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Abstract - We are concerned with a linear perturbation of the Lane-Emden
equation with different growths near the origin and at infinity. By means
of a version of the Pucci–Serrin three critical points theorem, we establish
the existence of at least two nontrivial solutions in the case of large values
of the parameter.
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1. Introduction

The Lane–Emden equation describes naturally many physical phenomena.
For example, super-diffusivity equations of this type have been proposed
by de Gennes (see [8]) as a model for long-range Van der Waals interac-
tions in thin films spreading on solid surfaces. This equation also appears
in the study of cellular automata and interacting particle systems with self-
organized criticality (see [7]), as well as to describe the flow over an imper-
meable plate (see [6]). Our main purpose in the present paper is to connect
a general class of Lane–Emden equations with the eigenvalue problem for
the Laplace operator in order to establish a striking multiplicity result for
large values of a certain real parameter. The proof of this existence prop-
erty for the perturbed equation relies on simple variational tools, namely on
a version of the celebrated Pucci–Serrin three critical points theorem (see
[14]).

227
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2. Preliminary results

Let Ω ⊂ RN be an open bounded set with smooth boundary. We first
consider the Lane–Emden problem

−∆u = |u|p−1u in Ω
u = 0 on ∂Ω
u 6≡ 0 in Ω,

(2.1)

where p is a positive number. If 0 < p < 1 then, by the Brezis-Oswald
theorem (see [5]), problem (2.1) has a unique positive solution. If p = 1, the
existence of a solution depends on the spectrum of the Laplace operator in
H1

0 (Ω). Next, if 1 < p < (N+2)/(N−2) (or if 1 < p <∞ if N ∈ {1, 2}) then
problem (2.1) has a solution. This is a direct consequence of the mountain
pass theorem of Ambrosetti and Rabinowitz (see [1]).

Existence or non-existence results have been estabished both in the crit-
ical and in the supercritical case according to various assumptions on Ω. For
instance, if Ω is starshaped, a direct application of the Pohozaev identity
shows that problem (2.1) does not have any solution in the supercritical case.
Related results have been established for various perturbations of problem
(2.1). Indeed, let us consider the problem

−∆u = |u|p−1u+ λu in Ω
u = 0 on ∂Ω
u 6≡ 0 in Ω,

(2.2)

with 1 < p < (N + 2)/(N − 2). Let λ1 denote the first eigenvalue of (−∆).
Then, by the mountain pass theorem, problem (2.2) has a positive solution
provided that λ < λ1. If λ ≥ λ1 then problem (2.2) does not have any
positive solution, as we observe easily by multiplying with ϕ1 and integrating
(as usual, ϕ1 denotes the first eigenfunction of the Laplace operator). A
refined result, whose proof relies on the dual variational method, establishes
that for all λ ≥ λ1, problem (2.2) has at least one solution.

The second major issue in this paper is the eigenvalue problem associated
to the Laplace operator. As stated in Zworski’s paper [15], ‘eigenvalues
describe, among other things, the energies of bound states, states that exist
forever if unperturbed. These do exist in real life [...]. In most situation
however, states do not exist for ever, and a more accurate model is given by
a decaying state that oscillates at some rate. Eigenvalues are yet another
expression of humanity’s narcissist desire for immortality.’

Consider the weighted eigenvalue problem the eigenvalue problem
−∆u = λa(x)u in Ω
u = 0 on ∂Ω
u 6≡ 0 in Ω.

(2.3)



Lane–Emden equations 229

Problems of this type have a long history. If Ω is bounded and a ≡ 1,
problem (2.3) is related to the Riesz-Fredholm theory of self-adjoint and
compact operators (see, Theorem VI.11 in Brezis [3]). The case of a non-
constant potential a has been first considered in the pioneering papers of
Bocher [2], Hess and Kato [9], Minakshisundaran and Pleijel [12] and Pleijel
[13]. For instance, Minakshisundaran and Pleijel (see [12], [13]) studied the
case where Ω is bounded, a ∈ L∞(Ω), a ≥ 0 in Ω and a > 0 in Ω0 ⊂ Ω with
|Ω0| > 0.

3. Main result

This paper is strongly inspired by the celebrated work by Brezis and Oswald
[5], which is concerned with the qualitative analysis of solutions of sublinear
elliptic equations with Dirichlet boundary condition. By contrast, in the
present paper we deal with nonlinearities having a mixed behaviour. More
precisely, we study the nonlinear problem

−∆u = a(x)u+ λf(u) in Ω
u = 0 on ∂Ω
u 6≡ 0 in Ω,

(3.1)

where λ is a positive parameter, a ∈ L∞(Ω), and a > 0 in Ω0 ⊂ Ω with
|Ω0| > 0. We assume that f : R→ R is a continuous function such that

there exists z > 0 such that f ≥ 0 and f 6≡ 0 in [0, z] (3.2)

and, for some 0 < q < 1 < p,

sup
t∈R

|f(t)|
|t|p

<∞ and sup
t∈R

|f(t)|
1 + |t|q

<∞ . (3.3)

In particular, the function

f(t) =

{
|t|p−1t if |t| ≤ 1
|t|q−1t if |t| > 1

fulfills assumptions (3.2) and (3.3).

Let F (t) :=
∫ t

0 f(s)ds. Then assumption (3.3) implies that there is C > 0
such that for all u ∈ R,

|F (u)| ≤ C|u|p+1 and |F (u)| ≤ C(1 + |u|q+1) . (3.4)

Let λ1 > 0 denote the first eigenvalue of the weighted eigenvalue problem
(2.3).

Our main result is the following multiplicity property.
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Theorem 3.1. Let Ω be a bounded domain with smooth boundary and as-
sume that f satisfies hypotheses (3.2) and (3.3). Assume that λ1 > 1. The
there exists λ∗ ≥ 0 such that problem (3.1) has at least two solutions, pro-
vided that λ > λ∗.

Proof of Theorem 3.1. The weak solutions of problem (3.1) are the
critical points of the associated energy functional E : H1

0 (Ω)→ R defined by
E = E1 + λE2, where

E1(u) =
1

2

∫
Ω

(|∇u|2 − a(x)u2)dx and E2(u) = −
∫

Ω
F (u)dx.

We split the proof into several parts.

Claim 1. The mapping H1
0 (Ω) 3 u 7−→ F (u) is not constant.

Let ϕ1 > 0 be the first eigenfunction of problem (2.3). Returning to
hypothesis (3.2), we set ω := {x ∈ Ω |ϕ1(x) > z}. Then ω is open and
nonempty (this follows after replacing eventually ϕ1 with tϕ1 for t large
enough). Set v := ψ ◦ ϕ1, where ψ(t) := min{t, z}. Then v ∈ H1

0 (Ω),
0 ≤ v ≤ z in Ω, and v ≡ z in ω. Therefore F (v) ≥ 0 in Ω and F (v(x)) > 0
for all x ∈ ω. This concludes the proof of Claim 1.

Claim 2. E satisfies the Palais-Smale condition.
We first observe that E1 is coercive. Indeed, using the variational char-

acterization of λ1, we deduce that for all u ∈ H1
0 (Ω),

E1(u) =
1

2

(
1− 1

λ1

)∫
Ω
|∇u|2dx = α ‖u‖2 ,

where α > 0.
Next, using assumption (3.3) and Sobolev embeddings, we obtain

E2(u) ≥ −Cλ
∫

Ω
|u|p+1dx ≥ −Cλ ‖u‖q+1.

Since q ∈ (0, 1) we conclude that E is coercive. Thus, by Lemma V.4 in
Brezis and Nirenberg [4], we conclude that E satisfies the Palais-Smale con-
dition.

Step 3. Proof of Theorem 3.1 concluded.
The classical three critical points theorem of Pucci and Serrin in [14]

(see also [11, Theorem 1.14]) establishes that if X is a Banach space and
J : X → R is of class C1 and satisfies the Palais-Smale condition and has
two local minima, then J has at least three distinct critical points. Thus,
to conclude the proof, it is enough to argue that E has at least two local
minima provided that λ is large enough. For such a purpose we consider the
functionals

Φ(t) := inf
E2(u)<t

infE2(v)=t E1(v)− E1(u)

E2(u)− t
; t ∈ R
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and

Ψ(t) := sup
E2(u)>t

infE2(v)=t E1(v)− E1(u)

E2(u)− t
; t ∈ R .

A straightforward computation shows that

lim sup
t→0−

Φ(t) ≤ Φ(0) and lim inf
t→0−

Ψ(t) = +∞ .

Thus, if λ > λ∗ := Φ(0), then E has at least two distinct nontrivial critical
points. This concludes the proof. 2
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