pn -r),

2*
= p=2"+ = (P = 1) (see 15))

S (1) =2 (V 1) 2 (2 1) (since 2 < r < 29
- o _ — < _—— since RS < 5
P\ 2 2 "

= p. < 2%, acontradiction (see 15).

This proves the Claim.
So, passing to the limit as n — oo in (14), it follows from Gasinski and Papageor-
giou [7, p. 477] that

[lullso < 7, hence u € L ().

Moreover, it is clear from the above proof that ||ullcc < M = M(||a||so,
N, 2, [|ul]2%).
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Finally for the general case, we write u = u —u~, withu™ = max{£u, 0} > Oand
work with each one separately as above, to conclude ut e L® (R2),henceu € L®°(Q).
m}

Now for A > 0, let ¢, be the Moreau-Yosida approximation of ¢ € I'g(R) and for
¥ € L®(2), consider the following auxiliary Neumann problem:

[ —div (a(u(z))Du(z)) + u(z) + ¢} (u(z)) = 9(z) in Q, ] (16)

=0 on 9§
n

Proposition 4 [f hypotheses H (a), H(¢) hold and ¥ € L (), then problem (16)
admits a unique solution u € C1 ().

Proof LetV, : H L) - H(Q)* be the nonlinear map defined by
Va(u) = a(u) +u+ Ny (u) forall u € H'(Q).

As before Nwi (u) is the Nemytskii map corresponding to (pi (that is, Nsﬂi w)(-) =
@ (u(-))). We have

(Va(u), u) =(&(u),u)+||M||%+/Q<P,/\(M)udz

> crl| Dull3 + |lull3
(see hypothesis H (a) and recall that ¢} is increasing, ¢} (0) = 0),
= V) is strongly coercive. a7

Using the Sobolev embedding theorem we see that u +— Nf/)& (u) is completely
continuous from H'(S2) into H'(Q)* (that is, if u, — u in H'(S2), then Ny (un) =
N(p; (u) in H'(£)*), hence it is pseudomonotone. From Proposition 2 we know that

a(-) is pseudomonotone and of course the same is true for the embedding H LQ) —
H'(Q)* (which is compact). So, from Gasinski and Papageorgiou [6], Proposition
3.2.51, p. 334, we infer that

u +— V, (u) is pseudomonotone. (18)

Recall that a pseudomonotone strongly coercive map is surjective. So, from (17),
(18) it follows that there exists u € H'(€2) such that

Vi(u)=9, = / a(u)(Du, Dh)pndz
Q

+/ uhdz+/ q);(u)hdz=/ ®hdz forallh € H (). (19)
Q Q Q
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From the nonlinear Green’s identity (see Gasinski and Papageorgiou [6], Theorem
2.4.53, p. 210), we have

/ a(u)(Du, Dh)pndz = (—div (a(u) Du), h)+<a(u)2—u, h> forallh € H'(Q),
Q n

Ee)
(20)
where by (-, -) 5o we denote the duality brackets for the pair (H’%’z(E)Q), H%l(ag)).
From the representation theorem for the elements of H -l = HOI(SZ)* (see
Gasinski and Papageorgiou [6], Theorem 2.4.57, p. 212), we have

div (a(u)Du) € H~1(Q).

So, if by (-, -)o we denote the duality brackets for the pair (H -1, HO1 (2)) we
have

(—div (a(u)Du), h)o :/ a(u)(Du, Dh)gydz for all h € Hy (),
Q
= (—div (a(u) Du), h)y = / (¥ —u — ¢, (u)hdz forall h € HS(Q) (see (19)),
Q
= —div (a(u(z))Du(z)) = ¥(z) — u(z) — ¢; (u(z)) for almost all z € Q. 21
Then from (19), (20), (21) it follows that

ou 1
—.h =O0forallh € H (Q). (22)
02

<a(u) ™

If by ¥ we denote the trace map, we recall that
. 1
imyy) = H2°(02)

(see Gasinski and Papageorgiou [6], Theorem 2.4.50, p. 209). Hence from (22) we
infer that

ad
o = 0 (see hypothesis H(a)).

Therefore we have

—div (a(u)(z2)Du(z)) + u(z) + (p;(u(z)) = ¥ (z) for almost all z € €2,
u=0 on 9§

] (23)

From (23) and Proposition 3, we infer that

u e L®(Q).
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Then we can use Theorem 2 of Lieberman [12] and conclude that
ueCl(Q).

We establish in what follows the uniqueness of this solution. So, suppose that
v € C1() is another solution. We have

a(u) +u+ Ny (u) =9 in H' ()", (24)
a() +v+ Ny () =9 in H'Y(Q)". (25)

Letk > 0be the Lipschitz constant in hypothesis H (a). We introduce the following
function

s dt . >
Ne(s) = Je @SS Z€ e o, (26)
0 ifs <e€

Evidently 7. is Lipschitz continuous. So, from Marcus and Mizel [14], we have

ne(u —v) € HY(), (27)
D (e (u — v)) = n.(u — v)D(u — v) (28)

(see also Gasinski and Papageorgiou [6], Proposition 2.4.25, p. 195). Subtracting (25)
from (24), we have

a(u) —a@) + (u — )+ (Ny () = Ny ) = 0in H' ()", (29)

On (29) we act with ne(u — v) € H'() (see (27)). Then

(@) —aw), ne(u — v))+/ﬂ(u—v)ne(u—v)dz+/g(¢i(u)—wi(v))(u—v)dz =0.

(30)
‘We have

/(u —v)ne(u —v)dz =/ (u —v)ne(u —v)dz
Q {u—v>e)

1 u—v
> —/ ( — 1) dz (see (26)). 31
k Jiu—v>e) €

Recall that ¢} is increasing. Therefore

/Q (@) — ¢, )INe — v)dz = /{ (@) — ¢, ())ne(u — v)dz > 0

u—v>e}

(see (26)). (32)
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We return to (30) and use (31), (32). Then
(@) —a). ne(u —v)) <0,
= / (a(u)Du — a(v)Dv, Dne(u — v))pyvdz <0,
Q
= / a(u)(Du — Dv, Dne(u — v))pyvdz < —/ (a(u)
Q Q
—a())(Dv, Dne(u — v))pndz. 33)

Let Qe ={z€Q:(u—1v)() > €}. Then

/ a(u)(Du — Dv, Dne(u — v)gpndz

Q

= / a(u)n.(u — v)|Du — Dv|?dz (see (26), (28))
Qe

|Du — Dv|? .
> mdz (see hypothesisH (a) and (26)). (34)
Qe

Also we have
—/Q(a(u) —a())(Dv, Dne(u — v))pydz

< / k(u — v)n(u = v)(Dv, Du — Dv)gndz (sec hypothesis H(a) and (28))
Qe
1
_ /Q T =y (v Du = Du)gadz (see (26)

\Du— Dv]2 \'"?
< ||Dvll2 ( /Q mdz) (by the Cauchy-Schwarz inequality). (35)

Returning to (33) and using (34), (35) we obtain

Du — Dv|? k2
/ —| |dz<—||Dv||2.
2 2 2
Q. lu—v] cl

Let 2} be a connected component of Q= {z€e R (u—v)(z) >0}, Q # Q (see
(31)). We have

|Du — Dvl? k2 s .
————dz < = ||Dv]j; with Qf = Q. NQ*. (36)
QF |M_U| Cl

Consider the function

Yy dt .
J: difr>e

vey) = [0 ift <e. 37)
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This function is Lipschitz continuous and as before from Marcus and Mizel [14],
we have

Yelu —v) € H'(Q) (38)
Dye(u —v) = y/(u —v)(Du — Dv)

1
——(Du — Dv) for almost all z € Q (see (37)). 39)
u—v

Returning to (36) and using (38), (39), we obtain
2 k* 2
[ 1Dyt = vz < Dol (40)
Q* (&

Note that u = v on 0Q* (thatis,u —v € H(} (2*);recall thatu, v € C! (€)). Hence
Ye(u — v) € HL (). (41)

From (40), (41) and the Poincaré inequality, we have
/ | Ve (u — v)lzdz < Cg||v||2 for some cg > 0, all ¢ > 0.
Q*

If |Q*|y > 0 (by | - |y we denote the Lebesgue measure on RY), then letting
€ — 07, we reach a contradiction (see (37)). So, every connected component of the
open set

Q={zeQ:ui > v@)
is Lebesgue-null. Hence |Q| ~ = 0 and so
u < v. (42)
Interchanging the roles of u, v in the above argument, we also obtain
v<u. (43)
From (42) and (43) we conclude that

u="uv.

This prove the uniqueness of the solutionu € C L(Q) of the auxiliary problem (16).
O

Let CH(Q) = {u € C'(Q) : §4|3q = 0} and for every A > 0let K : L®(Q) —
C} () be the map which to each ¥ € L°°(R) assigns the unique solution u =
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K,(v) e C,ll (Q) of the auxiliary problem (16) (see Proposition 4). The next proposition
establishes the continuity properties of this map.

Proposition 5 If hypotheses H (a), H (@) hold then the map K, : L*°(Q2) — C,i (g)
is sequentially continuous from L°°(2) furnished with the w*-topology into C,E(Q)
with the norm topology.

Proof Suppose that 9, ﬂ ¥ in L°(Q) and let u, = K (¢,), u = K; (9).
For every n € N, we have

a(uy) + uy + N%(”n) =1,

= —div (a(un(2)) Duy (2)) + un(2) + 5 (Un(2)) = 9 (2) (44)
for almost all z € 2, Baun =0on9L. (45)
n

On (44) we act with u, € C}(Q). Then

/ a(un)| Duy [*dz + llunl3 + / @) (Un)undz = / Outndz
Q Q Q

= clllDunH% + ||u,,||% < colluyl| for some cg > 0, alln € N

(see hypothesis H (a)and recall that (pi is increasing with (p; 0)=0)
= |lun|| < cio for some cjg > 0, alln € N,
= {Uplu>1 C H'(€) is bounded.

By passing to a subsequence if necessary, we may assume that
Uy — i in HY(Q) and u, — it in L%(Q). (46)
Then for every h € H 1(©) we have
(a(un), n) = /Qa(u,,)(Du,,, Dh)gndz — /Qa(ﬁ)(Dﬁ, Dh)gndz = (a(i), h)

(see (46) and hypothesis H (a)),
= a(up) — a@) in H'(Q)*. 47)

Therefore, if in (44) we pass to the limit as n — oo and use (46), (47), then

a(@) + it + Ny () = 0,

=i=uecC' (Q) = the unique solution of (16) (see Proposition 4).

From (45) and Proposition 3, (recall that {u,},>1 € H 1() is bounded), we see
that we can find ¢1; > O such that

llunlloo < c11 foralln € N. (48)
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Then (48) and Theorem 2 of Lieberman [12] imply that we can find o € (0, 1) and
c12 > 0 such that

un € CH*(Q), |unllcrocg < cizforalln € N. (49)

From (49), the compact embedding of C1:%(Q) into C 1(Q) and (46), we have

U, — U in Cl(ﬁ),

= K,(9,) = K, (®) in C(Q).

This proves that K, is sequentially continuous from L% (2) with the w*-topology
into C ,% (£2) with the norm topology. O

We consider the following approximation to problem (1):

[ div (a(u(2)) Du(2)) € ¢; (u(2)) + F(z, u(z), Du(z)) in Q, (50)

u _ on 92, A > 0.

=

Proposition 6 If hypotheses H(a), H(¢), H(F) hold and % > 0, then problem (50)
admits a solution u; € C'(Q).

Proof Consider the multifunction N : C,i (Q) — 2L defined by
N@w)={f € L) : f(z) € F(z,u(z), Du(z)) for almost all z € Q}.
Hypotheses H(F)(i), (ii) imply that the multifunction z — F(z, u(z), Du(z))
admits a measurable selection (see Hu and Papageorgiou [10, p. 21]) and then hypoth-
esis H(F)(iii) implies that this measurable selection belongs in L°°(£2) and so N (-)

has nonempty values, which is easy to see that they are w*-compact (Alaoglu’s theo-
rem) and convex. Let

Ni(u) =u — N(u) forall u € C}(Q).
We consider the following fixed point problem
u € KyNi(u). (51

Let E = {u € C(Q) : u € 1K, Ny (u) for some € (0, 1)}.
Claim 2. The set E C C}(R) is bounded.
Let u € E. Then from the definitions of K, and N; we have

p (%u) n ;u + Ny (;u) —u— f with f € N(u). (52)
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On (52) we act with u € H (). Using hypothesis H (a), we obtain

cq 1
—[1Dull3 + = lull3 < lull3 —/ fudz
t t Q
(recall that ¢} is increasing and ¢} (0) = 0),
= c1||Dul]5 < (1—1)||u||§—t/ fudz < —t/ fudz (recall that r € (0, 1)).
Q Q
(53)

Hypothesis H (F)(v) implies that

—t/ .fudz<tc3||u||%+tc4/ |u|2|Du|dz+/ y3(@)|ul*dz. (54)
Q Q Q

Let M > 0 be as postulated by hypothesis H (F)(iv). We will show that
llulloo < M.
To this end let 69(z) = |u(z)|. Let zg € S be such that

60(z0) = max 6y (recall thatu € E C C,} Q).
Q

Suppose that 69(z9) > M 2 First assume that zg € 2. Then

0 = Doo(z0) = 2u(z0) Du(zo),
= Du(zo) = 0 (since |u(zo)| > M).

Let 8, n > 0 be as in hypothesis H(F)(iv). Since 6¢(z9) > M?andu € C,% (Q)
we can find §; > O such that

z€ Bs(20) ={z € Q: |z — 20l <81} = [u(z) — u(zo)| + |Du(z)| < 8
(recall that Du(zg) = 0),
= tf(Qu(z) +tcy |Du(z)|2 > tn > 0 for almost all z € Egl (z0)
(see hypothesis H (F)(iv)). (55)

From (52) as before (see the proof of Proposition 4), we have

. 1 1 (1
—div (a (;u(z)) D (;u) (z)) + @, (;u(z))

= (1 — %) u(z) — f(z) for almost all z € Q2. (56)
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Using (56) in (55), we obtain

[div (a (;u(z)) Du(z)) — tg} (;u(z)) +(t— 1)“(2)} u(z)

+tc1|Du(z)|> > tn for almost all z € Eal(zo). (57)

We integrate over Eal (zo) and use the fact that r € (0, 1). Then

1 1
/7 div ( (—u) Du) udz — t/i @, (—u) udz
B, (z0) t B, (z0) t

el ﬁ \Dul?dz > un|Bs, (o)l
Bs, (z0)

1
= [ div ( (—u) Du) udz +tcy /7 |Du|2dz >0
B, (z0) t B, (z0)
(recall that ¢} is increasing and ¢} (0) = 0).

Using the nonlinear Green’s identity (see Gasinski and Papageorgiou [6], Theorem
2.4.53, p. 210), we obtain

1 1 0
0< —/7 a (—u) |Du|2dz + /7 a (—u) —uuda + tcy /f |Du|2dz.
Bs (z0) \! 9Bs,(z0) \I ) On Bs, (z0)

Here by o (-) we denote the (N — 1)-dimensional Hausdorff (surface) measure
defined on d$2. Hence we ahve

5 1 ou 2
0<—ct [ |[Dul“dz+ | a\-u)—udo +tcy | |Dul“dz
Bs, (z0) 0Bs (z) \1 ) On Bs, (z0)

(see hypothesis H (a)),

1\
=0 < / a (—u) M ydo (recall that 1 € (0, 1)),
93B3, (20) ! an

B
=0<c /7 —uudo (see hypothesis H (a)).
985, (z0) 0N

Thus we can find a continuous path {c(?)};¢[0,1] in E(;l (zo) with ¢(0) = z¢ such
that

1

1
a </ u(c(t))(Du(c(t)), c'(t))pndt :/ liu(c(t))zaft
0 0 2dt

1
= E[u(c(l)) —u(zo)l,
= u(zo) < u(c(1)),

which contradicts the choice of zg. So, we cannot have zg € Q.
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Therefore we assume that zg € 0$2. Sin_ce u e C,ll (Q), again we have Du(zp) =0
and so the above argument applies with d B, (zo) replaced by d B, (zo) N €2.
Hence we have proved that

llu]loo < M forall u € E (here M > 0 is as in hypothesis H (F)(iv)). (58)

We use (58) in (54) and have

—t/ fudz < tez(1 4 ||Dul|z) for some c13 > 0,
Q

= c1||Du||% < c13(1 + || Dul|2) (see (53) and recall ¢ € (0, 1)),
= ||Dul|p < c14 forsome cj4 > 0, allu € E. (59)

Then (58), (59) imply that E € H'(Q) is bounded. Invoking Theorem 2 of Lieber-
man [12], we can find c¢;5 > 0 such that

||u||C1(§) <cisforallu € E,
=FECC ,% () is bounded.
This proves the Claim.
Recall that hy_potheses H(F)(@i), (ii), (iii) imply that N is a multifunction which
is usc from C,l (€2) with the norm topology into L°°(£2) with the w*-topology (see Hu

and Papageorgiou [10, p. 21]). This fact, Proposition 5 and the Claim, permit the use
of Theorem 1. So, we can find u; € C,ll (£2) such that

uy € KyNi(uyz),
= u; € C1(Q) is a solution of problem(50).

Now we are ready for the existence theorem concerning problem (1).

Theorem 7 Ilhypotheses H(a), H(p), H(F) hold, then problem (1) admits a solu-
tionu € CH(Q).

Proof Let A, — 0. From ProBosition 6, we know that problem (50) (with A = A;,)
has a solution u, = u;, € C,ll (2). Moreover, from the proof of that proposition, we

have
[tn]loo < M for all n € N (see (58)). (60)

For every n € N, we have
auy) + Nwi (un) + fn = 0 with f,, € N(u;) (see the proof of Proposition 6). (61)
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On (61) we act with u,, and obtain

ctllDugll3 < 11 full2llunll2
(see hypothesis H (a)and recall that ¢ (s)s > 0 for all s € R),
= ||Duy||2 < c16 for some c16 > 0, alln € N
(see (60) and hypothesis H (F)(iii)). (62)

From (60) and (62) it follows that
{tn}n>1 € H' () is bounded.
So, by passing to a subsequence if necessary, we may assume that
U, = win HY(Q) and u, — u in LX(Q).

Acting on (61) with Ny (u,)(-) = win (Un () € C(Q)NH(Q) (recall that ‘Pi,,(’)
is Lipschitz continuous and see Marcus and Mizel [14]), we have

/Q a(uy)(Dity, DG )z + [Ny ()l = — /Q fu#l, (up)dz.  (63)
From the chain rule of Marcus and Mizel [14], we have
Dy, (un) = ¢ (un)Duy. (64)
Since ﬁ"in (+) is increasing (recall that ¢;, is convex), we have
(p;\/n (1, (z)) = 0 for almost all z € . (65)

Using (64), (65) and hypothesis H (a), we see that

0< [ an)(Dur, DY}, )z, (66)
Q
Using (66) in (63), we obtain

1Ny, (a3
= [INg; (un)ll2
(see (60) and hypothesis H(F)(iii))
= {Ny (un)ln>1 S L*(Q) is bounded.

[ fall21INg; (un)ll2 foralln € N,

<
< |l fnll2 < c17 for some ¢17 > 0, alln € N

So, we may assume that

Ny 5 gand f, > fin L*(Q). (67)
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As in the proof of Proposition 5 (see (47)), we show that
a(uy) = a(u)in H'(Q)*. (68)
So, if in (61) we pass to the limit as n — oo and use (67) and (68), we obtain

aw)+g+ =0,
d
= —div(a(u(z))Du(z)) + g(z) + f(z) = 0 for almost all z € €2, a_u =0on a2
n
(see the proof of Proposition 4). (69)

Because of (60) and Theorem 2 of Lieberman [12], we know that there exist @ €
(0, 1) and c1g > 0 such that

y € CH*(Q), Iitnlleragy < 15 foralln € N,

= u, — uin C'(Q) (recall that C"* () is embedded compactly into C'()).
(70)

Recall that

fn(2) € F(z,un(2), Du,(z)) for almost all z € @, alln € N,
= f(z) € F(z,u(z), Du(z))
(see (67), (70), hypothesis H(F)(ii) and Proposition 6.6.33, p. 521 of [19]),
= f € N(u). (71)

Also, from (67), (70) and Corollary 3.2.51, p. 179 of [19], we have
g(2) € dp(u(z)) for almost all z € 2. (72)

So, from (69), (71), (72) we conclude that u € C ,% () is a solution of problem (1).
O

4 Examples

In this section we present two concrete situations illustrating our result.
For the first, let & < 0 and consider the function

| tooifx < p
plx) = 0 ifu<x.

Evidently we have

¢ € Tp(R) and 0 € 9¢(0).
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In fact note that

B ifx<pu
dp(x) =1 R_ifx=pn
{0} if u < x.

Also consider a Carathéodory function f : Q x R x RV — R which satisfies
hypotheses H (F)(iii), (iv), (v). For example, we can have the following function
(for the sake of simplicity we drop the z-dependence):

f(x,&) =csinx +x —In(1 + |&€]) + ¢ with 19 > 0.

Then according to Theorem 7, we can find a solution ug € C' () for the following
problem:

div (a(u(z))Du(z)) < f(z,u(z), Du(z)) for almost all z € {u = u},
div (a(u(z))Du(z)) = f(z,u(z), Du(z)) for almost all z € {u < u},
u(z) > pforallz € Q, 3 = 0on9Q.

For the second example, we consider a variational-hemivariational inequality. Such
problems arise in mechanics, see Panagiotopoulos [18]. So, let j(z, x) be a locally
Lipschitz integrand (that is, for all x € R, z — j(z, x) is measurable and for almost
all z € Q, x — j(z,x) is locally Lipschitz). By d.j(z, x) we denote the Clarke
subdifferential of j (z, -). We impose the following conditions on the integrand j (z, x):

(a) foralmostall z € Q,allx € Randall v € 95 (z, x)
lv| < ¢1(1 + |x]|) for almost all z € 2, all x € R, with ¢, > 0;

(b) 0 < ¢ < liminf ¥ < limsup ¥ < ¢3 uniformly for almost all z € , all
x—>F00 x—>Fo0

veadj(z,x)
(¢) —¢4 <lim i(I)lf% < limsup + < ¢s uniformly foralmostall z € ,allv € 9;(z, x)
= x—0
and with ¢4, ¢5 > 0.

=

A possible choice of j is the following (as before for the sake of simplicity we drop
the z-dependence):

Lix|P —cos(Z|x]) if x| < 1 11
jx) = {");' COS(ZM)T o withc=———-, 1 <p
sx"—lInlx[+c if 1 <|x| p 2

We set
F(z,x,8) = 0j(z,x) + x|&| + ¥ (2) with ® € L*®(Q).

Using (a),(b),(c) above, we can see that hypotheses H (F) are satisfied.
Also, suppose that ¢ satisfies hypothesis H (¢). Two specific choices of interest are
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0 iflx|<1

@(x) = |x] and p(x) = i[—1,11(x) = tooif 1 < [x].

Then the following problem admits a solution ug € C LQ):

div (a(u(2))Du(z)) € d¢pu(z)) + F(z, u(z), Du(z)) in Q,
g—l’: =0 on 0%2.

The case ¢ = 0 (hemivariational inequalities) incorporates problems with discon-

tinuities in which we fill-in the gaps at the jump discontinuities.
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