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Abstract:We are concerned with the study of a class of non-autonomous eigenvalue problems driven by two
non-homogeneous differential operators with variable (p1, p2)-growth. The main result of this paper estab-
lishes the existence of a continuous spectrum consisting in an unbounded interval and the nonexistence of
eigenvalues in a neighbourhood of the origin. The abstract results of this paper are described by twoRayleigh-
type quotients and the proofs rely on variational arguments.
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1 Introduction

The recent study of various nonlinear models described by partial differential equations with variable expo-
nent is motivated by the rigorousmathematical description ofmany phenomena in applied sciences. In some
cases the standard approach based on the theory of classical Lp and W1,p Lebesgue and Sobolev spaces is
not adequate in the framework of material with non-homogeneities. For instance, electro-rheological flu-
ids (sometimes referred to as “smart fluids”) or phenomena in image processing are described in a correct
manner by mathematical models in which the exponent p is allowed to vary. This leads us to the study of
variable exponents Lebesgue and Sobolev spaces, Lp(x) and W1,p(x), where p is a real-valued function. We
refer to the work by Diening, Hästo, Harjulehto, and Ruzicka [6] for the abstract framework describing these
spaces as well as to the monograph by Rădulescu and Repovš [15], which includes a thorough variational
and topological analysis of several classes of problems with variable exponent (see also the survey paper by
Rădulescu [14] and the papers by Colasuonno and Pucci [3] and Pucci and Zhang [13]).

We are interested in the study of a class of non-autonomous stationary problems, which are character-
ized by the fact that the associated energy density changes its ellipticity and growth properties according
to the point. Problems of this type have been intensively studied starting with the pioneering contributions
of Halsey [7] and Zhikov [17–19] in relationship with the analysis of the behaviour of strongly anisotropic
materials in the context of the homogenization and nonlinear elasticity.
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The study of non-homogeneous elliptic problems has been recently extended byKimandKim [8] to a new

class of differential operators. Their contribution is a step forward in the analysis of nonlinear problems with
variable exponent since it enables the understanding of problems with possible lack of uniform convexity.
In the present paper, we extend this study to problems involving several non-homogeneous operators (as
introduced in [8]) andwe describe some spectral properties in relationship with two Rayleigh-type quotients.
Section 2 includes some basic properties of function spaces with variable exponents. The main result is
described in Section 3 while the proofs and some perspectives are presented in Section 4 of this paper.

2 Basic Properties of Spaces with Variable Exponent

Throughout this paper, we assume that Ω ⊂ ℝN is a bounded domain with smooth boundary.
Set

C+(Ω) = {h ∈ C(Ω) : h(x) > 1 for all x ∈ Ω}.
Assume that p ∈ C+(Ω) and let

p+ = sup
x∈Ω p(x) and p− = inf

x∈Ω p(x).
We define the Lebesgue space with variable exponent by

Lp(x)(Ω) = {u : u is measurable and ∫
Ω

|u(x)|p(x) dx <∞}.

This function space is a Banach space if it is endowed with the norm

|u|p(x) = inf{μ > 0 : ∫
Ω

!!!!!!!
u(x)
μ

!!!!!!!

p(x)
dx ≤ 1}.

This norm is also called the Luxemburg norm. Then Lp(x)(Ω) is reflexive if and only if 1 < p− ≤ p+ <∞, and
continuous functions with compact support are dense in Lp(x)(Ω) if p+ <∞.

The standard inclusion between Lebesgue spaces generalizes to the framework of spaces with variable
exponent, namely if 0 < |Ω| <∞ and p1, p2 are variable exponents such that p1 ≤ p2 in Ω, then there exists
the continuous embedding Lp2(x)(Ω) í→ Lp1(x)(Ω).

Let Lp�(x)(Ω) denote the conjugate space of Lp(x)(Ω), where 1/p(x) + 1/p�(x) = 1. Then for all u ∈ Lp(x)(Ω)
and v ∈ Lp�(x)(Ω) the following Hölder-type inequality holds:

!!!!!!!
∫
Ω

uv dx
!!!!!!!
≤ (

1
p− + 1

p�− )|u|p(x)|v|p�(x).
An important role in analytic arguments on Lebesgue spaces with variable exponent is played by the

modular of Lp(x)(Ω), which is the map ρp(x) : Lp(x)(Ω)→ ℝ defined by
ρp(x)(u) = ∫

Ω

|u|p(x) dx.
If (un), u ∈ Lp(x)(Ω) and p+ <∞, then the following properties hold:

|u|p(x) > 1 â⇒ |u|p
−
p(x) ≤ ρp(x)(u) ≤ |u|p+p(x),

|u|p(x) < 1 â⇒ |u|p
+
p(x) ≤ ρp(x)(u) ≤ |u|p−p(x),

|un − u|p(x) → 0 ⇐⇒ ρp(x)(un − u)→ 0. (2.1)

We define the variable exponent Sobolev space by

W1,p(x)(Ω) = {u ∈ Lp(x)(Ω) : |∇u| ∈ Lp(x)(Ω)}.
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OnW1,p(x)(Ω) we may consider one of the following equivalent norms:

‖u‖p(x) = |u|p(x) + |∇u|p(x)
or

‖u‖p(x) = inf{μ > 0 : ∫
Ω

(
!!!!!!
∇u(x)
μ

!!!!!!
p(x)
+
!!!!!!
u(x)
μ

!!!!!!
p(x)

) dx ≤ 1}.

LetW1,p(x)
0 (Ω) denote the closure of the set of compactly supportedW1,p(x)-functions with respect to the

norm ‖u‖p(x). When smooth functions are dense, we can also use the closure of C∞0 (Ω) in W1,p(x)(Ω). Using
the Poincaré inequality, we can define the spaceW1,p(x)

0 (Ω), in an equivalentmanner, as the closure of C∞0 (Ω)
with respect to the norm

‖u‖p(x) = |∇u|p(x).
The vector space (W1,p(x)

0 (Ω), ‖ ⋅ ‖) is a separable and reflexive Banach space. Moreover, if 0 < |Ω| <∞
and p1, p2 are variable exponents so that p1 ≤ p2 in Ω, then there exists the continuous embedding

W1,p2(x)
0 (Ω) í→ W1,p1(x)

0 (Ω).

Set
ϱp(x)(u) = ∫

Ω

|∇u(x)|p(x) dx.
If (un), u ∈ W1,p(x)

0 (Ω), then the following properties hold:

‖u‖ > 1 â⇒ ‖u‖p− ≤ ϱp(x)(u) ≤ ‖u‖p+ ,
‖u‖ < 1 â⇒ ‖u‖p+ ≤ ϱp(x)(u) ≤ ‖u‖p− ,

‖un − u‖→ 0 ⇐⇒ ϱp(x)(un − u)→ 0.

Set

p∗(x) = {{{{
{

Np(x)
N − p(x)

if p(x) < N,

+∞ if p(x) ≥ N.

We point out that if p, q ∈ C+(Ω) and q(x) < p⋆(x) for all x ∈ Ω, then the embeddingW1,p(x)
0 (Ω) í→ Lq(x)(Ω) is

compact.
For a constant function p the variable exponent Lebesgue and Sobolev spaces coincidewith the standard

Lebesgue and Sobolev spaces. As pointed out in [15], the function spaces with variable exponent have some
striking properties such as the following:
(i) If 1 < p− ≤ p+ <∞ and p : Ω → [1,∞) is smooth, then the formula

∫
Ω

|u(x)|p dx = p
∞
∫
0

tp−1!!!!{x ∈ Ω : |u(x)| > t}!!!! dt

has no variable exponent analogue.
(ii) Variable exponent Lebesgue spaces do not have the mean continuity property. More precisely, if p is

continuous and nonconstant in an open ball B, then there exists a function u ∈ Lp(x)(B) such that
u(x + h) ̸∈ Lp(x)(B) for all h ∈ ℝN with arbitrary small norm.

(iii) The function spaceswith variable exponent are never translation invariant. The use of convolution is also
limited, for instance the Young inequality

|f ∗ g|p(x) ≤ C|f|p(x)‖g‖L1
holds if and only if p is constant.
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3 Spectrum Consisting in an Unbounded Interval

Assume p1, p2 ∈ C+(Ω) and consider the functions ϕ, ψ : Ω × [0,∞)→ [0,∞) satisfying the following
hypotheses:
(H1) The mappings ϕ( ⋅ , ξ) and ψ( ⋅ , ξ) are measurable on Ω for all ξ ≥ 0 and ϕ(x, ⋅ ) and ψ(x, ⋅ ) are locally

absolutely continuous on [0,∞) for almost all x ∈ Ω.
(H2) There exist functions a1 ∈ Lp

�
1 (Ω) and a2 ∈ Lp

�
2 (Ω) and b > 0 such that

|ϕ(x, |v|)v| ≤ a1(x) + b|v|p1(x)−1, |ψ(x, |v|)v| ≤ a2(x) + b|v|p2(x)−1
for almost all x ∈ Ω and for all v ∈ ℝN .

(H3) There exists c > 0 such that

ϕ(x, ξ) ≥ cξ p1(x)−2, ϕ(x, ξ) + ξ ∂ϕ
∂ξ

(x, ξ) ≥ cξ p1(x)−2
and

ψ(x, ξ) ≥ cξ p2(x)−2, ψ(x, ξ) + ξ ∂ψ
∂ξ

(x, ξ) ≥ cξ p2(x)−2
for almost all x ∈ Ω and for all ξ > 0.

Assume that q ∈ C+(Ω) and
(Q) p1(x) < q− ≤ q+ < p2(x) < p∗1(x) for all x ∈ Ω.
Let f : Ω ×ℝ→ ℝ be a Carathéodory function such that the following assumptions are fulfilled:
(f1) We have tf(x, t) ≥ 0 for a.a. (x, t) ∈ Ω ×ℝ and there exists m ∈ L∞(Ω)+ \ {0} such that

|f(x, t)| ≤ m(x)|t|q(x)−1 for a.a. x ∈ Ω and all t ∈ ℝ.

(f2) There exist M > 0 and θ > p+1 such that
0 < θF(x, t) ≤ tf(x, t) for a.a. x ∈ Ω and all t ∈ ℝ \ {0},

where F(x, t) := ∫t0 f(x, s) ds.
Consider the following nonlinear eigenvalue problem:

{
−div(ϕ(x, |∇u|)∇u) − div(ψ(x, |∇u|)∇u) = λf(x, u) in Ω,
u = 0 on ∂Ω.

(3.1)

Problem (3.1) is driven by non-homogeneous operators of the type div(ϕ(x, |∇u|)∇u). If ϕ(x, ξ) = ξ p(x)−2,
then we obtain the standard p(x)-Laplace operator, that is, ∆p(x)u := div(|∇u|p(x)−2∇u). Our abstract setting
includes the case ϕ(x, ξ) = (1 + |ξ|2)(p(x)−2)/2, which corresponds to the generalizedmean curvature operator

div[(1 + |∇u|2)(p(x)−2)/2∇u].
The capillarity equation corresponds to

ϕ(x, ξ) = (1 + ξ p(x)
√1 + ξ2p(x))ξ p(x)−2, x ∈ Ω, ξ > 0,

hence the corresponding capillary phenomenon is described by the differential operator

div[(1 + |∇u|p(x)
√1 + |∇u|2p(x))|∇u|p(x)−2∇u].

We say that u ∈ W1,p2(x)
0 (Ω) \ {0} is a solution of problem (3.1) if

∫
Ω

[ϕ(x, |∇u|) + ψ(x, |∇u|)]∇u ⋅ ∇v dx = λ∫
Ω

f(x, u)v dx

for all v ∈ W1,p2(x)
0 (Ω).
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In this case, u is an eigenfunction of problem (3.1) and the corresponding λ ∈ ℝ is an eigenvalue of (3.1).
The choice ofW1,p2(x)

0 (Ω) as a suitable function space for problem (3.1) is dictated by our hypothesis (Q).
For ϕ and ψ described in hypotheses (H1)–(H3) we set

A0(x, t) :=
t

∫
0

[ϕ(x, s) + ψ(x, s)]s ds. (3.2)

An important role in the proof of our main result is played by the following assumption, which is also
used in [8] for the existence of weak solutions in a different framework:
(H4) For all x ∈ Ω and all ξ ∈ ℝN the following estimate holds:

0 ≤ [ϕ(x, |ξ|) + ψ(x, |ξ|)]|ξ|2 ≤ p+1A0(x, |ξ|).
We notice that our hypothesis (f1) implies that

0 ≤ F(x, t) ≤ m(x)
q(x)

|t|q(x) for all (x, t) ∈ Ω ×ℝ. (3.3)

We define the following Rayleigh-type quotients:

λ∗ := inf
u∈W1,p2(x)

0 (Ω)\{0} ∫Ω A0(x, |∇u|) dx∫Ω F(x, u) dx

and

λ∗ := inf
u∈W1,p2(x)

0 (Ω)\{0} ∫Ω(ϕ(x, |∇u|) + ψ(x, |∇u|))|∇u|2 dx∫Ω uf(x, u) dx
. (3.4)

Theorem 3.1. Assume that hypotheses (H1)–(H4), (f1), (f2), (Q)are fulfilled. Then the followingproperties hold:
(i) Problem (3.1) has solutions for all λ ≥ λ∗.
(ii) Problem (3.1) does not have any solution, provided that λ < λ∗.
We do not have any information about the contribution of real parameters satisfying λ ∈ [λ∗, λ∗) even in
simple cases, for instance if Ω is a ball or for particular values of ϕ, ψ and f .

Related concentration properties are established in Kim and Kim [8], Mihăilescu and Rădulescu [11, 12],
Rădulescu [14] and Rădulescu and Repovš [15, Chapter 3], see also Cencelj, Repovš, Virk [2] and Repovš [16]
for recent contributions to anisotropic elliptic problems.

4 Proof of Theorem 3.1 and Perspectives

We first give the proof of our main result. For this purpose we establish several auxiliary results.

Lemma 4.1. We have λ∗ > λ∗ > 0.
Proof. Using hypothesis (H4) we obtain

A0(x, |ξ|) ≥
1
p+1 [ϕ(x, |ξ|) + ψ(x, |ξ|)]|ξ|2

for all (x, ξ) ∈ Ω ×ℝN . Thus

∫
Ω

A0(x, |∇u|) dx ≥
1
p+1 ∫

Ω

[ϕ(x, |∇u|) + ψ(x, |∇u|)]|∇u|2 dx (4.1)

for all u ∈ W1,p2(x)
0 (Ω). Using now hypothesis (f2), we deduce that for all u ∈ W1,p2(x)

0 (Ω) \ {0} we have

0 < ∫
Ω

F(x, u) dx ≤ 1
θ ∫
Ω

uf(x, u) dx. (4.2)
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Combining relations (4.1) and (4.2), we obtain

∫Ω A0(x, |∇u|) dx
∫Ω F(x, u) dx

≥
θ
p+1

for all u ∈ W1,p2(x)
0 (Ω) \ {0}. Taking the infimum in this inequality for u ∈ W1,p2(x)

0 (Ω) \ {0} and using (f2), we
deduce that

λ∗ ≥ θ
p+1 λ∗ > λ∗.

It remains to show that λ∗ > 0. Using (f1), we deduce that for all u ∈ W1,p2(x)
0 (Ω) \ {0} we have

0 < ∫
Ω

uf(x, u) dx ≤ ∫
Ω

m(x)|u|q(x) dx ≤ ‖m‖L∞ ∫
Ω

|u|q(x) dx
≤ ‖m‖L∞ ∫

Ω

(|u|q+ + |u|q− ) dx. (4.3)

Next, using hypothesis (H3), we deduce that for all u ∈ W1,p2(x)
0 (Ω) we have

∫
Ω

[ϕ(x, |∇u|) + ψ(x, |∇u|)]|∇u|2 ≥ c∫
Ω

[|∇u|p1(x) + |∇u|p2(x)] dx
≥
c
2 ∫
Ω

(|∇u|q+ + |∇u|q− ) dx
≥ C1 ∫

Ω

(|u|q+ + |u|q− ) dx, (4.4)

where C1 is a positive constant depending only on Ω, q+, q−, and c (given by (H3)).
Relations (4.3) and (4.4) imply that

∫Ω(ϕ(x, |∇u|) + ψ(x, |∇u|))|∇u|
2 dx

∫Ω uf(x, u) dx
≥

C1
‖m‖L∞

for all u ∈ W1,p2(x)
0 (Ω) \ {0}. Hence λ∗ > 0.

Define the functional A : W1,p2(x)
0 (Ω)→ ℝ by

A(u) := ∫
Ω

A0(x, |∇u|) dx,

where A0 is defined in (3.2).
Then A ∈ C1(W1,p2(x)

0 (Ω),ℝ) and for all u, v ∈ W1,p2(x)
0 (Ω) we have

A�(u)(v) = ∫
Ω

[ϕ(x, |∇u|) + ψ(x, |∇v|)]∇u ⋅ ∇v dx.

Moreover, the operator A : W1,p2(x)
0 (Ω)→ (W1,p2(x)

0 (Ω))∗ is strictly monotone and is a mapping of type (S+),
that is, if

un ⇀ u inW1,p2(x)
0 (Ω) as n →∞

and
lim sup
n→∞ ⟨A�(un) − A�(u), un − u⟩ ≤ 0,

then
un → u inW1,p2(x)

0 (Ω) as n →∞.
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Standard arguments also show that A is weakly lower semicontinuous. We refer to [8, Lemmas 3.2 and 3.4]
for details and proofs.

Set
B(u) := ∫

Ω

F(x, u) dx, u ∈ W1,p2(x)
0 (Ω).

Then u ∈ W1,p2(x)
0 (Ω) \ {0} is a solution of problem (3.1) if and only if A�(u) = λB�(u).

Lemma 4.2. We have
lim
u→0 A(u)B(u)

= lim‖u‖→∞ A(u)
B(u)
= +∞.

Proof. Using hypothesis (3.3), we deduce that

F(x, u) ≤ ∫
Ω

m(x)
q(x)

|u|q(x) dx ≤ ‖m‖L∞
q− ∫

Ω

|u|q(x) dx
for all u ∈ W1,p2(x)

0 (Ω). But there holds

|u|q(x) ≤ |u(x)|q+ + |u(x)|q− .
It follows that for all u ∈ W1,p2(x)

0 (Ω) we have

B(u) ≤ ‖m‖L∞
q− ∫

Ω

(|u|q+ + |u|q− ) dx
≤ C2(‖u‖q

+
+ ‖u‖q− ), (4.5)

where C2 is a positive constant depending only on m, q and the continuous embeddings of W1,p2(x)
0 (Ω) into

Lq+ (Ω) and Lq− (Ω).
Next, using (H4), we have

A(u) ≥ 1
p+1 ∫

Ω

[ϕ(x, |∇u|) + ψ(x, |∇u|)]|∇u|2 dx

for all u ∈ W1,p2(x)
0 (Ω). By (H3) we deduce that

A(u) ≥ c
p+1 ∫

Ω

[|∇u|p1(x) + |∇u|p2(x)] dx
≥
c
p+1 ∫

Ω

|∇u|p1(x) dx. (4.6)

Let us first assume that (un) ⊂ W1,p2(x)
0 (Ω) and un → 0 as n →∞. Without loss of generality we can

assume that ‖un‖ < 1. Relation (4.6) implies that

A(un) ≥
c
p+1 ∫

Ω

|∇un|p
+
1 dx = c

p+1 ‖un‖p+1 .
Combining this information with (4.5), we obtain for all n that

A(un)
B(un)
≥

c
C2p+1 ‖un‖p

+
1

‖un‖q+ + ‖un‖q− .
Using hypothesis (Q), we deduce that A(un)/B(un)→ +∞ as n →∞.

For the second limit in the statement of the Lemma we observe that relation (4.6) also yields

A(u) ≥ c
p+1 ∫

Ω

|∇u|p2(x) dx.
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Since ‖u‖→∞, we can assume that ‖u‖ > 1. It follows that

A(u) ≥ c
p+1 ∫

Ω

|∇u|p
−
2 dx = c

p+1 ‖u‖p−2 ,
hence

A(u)
B(u)
≥

c
C2p+1 ‖u‖p−2

‖u‖q+ + ‖u‖q− .
Using again assumption (Q), we deduce that A(u)/B(u)→ +∞ as ‖u‖→∞.

The next step is to show that the infimum inW1,p2(x)
0 (Ω) of the Rayleigh quotient A(u)/B(u) is attained.

Recall that
λ∗ := inf

u∈W1,p2(x)
0 (Ω)\{0} A(u)B(u)

.

Lemma 4.3. There exists u ∈ W1,p2(x)
0 (Ω) \ {0} such that

λ∗ = A(u)
B(u)

.

Moreover, u is a solution of problem (3.1) for λ = λ∗.
Proof. Let (un) ⊂ W1,p2(x)

0 (Ω) be such that

λ∗ = lim
n→∞ A(un)

B(un)
.

By Lemma 4.2, the sequence (un) is bounded. Thus, up to a subsequence,

un ⇀ u weakly inW1,p2(x)
0 (Ω), (4.7)

un → u strongly in Lq(x)(Ω). (4.8)

Using the weak lower semicontinuity of A, we obtain

A(u) ≤ lim inf
n→∞ A(un). (4.9)

Using now (2.1) in combination with (4.8) and the mean value theorem, we deduce that

B(u) = lim
n→∞ B(un). (4.10)

Relations (4.9) and (4.10) yield
λ∗ = A(u)

B(u)
.

We now prove that u ̸= 0. Arguing by contradiction, we obtain that relations (4.7) and (4.8) imply that
(un) converges weakly to 0 inW1,p2(x)

0 (Ω) and strongly in Lq(x)(Ω). In particular, we have
lim
n→∞ B(un) = 0. (4.11)

By Lemma 4.1 we have λ∗ > 0. Fix 0 < ε < λ∗. Thus, for all n ∈ ℕ large enough, we have
!!!!!!
A(un)
B(un)
− λ∗!!!!!! < ε,

hence
(λ∗ − ε)B(un) < A(un) < (λ∗ + ε)B(un).

Thus, by (4.11) we have
lim
n→∞ A(un) = 0. (4.12)
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We use this information in order to prove that (un) converges strongly to 0 inW1,p2(x)
0 (Ω). Indeed, by (H4), we

have
A(un) ≥

1
p+1 ∫

Ω

[ϕ(x, |∇un|) + ψ(x, |∇un|)]|∇un|2 dx.

Using now hypothesis (H3), we deduce that

A(un) ≥
c
p+1 ∫

Ω

(|∇un|p1(x) + |∇un|p2(x)) dx.
This inequality and (4.12) imply that un → 0 inW1,p2(x)

0 (Ω). By Lemma 4.2 we now deduce that

lim
n→∞ A(un)

B(un)
= +∞,

which is a contradiction. This contradiction shows that u ̸= 0.
It remains to show that u is a weak solution of problem (3.1). The basic idea in the proof is that

λ∗ = A(u)
B(u)
= inf
v∈W1,p2(x)

0 (Ω)\{0} A(v)B(v)
.

Fix arbitrarily v ∈ W1,p2(x)
0 (Ω) \ {0} and consider the map

t Ü→ h(t) := A(u + tv)
B(u + tv)

,

which is defined in a neighbourhood of the origin. It follows that h�(0) = 0, hence
[A�(u + tv)B(u + tv) − A(u + tv)B�(u + tv)]|t=0 = 0.

Therefore,
B(u)∫

Ω

[ϕ(x, |∇u|) + ψ(x, |∇u|)]∇u ⋅ ∇v dx − A(u)∫
Ω

f(x, u)v dx = 0.

Since A(u) = λ∗B(u), we conclude that u solves (3.1), hence λ∗ is an eigenvalue of this problem.

Lemma 4.4. Problem (3.1) admits a solution for all λ > λ∗.
Proof. Fix λ > λ∗ and consider the nonlinear map

C(u) = A(u) − λB(u).

Then C is differentiable and λ is an eigenvalue of problem (3.1) if and only if C admits a nontrivial critical
point.

Using hypotheses (H3), (f1), (f2), we obtain

C(u) ≥ c
p+1 ∫

Ω

[|∇u|p1(x) + |∇u|p2(x)] dx − λ∫
Ω

m(x)
q(x)

|u|q(x) dx
≥
c
p+1 ∫

Ω

[|∇u|p1(x) + |∇u|p2(x)] dx − λ‖m‖L∞
q− ∫

Ω

|u|q(x) dx.
Using now hypothesis (Q), we deduce that C is coercive, that is, lim‖u‖→∞ C(u) = +∞. By the weak lower
semicontinuity of C there exists w ∈ W1,p2(x)

0 (Ω) such that

C(w) = inf
u∈W1,p2(x)

0 (Ω) C(u).
We argue in what follows that w ̸= 0. Indeed, using the definition of λ∗ and the fact that λ∗ < λ, we find
v ∈ W1,p2(x)

0 (Ω) such that A(v) − λB(v) < 0, hence C(v) < 0. Since w is a global minimum point of C, it follows
that C(w) < 0, which implies w ̸= 0. We conclude that λ is an eigenvalue of problem (3.1) with corresponding
eigenfunction w.
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We now return to the second Rayleigh-type quotient, which defines λ∗; see relation (3.4).
Lemma 4.5. For all λ < λ∗ problem (3.1) does not have a solution.

Proof. Recall that
λ∗ = inf

u∈W1,p2(x)
0 (Ω)\{0} S(u)T(u)

,

where
S(u) := ∫

Ω

(ϕ(x, |∇u|) + ψ(x, |∇u|))|∇u|2 dx, T(u) := ∫
Ω

uf(x, u) dx.

Fix λ < λ∗. We argue by contradiction and assume that λ is an eigenvalue of problem (3.1). Thus, there
exists u ∈ W1,p2(x)

0 (Ω) \ {0} such that for all v ∈ W1,p2(x)
0 (Ω) there holds

∫
Ω

[ϕ(x, |∇u|) + ψ(x, |∇v|)]∇u ⋅ ∇v dx = λ∫
Ω

f(x, u)v dx,

that is, S�(u) = λT�(u).
Taking v = u, we obtain

S(u) = λT(u).

Therefore,
λ = S(u)

T(u)
≥ inf
v∈W1,p2(x)

0 (Ω)\{0} S(v)T(v)
= λ∗,

which contradicts the choice of λ.

Combining Lemmas 4.1–4.5, we obtain the conclusion of Theorem 3.1.

4.1 Motivation and Perspectives

The variable exponents p1(x) and p2(x) dictate the geometry of a composite that changes its hardening
exponent according to the point. We point out that the abstract setting developed in this paper extends the
nonstandard growth conditions of (p, q) type. We refer to Marcellini [9, 10] who is interested in integral func-
tionals of the type

u Ü→ ∫
Ω

F(x, ∇u) dx,

where the integrand F : Ω ×ℝN → ℝ satisfies unbalanced polynomial growth conditions of the type

|ξ|p ≲ F(x, ξ) ≲ |ξ|q with 1 < p < q

for every x ∈ Ω and ξ ∈ ℝN .
We consider that a very interesting research direction is to extend the approach developed in this paper to

the abstract setting recently studied by Baroni, Colombo andMingione [1] and Colombo andMingione [4, 5],
namely non-autonomous problems with associated energies of the type

u Ü→ ∫
Ω

[|∇u|p1(x) + a(x)|∇u|p2(x)] dx (4.13)

and
u Ü→ ∫

Ω

[|∇u|p1(x) + a(x)|∇u|p2(x) log(e + |x|)] dx, (4.14)

where p1(x) ≤ p2(x), p1 ̸= p2 and a(x) ≥ 0. If we consider two different materials with power hardening
exponents p1(x) and p2(x), respectively, the coefficient a(x) dictates the geometry of a composite of the two
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materials.When a(x) > 0, then p2(x)-material is present, otherwise the p1(x)-material is the only onemaking
the composite. On the other hand, since the integral functional defined in (4.14) is degenerate on the zero
set of the gradient, it is natural to ask oneself what happens if we modify the integrand in such a way that,
when additionally |∇u| is small, there is an unbalance between the two terms of the integrand. For instance,
we can consider the functional

u Ü→ ∫
Ω

[|∇u|p1(x) + a(x)|∇u|p2(x) log(1 + |x|)] dx.
For the isotropic case we refer for further comments to Baroni, Colombo and Mingione [1, pp. 376–377],
including remarks on degeneracy phenomena at the phase transition.

According to the terminology used in this paper, the study of the integral functionals defined in (4.13)
and (4.14) corresponds to the analysis of the differential operators

−div(ϕ(x, |∇u|)∇u) − div(a(x)ψ(x, |∇u|)∇u)

and
−div(ϕ(x, |∇u|)∇u) − div(a(x)ψ(x, |∇u|) log(e + |x|)∇u).

This approach can be developed not only in Sobolev spaceswith variable exponents (like in the presentwork)
but also in the more general framework of Musielak–Orlicz spaces (see Rădulescu and Repovš [15, Chaper 4]
for a collection of stationary problems studied in these function spaces).

The problem analyzed in this paper corresponds to a subcritical setting, as described in hypothesis (Q).
We appreciate that valuable research directions correspond either to the critical or to the supercritical frame-
work (in the sense of Sobolev variable exponents). No results are known even for the “almost critical” case
with lack of compactness, namely assuming that hypothesis (Q) is replaced with
(Q’) p1(x) < q− ≤ q+ < p2(x) ⪯ p∗1(x) for all x ∈ Ω,
where p2(x) ⪯ p∗1(x)means that there exists z ∈ Ω such that p2(z) = p∗1(z) and p2(x) < p∗1(x) for all x ∈ Ω \ {z}.

Funding: This projectwas funded by theNational Plan for Science, Technology and Innovation (MAARIFAH),
King Abdulaziz City for Science and Technology, Kingdom of Saudi Arabia, award number 12-MAT2912-02.
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