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Abstract
In this paper, we study elliptic equations of the form

−div (𝑢) = 𝑓(𝑥, 𝑢) in Ω, 𝑢 = 0 on 𝜕Ω,

where div  is the logarithmic double-phase operator
given by

div

(|∇𝑢|𝑝−2∇𝑢 + 𝜇(𝑥)

(
log(𝑒 + |∇𝑢|)

+
|∇𝑢|

𝑞(𝑒 + |∇𝑢|)
) |∇𝑢|𝑞−2∇𝑢) ,

𝑒 is Euler’s number, Ω ⊂ ℝ𝑁 , 𝑁 ⩾ 2, is a bounded
domain with Lipschitz boundary 𝜕Ω, 1 < 𝑝 < 𝑁,
𝑝 < 𝑞 < 𝑞 + 𝜅 < 𝑝∗ =

𝑁𝑝

𝑁−𝑝
with 𝜅 = 𝑒∕(𝑒 + 𝑡0),

𝑡0 = 𝑒 log(𝑒 + 𝑡0) and 0 ⩽ 𝜇(⋅) ∈ 𝐿∞(Ω). Under mild
assumptions on the nonlinearity 𝑓∶ Ω × ℝ → ℝ we
prove multiplicity results for the problem above and get
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2 RĂDULESCU et al.

two constant sign solutions and another third nontrivial
solution. This third solution is obtained by using the
theory of critical groups. As a result of independent
interest, we show that every weak solution of the
problem above is essentially bounded.

MSC 2020
35A01, 35J20 (primary), 35J25, 35J62, 35Q74 (secondary)

1 INTRODUCTION AND NOTATION

In recent years, double-phase problems have been intensely studied. These problems usually
involve an operator of the form

−div
(|∇𝑢|𝑝−2∇𝑢 + 𝜇(𝑥)|∇𝑢|𝑞−2∇𝑢),

which is associated with the functional given by

𝑢 → ∫Ω
(|∇𝑢|𝑝

𝑝
+ 𝜇(𝑥)

|∇𝑢|𝑞
𝑞

)
d𝑥. (1.1)

Such type of functionals appeared for the first time in the work of Zhikov [43] and are use-
ful in the context of homogenization and elasticity theory. In this setting, the coefficient 𝜇 is
associated with the geometry of composites made of two materials of hardness 𝑝 and 𝑞. Func-
tionals of the form (1.1) can be seen as special cases of the pioneering works by Marcellini [30,
31] which deal with problems with nonstandard growth and 𝑝, 𝑞-growth conditions. Indeed,
the regularity theory in [30] applies to double-phase integrals of the form (1.1) as well, see also
the more recent papers by Cupini–Marcellini–Mascolo [16] and Marcellini [28, 29]. Later, the
results of Marcellini in the setting of double-phase integrals have been improved by the ground-
breaking papers by Baroni–Colombo–Mingione [7–9] and Colombo–Mingione [13, 14]. We also
point out that double-phase problems describe several interesting applications, see the works
by Bahrouni–Rădulescu–Repovš [6] on transonic flows, Benci–D’Avenia–Fortunato–Pisani [10]
on quantum physics, Cherfils–Il’yasov [11] for reaction diffusion systems and Zhikov [44, 45] on
the Lavrentiev gap phenomenon, the thermistor problem, and the duality theory. For the main
properties of the related function space and the double-phase operator, we refer to the papers
by Colasuonno–Squassina [12], Crespo-Blanco–Gasiński–Harjulehto–Winkert [15], Ho–Winkert
[25], Liu–Dai [26], and Perera–Squassina [36].
Recently, Arora–Crespo-Blanco–Winkert [5] studied the properties of the functional

𝑢 → ∫Ω (|∇𝑢|𝑝 + 𝜇(𝑥)|∇𝑢|𝑞 log(𝑒 + |∇𝑢|)), (1.2)

and the related so-called logarithmic double-phase operator
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MULTIPLICITY RESULTS FOR LOGARITHMIC DOUBLE PHASE PROBLEMS 3

div (𝑢) = div
(|∇𝑢|𝑝−2∇𝑢
+𝜇(𝑥)

(
log(𝑒 + |∇𝑢|) + |∇𝑢|

𝑞(𝑒 + |∇𝑢|)
)|∇𝑢|𝑞−2∇𝑢), (1.3)

where 𝑢 ∈ 𝑊
1,log

0
(Ω) and

log(𝑥, 𝑡) = 𝑡𝑝 + 𝜇(𝑥)𝑡𝑞 log(𝑒 + 𝑡) for all (𝑥, 𝑡) ∈ Ω × [0,∞),

for 1 < 𝑝 < 𝑁, 𝑝 < 𝑞 and 0 ⩽ 𝜇(⋅) ∈ 𝐿∞(Ω). Functionals of the form (1.2) have been studied for
special cases in several works. Baroni–Colombo–Mingione [8] studied (1.2) in case 𝑝 = 𝑞, that is,

𝑢 ↦ ∫Ω [|∇𝑢|𝑝 + 𝜇(𝑥)|∇𝑢|𝑝 log(𝑒 + |∇𝑢|)] 𝑑𝑥, (1.4)

and proved local Hölder continuity of the gradient of local minimizers of (1.4) whenever 1 <
𝑝 < ∞ and 0 ⩽ 𝜇(⋅) ∈ 𝐶0,𝛼(Ω). In a recent work by De Filippis–Mingione [17], the local Hölder
continuity of the gradients of local minimizers of the functional

𝑢 ↦ ∫Ω [|∇𝑢| log(1 + |∇𝑢|) + 𝜇(𝑥)|∇𝑢|𝑞] 𝑑𝑥, (1.5)

has been shown provided 0 ⩽ 𝜇(⋅) ∈ 𝐶0,𝛼(Ω) and 1 < 𝑞 < 1 + 𝛼

𝑛
. Functionals of the shape (1.5)

have their origin in functionals with nearly linear growth of the form

𝑢 ↦ ∫Ω |∇𝑢| log(1 + |∇𝑢|) 𝑑𝑥, (1.6)

see the works by Fuchs–Mingione [20] and Marcellini–Papi [32]. Note that (1.6) appears in the
theory of plasticity with logarithmic hardening, see, for example, Seregin–Frehse [37] and the
monograph by Fuchs–Seregin [21]. In this direction, we also mention the functional

𝑢 ↦ ∫Ω (1 + |∇𝑢|2) 𝑝2 log(1 + |∇𝑢|) 𝑑𝑥,
which has been studied by Marcellini [30].
In this paper, we are interested in the weak solvability of Dirichlet problems of the form

−div (𝑢) = 𝑓(𝑥, 𝑢) in Ω, 𝑢 = 0 on 𝜕Ω, (1.7)

where div  is the logarithmic double-phase operator given in (1.3) while Ω ⊂ ℝ𝑁 , 𝑁 ⩾ 2, is a
bounded domainwith Lipschitz boundary 𝜕Ω. Throughout this paper, we denote by 𝜅 the constant
given by

𝜅 =
𝑒

𝑒 + 𝑡0
, (1.8)

where 𝑒 is Euler’s number and 𝑡0 is the positive number that satisfies 𝑡0 = 𝑒 log(𝑒 + 𝑡0).We suppose
the following hypotheses on the data:
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4 RĂDULESCU et al.

(H1) 1 < 𝑝 < 𝑁, 𝑝 < 𝑞 < 𝑞 + 𝜅 < 𝑝∗ and 0 ⩽ 𝜇(⋅) ∈ 𝐿∞(Ω)

(H2) 𝑓∶ Ω × ℝ → ℝ is a Carathéodory function with 𝑓(𝑥, 0) = 0 for a.a. 𝑥 ∈ Ω and 𝐹(𝑥, 𝑠) =

∫ 𝑠
0 𝑓(𝑥, 𝑡) 𝑑𝑡 such that the following holds:
(i) there exist 𝜂 ∈ (𝑞 + 𝜅, 𝑝∗) and 𝐶 > 0 such that

|𝑓(𝑥, 𝑠)| ⩽ 𝐶(1 + |𝑠|𝜂−1) (1.9)

for a.a. 𝑥 ∈ Ω and for all 𝑠 ∈ ℝ;
(ii) there exist 𝜏 > 𝜅 and 𝑐 > 0 such that

(𝑞 + 𝜏)𝐹(𝑥, 𝑠) − 𝑓(𝑥, 𝑠)𝑠 ⩽ 𝑐, (1.10)

(𝑞 + 𝜅)𝐹(𝑥, 𝑠) − 𝑓(𝑥, 𝑠)𝑠 ⩽ 𝑐 (1.11)

for a.a. 𝑥 ∈ Ω and for all 𝑠 ∈ ℝ;
(iii)

lim sup
𝑠→0

𝑓(𝑥, 𝑠)|𝑠|𝑝−2𝑠 = 0 uniformly for a.a. 𝑥 ∈ Ω; (1.12)

(iv)

lim
𝑠→±∞

𝐹(𝑥, 𝑠)|𝑠|𝑞 log(𝑒 + |𝑠|) = ∞ uniformly for a.a.𝑥 ∈ Ω; (1.13)

(v) for all intervals 𝐼 ⊂ ℝ there exists 𝐶𝐼 > 0 such that

|𝐹(𝑥, 𝑠) − 𝐹(𝑥, 𝑡)| ⩽ 𝐶𝐼|𝑠 − 𝑡| (1.14)

for a.a. 𝑥 ∈ Ω and for all 𝑠, 𝑡 ∈ 𝐼 and that there exists 0 < 𝛽 < min{1, 𝑝∗ − 1} such that

|𝑓(𝑥, 𝑠) − 𝑓(𝑥, 𝑡)| ⩽ 𝐶𝐼|𝑠 − 𝑡|𝛽 (1.15)

for a.a. 𝑥 ∈ Ω and for all 𝑠, 𝑡 ∈ 𝐼.

Remark 1.1. There are examples of𝑓 satisfying (1.9) and (1.10). Let us test the polynomial functions
of the form

𝑓(𝑠) =

{|𝑠|𝛼 for 𝑠 ⩾ 0

−|𝑠|𝛼 for 𝑠 < 0

with certain exponent 𝛼 < 𝑝∗ − 1. Observe that

(𝑞 + 𝜏)𝐹(𝑥, 𝑠) − 𝑓(𝑥, 𝑠)𝑠 =
𝑞 + 𝜏

1 + 𝛼
|𝑠|1+𝛼 − |𝑠|1+𝛼 = ( 𝑞 + 𝜏

1 + 𝛼
− 1

)|𝑠|1+𝛼,
for all 𝑠 ∈ ℝ. Therefore, condition (1.10) holds provided

𝑞 + 𝜏

1 + 𝛼
− 1 ⩽ 0 if and only if 1 + 𝛼 ⩾ 𝑞 + 𝜏.
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MULTIPLICITY RESULTS FOR LOGARITHMIC DOUBLE PHASE PROBLEMS 5

Thus, if we take 𝜅 < 𝜏 ⩽ 1 + 𝛼 − 𝑞, then condition (1.10) is fulfilled. In order words, 𝛼 must be
strictly greater than 𝑞 − 1 + 𝜅. Since 𝛼 < 𝑝∗ − 1, this yields the admissibility conditions 𝑞 + 𝜅 <

𝑝∗ and 𝑞 + 𝜅 − 1 < 𝛼 < 𝑝∗ − 1. This corresponds more or less to the polynomial functions sat-
isfying (f5) and (f2) in the work by Arora–Crespo-Blanco–Winkert [5], since there it is supposed
that

lim|𝑠|→∞

(𝑞 + 𝜏)𝐹(𝑥, 𝑠) − 𝑓(𝑥, 𝑠)|𝑠||𝑠|1+𝛼 ⩽ 0.

Example 1.2. Let 𝑓∶ ℝ → ℝ be defined by

𝑓(𝑠) =

{
(𝜅 + 𝛼)𝑠𝜅+𝛼−1 log 𝑠 + 𝑠𝜅+𝛼−1 for 𝑠 ⩾ 0

−(𝜅 + 𝛼)|𝑠|𝜅+𝛼−1 log |𝑠| − |𝑠|𝜅+𝛼−1 for 𝑠 < 0,

with 𝑞 < 𝛼 and 𝜅 + 𝛼 < 𝑝∗. This function satisfies the assumptions in (H2). Let us check (1.10).
Here, we have

𝐹(𝑠) = |𝑠|𝜅+𝛼 log |𝑠| for all 𝑠 ∈ ℝ

and so

(𝑞 + 𝜏)𝐹(𝑠) − 𝑓(𝑠)𝑠 = |𝑠|𝜅+𝛼 log |𝑠|(𝑞 + 𝜏 − (𝜅 + 𝛼)) − |𝑠|𝜅+𝛼.
Consequently, condition (1.10) holds for 𝑓 if and only if 𝑞 + 𝜏 < 𝜅 + 𝛼. Thus, we need 𝜅 < 𝜏 <

𝜅 + 𝛼 − 𝑞 which gives 𝑞 < 𝛼 as above.

Our main result is the following one.

Theorem 1.3. Let hypotheses (H1) and (H2) be satisfied. Then, problem (1.7) admits three nontrivial
distinct solutions 𝑢0, 𝑣0, 𝑦0 ∈ 𝑊

1,log

0
(Ω) ∩ 𝐿∞(Ω) such that

𝑣0 ⩽ 0 ⩽ 𝑢0 inΩ,

whereby 𝑢0 and 𝑣0 have positive energy.

The proof of Theorem 1.3 is based on truncation and comparison techniques along with the
mountain-pass geometry of problem (1.7). The third solution 𝑦0 is obtained by using the Morse
theory in terms of critical groups. Our result should be compared with the one in Arora–Crespo-
Blanco–Winkert [5], where the authors obtain similar results with different conditions on 𝑓. In
contrast to [5] we do not make any assumptions on the sign of 𝑓. Also, there is no assumption on
the behavior of 𝑓 at infinity apart from the one in (1.13). Moreover, when comparing our results
with the work by Papageorgiou–Qin [34], we point out that we do not require 𝜇 to be Lipschitz
continuous, Hölder continuity suffices. Another feature of this work is the fact that we do not
require 𝑓 to satisfy the Ambrosetti–Rabinowitz condition.
Since the operator (1.3) has been introduced very recently, only fewworks concerning existence

results involving such logarithmic operator exist. The first work has been done by Arora–Crespo-
Blanco–Winkert [5] who studied the problem

−div (𝑢) = 𝑓(𝑥, 𝑢) in Ω, 𝑢 = 0 on 𝜕Ω, (1.16)
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6 RĂDULESCU et al.

where  is as in (1.3) but with variable exponents and 𝑓∶ Ω × ℝ → ℝ is a Carathéodory function
with subcritical growth which satisfies appropriate conditions. Based on the Nehari manifold, the
existence of a sign-changing solution of (1.16) has been shown under the more strict assumption
that 𝑞 + 1 < 𝑝∗, see also the recent work by the same authors [4] related to more general embed-
dings and existence results based on the concentration compactness principle. Furthermore,
Lu–Vetro–Zeng [27] studied existence and uniqueness of equations involving the operator

𝑢 ↦ Δ𝐿
𝑢 = div

(′
𝐿
(𝑥, |∇𝑢|)|∇𝑢| ∇𝑢

)
, 𝑢 ∈ 𝑊1,𝐿 (Ω), (1.17)

where𝐿 ∶ Ω × ×[0,∞) → [0,∞) is given by

𝐿(𝑥, 𝑡) = [𝑡𝑝(𝑥) + 𝜇(𝑥)𝑡𝑞(𝑥)] log(𝑒 + 𝛼𝑡),

with 𝛼 ⩾ 0, see also Vetro–Zeng [42]. We point out that the operator (1.17) is different from the one
in (1.3). Another work dealing with the logarithmic double-phase operator has been published
by Vetro–Winkert [41] who obtained the existence of a solution to the logarithmic problem with
convection term of the form

−div (𝑢) = 𝑓(𝑥, 𝑢,∇𝑢) in Ω, 𝑢 = 0 on 𝜕Ω, (1.18)

where  is as in (1.3) but with variable exponents and 𝑓∶ Ω × ℝ × ℝ𝑁 → ℝ is a Carathéodory
function satisfying certain growth and coercivitiy conditions. The authors prove the boundedness,
closedness, and compactness of the corresponding solution set to (1.18).We stress that the operator
in Vetro–Winkert [41] is also involved in a nonlocal context by Vetro [40] who considered related
Kirchhoff-type equations involving the logarithmic double-phase operator as in (1.3) with variable
exponents. We also mention some papers who study logarithmic terms on the right-hand side for
Schrödinger equations or𝑝-Laplace problems.Montenegro–deQueiroz [33] considered nonlinear
elliptic problems

−Δ𝑢 = 𝜒𝑢>0(log(𝑢) + 𝜆𝑓(𝑥, 𝑢)) in Ω, 𝑢 = 0 on 𝜕Ω, (1.19)

where 𝑓∶ Ω × [0,∞) → [0,∞) is nondecreasing, sublinear and 𝑓𝑢 is continuous and proved
that (1.19) has a maximal solution 𝑢𝜆 ⩾ 0 of type 𝐶1,𝛾(Ω), see also Figueiredo–Montenegro–
Stapenhorst [18, 19] where a similar problem was studied in planar domains with 𝑓 being of
exponential growth. Squassina–Szulkin [39] studied logarithmic Schrödinger equations given by

−Δ𝑢 + 𝑉(𝑥)𝑢 = 𝑄(𝑥)𝑢 log(𝑢2) in ℝ𝑁 (1.20)

and proved that (1.20) has infinitely many solutions, whereby 𝑉 and 𝑄 are 1-periodic functions
of the variables 𝑥1, … , 𝑥𝑁 and 𝑄 ∈ 𝐶1(ℝ𝑁). Further results for logarithmic Schrödinger equa-
tions can be found in the works of Alves–de Morais Filho [2], Alves–Ji [3], and Shuai [38], see
also Alves–da Silva [1] about logarithmic Schrödinger equations on exterior domains.
As a result of independent interest,we prove the boundedness ofweak solutions tomore general

equations than (1.7) of the form

−div (𝑢) = (𝑥, 𝑢, ∇𝑢) in Ω, 𝑢 = 0 on 𝜕Ω, (1.21)
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MULTIPLICITY RESULTS FOR LOGARITHMIC DOUBLE PHASE PROBLEMS 7

where ∶ Ω × ℝ × ℝ𝑁 → ℝ is a Carathéodory function depending on the gradient of the solu-
tions which may have critical growth with respect to the second argument. Finally, we also give
some comments on parametric problems given by

−div (𝑢) = 𝜆𝑓(𝑥, 𝑢) in Ω, 𝑢 = 0 on 𝜕Ω, (1.22)

where div  is as in (1.3) and 𝜆 > 0. For 𝜆 > 0 large enough, (1.22) has at least two constant-sign
solutions, whereby one is positive and the other one negative.
This work is structured as follows. In Section 2, we present some properties of the logarithmic

Musielak–Orlicz Sobolev spaces and the related logarithmic double-phase operator, while Sec-
tion 3 is devoted to a priori bounds of equations of the form (1.21). In Section 4, we prove the
existence of constant-sign solutions by showing themountain-pass geometry of problem (1.7) and
in Section 5 we use critical groups to show an additional nontrivial solution of (1.7).

2 PRELIMINARIES

In this section, we recall some basic facts about logarithmic Musielak–Orlicz Sobolev spaces and
the related logarithmic double-phase operator given in (1.3). Most of the results are taken from the
paper by Arora–Crespo-Blanco–Winkert [5]. To this end, we denote by 𝐿𝑟(Ω) the usual Lebesgue
space with norm ‖ ⋅ ‖𝑟 for 1 ⩽ 𝑟 ⩽ ∞ while𝑊1,𝑟

0
(Ω) is the related Sobolev space with zero trace

equipped with the equivalent norm ‖∇ ⋅ ‖𝑟 for 1 < 𝑟 < ∞. Suppose now hypothesis (H1) and
consider the maplog ∶ Ω × [0,∞) → [0,∞) defined by

log(𝑥, 𝑡) = 𝑡𝑝 + 𝜇(𝑥)𝑡𝑞 log(𝑒 + 𝑡).

Let 𝐿0(Ω) be the space of all measurable functions on Ω. We define

𝐿log (Ω) =

{
𝑢 ∈ 𝐿0(Ω)∶ 𝜌log

(𝑢) ∶= ∫Ωlog(𝑥, |𝑢|) 𝑑𝑥 < ∞

}
,

where 𝜌log
is the modular function corresponding to log. We equip 𝐿log (Ω) with the

Luxemburg norm ‖ ⋅ ‖log
defined by

‖𝑢‖log
∶= inf

{
𝜆 > 0∶ 𝜌log

(
𝑢

𝜆

)
⩽ 1

}
for 𝑢 ∈ 𝐿log (Ω).

With this norm, 𝐿log (Ω) becomes a Banach space which is separable and reflexive. Next, we
introduce the related Musielak–Orlicz Sobolev space given by

𝑊1,log (Ω) =
{
𝑢 ∈ 𝐿log (Ω)∶ |∇𝑢| ∈ 𝐿log (Ω)

}
,

and endow it with the norm

‖𝑢‖1,log
∶= ‖𝑢‖log

+ ‖∇𝑢‖log
.

Also, we set

𝑊
1,log

0
(Ω) = 𝐶∞

𝑐 (Ω)
‖⋅‖1,log .
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8 RĂDULESCU et al.

Both𝑊1,log (Ω) and𝑊
1,log

0
(Ω) are separable, reflexive Banach spaces. Moreover, on𝑊

1,log

0
(Ω),

the Poincaré inequality holds, that is, we can find 𝑐 > 0 such that

‖𝑢‖log
⩽ 𝑐‖∇𝑢‖log

for 𝑢 ∈ 𝑊
1,log

0
(Ω).

Therefore, we can consider on𝑊
1,log

0
(Ω) the equivalent norm ‖ ⋅ ‖ defined by

‖𝑢‖ = ‖∇𝑢‖log
for all 𝑢 ∈ 𝑊

1,log

0
(Ω).

We have the following embedding results, see Arora–Crespo-Blanco–Winkert [5, Proposition
3.7].

Proposition 2.1. Let hypotheses (H1) be satisfied. Then, the following holds:

(i) 𝑊
1,log

0
(Ω) ↪ 𝑊

1,𝑝
0
(Ω) is continuous;

(ii) 𝑊
1,log

0
(Ω) ↪ 𝐿𝑝

∗
(Ω) is continuous;

(iii) 𝑊
1,log

0
(Ω) ↪ 𝐿𝑟(Ω) is continuous and compact for all 1 ⩽ 𝑟 < 𝑝∗.

Also, there is a close relation between the norm ‖ ⋅ ‖ in𝑊1,log

0
(Ω) and the modular function

𝜌log
, see Arora–Crespo-Blanco–Winkert [5, Proposition 3.6].

Proposition 2.2. Let hypotheses (H1) be satisfied, 𝜆 > 0, 𝑢 ∈ 𝑊
1,log

0
(Ω), and 𝜅 as in (1.8). Then,

the following holds:

(i) ‖𝑢‖ = 𝜆 if and only if 𝜌log

(
∇𝑢

𝜆

)
= 1;

(ii) ‖𝑢‖ < 1(resp. = 1,> 1) if and only if 𝜌log
(∇𝑢) < 1 (resp. = 1,> 1);

(iii) if ‖𝑢‖ < 1 then ‖𝑢‖𝑞+𝜅 ⩽ 𝜌log
(∇𝑢) ⩽ ‖𝑢‖𝑝;

(iv) if ‖𝑢‖ > 1 then ‖𝑢‖𝑝 ⩽ 𝜌log
(∇𝑢) ⩽ ‖𝑢‖𝑞+𝜅;

(v) ‖𝑢𝑛‖ → 0 if and only if 𝜌log
(∇𝑢𝑛) → 0 as 𝑛 → ∞.

Next, consider the nonlinear map 𝐴∶ 𝑊
1,log

0
(Ω) →

(
𝑊

1,log

0
(Ω)

)∗
defined by

⟨𝐴(𝑢), 𝑣⟩ = ∫Ω |∇𝑢|𝑝−2∇𝑢 ⋅∇𝑣 d𝑥

+ ∫Ω 𝜇(𝑥)
(
log(𝑒 + |∇𝑢|) + |∇𝑢|

𝑞(𝑒 + |∇𝑢|)
)|∇𝑢|𝑞−2∇𝑢 ⋅∇𝑣 d𝑥.

(2.1)

This operator has the following properties, seeArora–Crespo-Blanco–Winkert [5, Theorem4.4].

Theorem 2.3. Let hypotheses (H1) be satisfied and 𝐴 be given as in (2.1). Then, 𝐴 is
bounded, continuous, strictly monotone, coercive, a homeomorphism and satisfies the (S+)-
property, that is, any sequence {𝑢𝑛}𝑛∈ℕ in𝑊

1,log

0
(Ω) such that 𝑢𝑛 ⇀ 𝑢 weakly in𝑊

1,log

0
(Ω) and

lim sup𝑛→∞⟨𝐴(𝑢𝑛), 𝑢𝑛 − 𝑢⟩ ⩽ 0 converges strongly to 𝑢 in𝑊
1,log

0
(Ω).
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MULTIPLICITY RESULTS FOR LOGARITHMIC DOUBLE PHASE PROBLEMS 9

Also from Arora–Crespo-Blanco–Winkert [5, Lemma 5.1], we know that if 𝑓∶ Ω × ℝ → ℝ is a
Carathéodory function with 𝑓(𝑥, 0) = 0 for a.a. 𝑥 ∈ Ω satisfying (H2)(i) then the functional

𝐼𝑓(𝑢) = ∫Ω 𝐹(𝑥, 𝑢) 𝑑𝑥
and its derivative

⟨𝐼′
𝑓
(𝑢), 𝑣⟩ = ∫Ω 𝑓(𝑥, 𝑢)𝑣 𝑑𝑥,

are strongly continuous in the sense that if 𝑢𝑛 ⇀ 𝑢 weakly in𝑊
1,log

0
(Ω) then 𝐼𝑓(𝑢𝑛) → 𝐼𝑓(𝑢) in

ℝ and 𝐼′
𝑓
(𝑢𝑛) → 𝐼′

𝑓
(𝑢) in

(
𝑊

1,log

0
(Ω)

)∗
.

Moreover, for 𝑢 ∈ 𝐿0(Ω), we define 𝑢+ = max{𝑢, 0} and 𝑢− = max{−𝑢, 0}. Then, we have

𝑢 = 𝑢+ − 𝑢−, |𝑢| = 𝑢+ + 𝑢− and if 𝑢 ∈ 𝑊
1,log

0
(Ω) then 𝑢± ∈ 𝑊

1,log

0
(Ω).

Next, consider the functionals

𝐼(𝑢) =
1

𝑝
‖∇𝑢‖𝑝𝑝 + 1

𝑞 ∫Ω 𝜇(𝑥)|∇𝑢|𝑞 log(𝑒 + |∇𝑢|) 𝑑𝑥 − ∫Ω 𝐹(𝑥, 𝑢) 𝑑𝑥,

𝐼+(𝑢) =
1

𝑝
‖∇𝑢‖𝑝𝑝 + 1

𝑞 ∫Ω 𝜇(𝑥)|∇𝑢|𝑞 log(𝑒 + |∇𝑢|) 𝑑𝑥 − ∫Ω 𝐹(𝑥, 𝑢
+) 𝑑𝑥, (2.2)

𝐼−(𝑢) =
1

𝑝
‖∇𝑢‖𝑝𝑝 + 1

𝑞 ∫Ω 𝜇(𝑥)|∇𝑢|𝑞 log(𝑒 + |∇𝑢|) 𝑑𝑥 − ∫Ω 𝐹(𝑥, −𝑢
−) 𝑑𝑥. (2.3)

Then, we know that 𝐼, 𝐼+ and 𝐼− are of class 𝐶1 with derivatives

𝐼′(𝑢)(𝑣) = ⟨𝐴(𝑢), 𝑣⟩ − ∫Ω 𝑓(𝑥, 𝑢)𝑣 𝑑𝑥,

𝐼′+(𝑢)(𝑣) = ⟨𝐴(𝑢), 𝑣⟩ − ∫Ω 𝑓(𝑥, 𝑢
+)𝑣 𝑑𝑥,

𝐼′−(𝑢)(𝑣) = ⟨𝐴(𝑢), 𝑣⟩ − ∫Ω 𝑓(𝑥, −𝑢
−)𝑣 𝑑𝑥,

where 𝐴 is given in (2.1), see Arora–Crespo-Blanco–Winkert [5, Theorem 4.1].
We recall some results from calculus of variations. Let𝑋 be a Banach space. We say that a func-

tional 𝜑∶ 𝑋 → ℝ satisfies the Cerami condition or C-condition if for every sequence {𝑢𝑛}𝑛∈ℕ ⊆ 𝑋

such that {𝜑(𝑢𝑛)}𝑛∈ℕ ⊆ ℝ is bounded and it also satisfies

(1 + ‖𝑢𝑛‖)𝜑′(𝑢𝑛) → 0 as 𝑛 → ∞,

then it contains a strongly convergent subsequence. Furthermore, we say that it satisfies the
Cerami condition at the level 𝑐 ∈ ℝ or the C𝑐-condition if it holds for all the sequences such that
𝜑(𝑢𝑛) → 𝑐 as 𝑛 → ∞ instead of for all the bounded sequences.
The proof of the following mountain-pass theorem can be found in the book by Papageorgiou–

Rădulescu–Repovš [35, Theorem 5.4.6].
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10 RĂDULESCU et al.

Theorem 2.4 (Mountain-pass theorem). Let X be a Banach space and suppose 𝜑 ∈ 𝐶1(𝑋), 𝑢0, 𝑢1 ∈
𝑋 with ‖𝑢1 − 𝑢0‖ > 𝛿 > 0,

max{𝜑(𝑢0), 𝜑(𝑢1)} ⩽ inf {𝜑(𝑢)∶ ‖𝑢 − 𝑢0‖ = 𝛿} = 𝑚𝛿,

𝑐 = inf
𝛾∈Γ

max
0⩽𝑡⩽1

𝜑(𝛾(𝑡)) with Γ = {𝛾 ∈ 𝐶([0, 1], 𝑋)∶ 𝛾(0) = 𝑢0, 𝛾(1) = 𝑢1}

and 𝜑 satisfies the C𝑐-condition. Then, 𝑐 ⩾ 𝑚𝛿 and 𝑐 is a critical value of 𝜑.

Next, we recall some results from the theory of critical groups. For this purpose, if𝑌2 ⊂ 𝑌1 ⊂ 𝑋

then by 𝐻𝑘(𝑌1, 𝑌2) we denote the 𝑘th singular homology group with integer coefficients for the
pair (𝑌1, 𝑌2) with 𝑘 ∈ ℕ0. Let 𝜑 ∈ 𝐶1(𝑋). Then, 𝐾𝜑 is the critical set of 𝜑, that is,

𝐾𝜑 = {𝑢 ∈ 𝑋∶ 𝜑′(𝑢) = 0}.

For 𝑐 ∈ ℝ, we define

𝜑𝑐 = {𝑢 ∈ 𝑋∶ 𝜑(𝑢) ⩽ 𝑐}.

Let 𝑢 ∈ 𝐾𝜑 be an isolated critical point with 𝜑(𝑢) = 𝑐. Then, the critical groups of 𝜑 at 𝑢 are given
by

𝐶𝑘(𝜑, 𝑢) = 𝐻𝑘(𝜑
𝑐 ∩ 𝑈, 𝜑𝑐 ∩ 𝑈 ⧵ {𝑢}) for all 𝑘 ∈ ℕ0,

where 𝑈 is a neighborhood of 𝑢 such that 𝜑𝑐 ∩ 𝐾𝜑 ∩ 𝑈 = {𝑢}. The excision property of singular
homology implies that this definition is independent of the choice of the isolating neighborhood
𝑈. If 𝜑 fulfills the C-condition and if−∞ < inf 𝜑(𝐾𝜑)we define the critical groups of 𝜑 at infinity
by

𝐶𝑘(𝜑,∞) = 𝐻𝑘(𝑋, 𝜑
𝑐) for all 𝑘 ∈ ℕ0,

where 𝑐 ∈ ℝ is such that 𝑐 < inf 𝜑(𝐾𝜑). This definition is independent of the choice of 𝑐. Suppose
that 𝐾𝜑 is finite. Then, we define

𝑀(𝑡, 𝑢) =
∑
𝑘∈ℕ0

rank𝐶𝑘(𝜑, 𝑢)𝑡
𝑘 for all 𝑡 ∈ ℝ and for all 𝑢 ∈ 𝐾𝜑,

𝑃(𝑡,∞) =
∑
𝑘∈ℕ0

rank𝐶𝑘(𝜑,∞)𝑡𝑘 for all 𝑡 ∈ ℝ.

The Morse relation says that∑
𝑢∈𝐾𝜑

𝑀(𝑡, 𝑢) = 𝑃(𝑡,∞) + (1 + 𝑡)𝑄(𝑡) for all 𝑡 ∈ ℝ, (2.4)

where 𝑄(𝑡) =
∑

𝑘∈ℕ0
𝛽𝑘𝑡

𝑘 is a formal series in 𝑡 ∈ ℝ with nonnegative integer coefficients.
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MULTIPLICITY RESULTS FOR LOGARITHMIC DOUBLE PHASE PROBLEMS 11

3 A PRIORI BOUNDS

In this section,we are going to prove that everyweak solution of problems of type (1.7) is essentially
bounded. We present the result for more general problems and study the equation

−div (𝑢) = (𝑥, 𝑢, ∇𝑢) in Ω, 𝑢 = 0 on 𝜕Ω, (3.1)

where div  is the logarithmic double-phase operator given in (1.3). A weak solution of Equation
(3.1) is a function 𝑢 ∈ 𝑊

1,log

0
(Ω) such that

∫Ω
(|∇𝑢|𝑝−2∇𝑢 + 𝜇(𝑥)

[
log(𝑒 + |∇𝑢|) + |∇𝑢|

𝑞(𝑒 + |∇𝑢|)
]|∇𝑢|𝑞−2∇𝑢) ⋅∇𝑣 𝑑𝑥

= ∫Ω(𝑥, 𝑢, ∇𝑢)𝑣 𝑑𝑥

is fulfilled for all 𝑣 ∈ 𝑊
1,log

0
(Ω). We also include the critical case for problem (3.1) and suppose

the following assumptions.

(H3) ∶ Ω × ℝ × ℝ𝑁 → ℝ is a Carathéodory function and there exists 𝓁 ∈ (1, 𝑝∗] such that

|(𝑥, 𝑡, 𝜉)| ⩽ 𝑏
[|𝜉| 𝑝

𝓁′ + |𝑡|𝓁−1 + 1
]
,

for a.a. 𝑥 ∈ Ω, for all 𝑡 ∈ ℝ and for all 𝜉 ∈ ℝ𝑁 with a positive constant 𝑏.

We have the following result.

Theorem 3.1. Let hypotheses (H1) and (H3) be satisfied and let 𝑢 ∈ 𝑊
1,log

0
(Ω) be a weak solution

of problem (3.1). Then, 𝑢 ∈ 𝐿∞(Ω).

Proof. From Proposition 2.1 (i) we know that𝑊
1,log

0
(Ω) ↪ 𝑊

1,𝑝
0
(Ω) continuously. Since

(𝜉) ⋅ 𝜉 ⩾ |𝜉|𝑝
for all 𝜉 ∈ ℝ𝑁 , the result follows from Ho–Kim–Winkert–Zhang [24, Theorem 3.1]. □

4 EXISTENCE OF TWO SOLUTIONS

In this section, we are going to prove that problem (1.7) admits two nontrivial bounded weak
solutions with constant sign. To this end, we first show that the truncated functionals 𝐼+ and 𝐼−
given by (2.2) and (2.3) satisfy the Cerami condition. Before, we recall the following lemma, see
Arora–Crespo-Blanco–Winkert [5, Lemma 5.4]

Lemma 4.1. Let 𝑞 > 1 and

ℎ(𝑡) =
𝑡

𝑞(𝑒 + 𝑡) log(𝑒 + 𝑡)
, 𝑡 > 0.

Then, ℎ attains its maximum value at 𝑡0 and its value is
𝜅

𝑞
, where 𝑡0 and 𝜅 are given by (1.8).
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12 RĂDULESCU et al.

Proposition 4.2. Let hypotheses (H1) and (H2)(i)–(iv) be satisfied. Then, the functionals 𝐼+ and 𝐼−
satisfy the Cerami condition.

Proof. We only show the assertion of the proposition for 𝐼+, the proof for 𝐼− is very similar. To this
end, let {𝑢𝑛}𝑛∈ℕ be a sequence in𝑊

1,log

0
(Ω) such that

|𝐼+(𝑢𝑛)| ⩽ 𝑐1, (4.1)

(1 + ‖𝑢𝑛‖)𝐼′+(𝑢𝑛) → 0 in
(
𝑊

1,log

0
(Ω)

)∗
. (4.2)

Relation (4.2) implies the existence of a sequence 𝜀𝑛 → 0 such that

||||∫Ω |∇𝑢𝑛|𝑝−2∇𝑢𝑛 ⋅∇𝑣 𝑑𝑥
+ ∫Ω 𝜇(𝑥)

(
log(𝑒 + |∇𝑢𝑛|) + |∇𝑢𝑛|

𝑞(𝑒 + |∇𝑢𝑛|)
)|∇𝑢𝑛|𝑞−2∇𝑢𝑛 ⋅∇𝑣 𝑑𝑥

− ∫Ω 𝑓(𝑥, 𝑢
+
𝑛 )𝑣 𝑑𝑥

||||⩽ 𝜀𝑛‖𝑣‖
1 + ‖𝑢𝑛‖ ,

(4.3)

for all 𝑛 ∈ ℕ and for all 𝑣 ∈ 𝑊
1,log

0
(Ω). Taking 𝑣 = −𝑢−𝑛 ∈ 𝑊

1,log

0
(Ω) in (4.3) and using the fact

that 𝑓(𝑥, 𝑢+𝑛 )𝑢
−
𝑛 = 0 for a.a. 𝑥 ∈ Ω (since 𝑓(𝑥, 0) = 0 for a.a. 𝑥 ∈ Ω), we obtain

𝜌log
(∇𝑢−𝑛 )

⩽ ∫Ω
(|∇𝑢−𝑛 |𝑝 + 𝜇(𝑥)

[
log(𝑒 + |∇𝑢−𝑛 |) + |∇𝑢−𝑛 |

𝑞(𝑒 + |∇𝑢−𝑛 |)
]|∇𝑢−𝑛 |𝑞) 𝑑𝑥

⩽ 𝜀𝑛 for all 𝑛 ∈ ℕ,

because |∇𝑢−𝑛 |
𝑞(𝑒+|∇𝑢−𝑛 |) > 0. From Proposition 2.2 (v), we then conclude that 𝑢−𝑛 → 0 in𝑊

1,log

0
(Ω). We

now prove that 𝑢+𝑛 is bounded in𝑊
1,log

0
(Ω). Choosing 𝑣 = 𝑢+𝑛 ∈ 𝑊

1,log

0
(Ω) as a test function in

(4.3) gives

∫Ω 𝑓(𝑥, 𝑢
+
𝑛 )𝑢

+
𝑛 − ‖∇𝑢+𝑛 ‖𝑝𝑝

− ∫Ω 𝜇(𝑥)
(
log(𝑒 + |∇𝑢𝑛|) + |∇𝑢𝑛|

𝑞(𝑒 + |∇𝑢𝑛|)
)|∇𝑢+𝑛 |𝑞 ⩽ 𝜀𝑛.

Applying Lemma 4.1 leads to

∫Ω 𝑓(𝑥, 𝑢
+
𝑛 )𝑢

+
𝑛 𝑑𝑥 − ‖∇𝑢+𝑛 ‖𝑝𝑝

−

(
1 +

𝜅

𝑞

)
∫Ω 𝜇(𝑥) log(𝑒 + |∇𝑢+𝑛 |)|∇𝑢+𝑛 |𝑞 𝑑𝑥 ⩽ 𝜀𝑛.

(4.4)
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MULTIPLICITY RESULTS FOR LOGARITHMIC DOUBLE PHASE PROBLEMS 13

On the other hand, (4.1) and the fact that 𝑢−𝑛 → 0 in𝑊
1,log

0
(Ω) imply that

1

𝑝
‖∇𝑢+𝑛 ‖𝑝𝑝 + 1

𝑞 ∫Ω 𝜇(𝑥)|∇𝑢+𝑛 |𝑞 log(𝑒 + |∇𝑢+𝑛 |) 𝑑𝑥 − ∫Ω 𝐹(𝑥, 𝑢
+
𝑛 ) 𝑑𝑥 ⩽ 𝑐2, (4.5)

for some 𝑐2 > 0, which implies

𝑞 + 𝜅

𝑝
‖∇𝑢+𝑛 ‖𝑝𝑝 +(

1 +
𝜅

𝑞

)
∫Ω 𝜇(𝑥)|∇𝑢+𝑛 |𝑞 log(𝑒 + |∇𝑢+𝑛 |) 𝑑𝑥

− ∫Ω(𝑞 + 𝜅)𝐹(𝑥, 𝑢+𝑛 ) 𝑑𝑥 ⩽ (𝑞 + 𝜅)𝑐2.

Summing with (4.4), we get(
𝑞 + 𝜅

𝑝
− 1

)‖∇𝑢+𝑛 ‖𝑝𝑝 + ∫Ω
(
𝑓(𝑥, 𝑢+𝑛 )𝑢

+
𝑛 − (𝑞 + 𝜅)𝐹(𝑥, 𝑢+𝑛 )

)
𝑑𝑥 ⩽ (𝑞 + 𝜅)𝑐2 + 𝜀𝑛.

Using (1.11), we obtain (
𝑞 + 𝜅

𝑝
− 1

)‖∇𝑢+𝑛 ‖𝑝𝑝 ⩽ (𝑞 + 𝜅)𝑐2 + 𝜀𝑛 + 𝑐.

We conclude that {𝑢+𝑛 }𝑛∈ℕ is bounded in𝑊
1,𝑝
0
(Ω). Going back to (4.5), we get

1

𝑞 ∫Ω 𝜇(𝑥)|∇𝑢+𝑛 |𝑞 log(𝑒 + |∇𝑢+𝑛 |) 𝑑𝑥 ⩽ 𝑐3 + ∫Ω 𝐹(𝑥, 𝑢
+
𝑛 ) 𝑑𝑥

for some 𝑐3 > 0. Using (1.10), one can estimate the right-hand side of this inequality, thus
obtaining

1

𝑞 ∫Ω 𝜇(𝑥)|∇𝑢+𝑛 |𝑞 log(𝑒 + |∇𝑢+𝑛 |) 𝑑𝑥 ⩽ 𝑐4 +
1

𝑞 + 𝜏 ∫Ω 𝑓(𝑥, 𝑢
+
𝑛 )𝑢

+
𝑛 𝑑𝑥

for 𝑐4 > 0. But from (4.4) and the fact that {𝑢+𝑛 }𝑛∈ℕ is uniformly bounded in𝑊
1,𝑝
0
(Ω), we get, for

𝑐5 > 0, that

1

𝑞 ∫Ω 𝜇(𝑥)|∇𝑢+𝑛 |𝑞 log(𝑒 + |∇𝑢+𝑛 |) 𝑑𝑥
⩽ 𝑐5 +

(
𝑞 + 𝜅

𝑞 + 𝜏

)
1

𝑞 ∫Ω 𝜇(𝑥) log(𝑒 + |∇𝑢𝑛|)|∇𝑢+𝑛 |𝑞 𝑑𝑥.
Consequently,

∫Ω 𝜇(𝑥)|∇𝑢+𝑛 |𝑞 log(𝑒 + |∇𝑢+𝑛 |) 𝑑𝑥 ⩽ 𝑐6 for all 𝑛 ∈ ℕ.

since 𝜏 > 𝜅. We conclude that {𝑢+𝑛 }𝑛∈ℕ is bounded in𝑊
1,log

0
(Ω), and hence one can find a subse-

quence {𝑢𝑛𝑘 }𝑘∈ℕ and an element 𝑢 ∈ 𝑊
1,log

0
(Ω) such that 𝑢𝑛𝑘 ⇀ 𝑢 weakly. Choosing 𝑢𝑛𝑘 − 𝑢 as
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14 RĂDULESCU et al.

a test function in (4.3) and letting 𝑘 → ∞, we arrive at

lim
𝑘→∞

⟨𝐼′+(𝑢𝑛𝑘 ), 𝑢𝑛𝑘 − 𝑢⟩ = 0.

On the other hand, the strong continuity of 𝐼𝑓 (see Section 2) implies that

lim
𝑘→∞∫Ω 𝑓(𝑥, 𝑢

+
𝑛𝑘
)(𝑢𝑛𝑘 − 𝑢) 𝑑𝑥 = 0.

Taking these two limits together yields (see again Section 2)

lim
𝑘→∞

⟨𝐴(𝑢𝑛𝑘 ), 𝑢𝑛𝑘 − 𝑢⟩ = 0,

whereby the operator 𝐴 given by (2.1) satisfies the (S+)-property, see Theorem 2.3. Thus, 𝑢𝑛 → 𝑢

strongly in𝑊
1,log

0
(Ω). This proves that 𝐼+ satisfies the Cerami condition. □

Next, we show that zero is a local minimizer for the functionals 𝐼 and 𝐼±.

Proposition 4.3. Let hypotheses (H1) and (H2)(i)–(iv) be satisfied. Then, zero is a local minimizer
of 𝐼 and 𝐼±.

Proof. We only prove it for 𝐼, the proofs are similar for 𝐼+ and 𝐼−. From (1.9) and (1.12), we know
that for each 𝜀 > 0 there exists 𝑐𝜀 > 0 such that

|𝐹(𝑥, 𝑠)| ⩽ 𝜀

𝑝
|𝑠|𝑝 + 𝑐𝜀|𝑠|𝜂 for a.a.𝑥 ∈ Ω and for all 𝑠 ∈ ℝ. (4.6)

In (4.6), we choose 𝜀 = 1

2𝑐1
with 𝑐1 > 0 being an embedding constant of𝑊1,𝑝

0
(Ω) ↪ 𝐿𝑝(Ω). Then,

from this and for 𝑢 ∈ 𝑊
1,log

0
(Ω)with ‖𝑢‖ ⩽ 1 by using the embeddings𝑊1,𝑝

0
(Ω) ↪ 𝐿𝑝(Ω) as well

as𝑊
1,log

0
(Ω) ↪ 𝐿𝜂(Ω) (see Proposition 2.1(iii)) and Proposition 2.2 (iii), we have

𝐼(𝑢) ⩾
1

𝑝
‖∇𝑢‖𝑝𝑝 + 1

𝑞 ∫Ω 𝜇(𝑥)|∇𝑢|𝑞 log(𝑒 + |∇𝑢|) 𝑑𝑥 − 𝜀

𝑝
‖𝑢‖𝑝𝑝 − 𝑐𝜀‖𝑢‖𝜂𝜂

⩾
1

𝑝
(1 − 𝑐1𝜀)‖∇𝑢‖𝑝𝑝 + 1

𝑞 ∫Ω 𝜇(𝑥)|∇𝑢|𝑞 log(𝑒 + |∇𝑢|) 𝑑𝑥 − 𝑐2‖𝑢‖𝜂
⩾ min

{
1 − 𝑐1𝜀

𝑝
,
1

𝑞

}
𝜌log

(|∇𝑢|) − 𝑐2‖𝑢‖𝜂
⩾

1

2𝑞
‖𝑢‖𝑞+𝜅 − 𝑐2‖𝑢‖𝜂,

(4.7)

for some 𝑐2 > 0. Since 𝑞 + 𝜅 < 𝜂 by (H2) (i) the result of the proposition follows. □

Now, we study the energy level of the functionals 𝐼+ and 𝐼−.

Proposition 4.4. Let hypotheses (H1) and (H2)(i)–(iv) be satisfied. Then, it holds 𝐼+(𝑡𝑢) → −∞ as
𝑡 → ∞ for all 𝑢 ∈ 𝑊

1,log

0
(Ω) ⧵ {0} such that 𝑢 ⩾ 0 a.e. inΩ. Similarly, 𝐼−(𝑡𝑢) → −∞ as 𝑡 → ∞ for

all 𝑢 ∈ 𝑊
1,log

0
(Ω) ⧵ {0} such that 𝑢 ⩽ 0 a.e. inΩ, 𝑢 ≢ 0.
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MULTIPLICITY RESULTS FOR LOGARITHMIC DOUBLE PHASE PROBLEMS 15

Proof. We show the result only for 𝐼+, it can be shown in a similar way for 𝐼−. Let 𝑀 > 0 be
a positive number. From (H2) (iv) (see (1.13)), we know that there exists a number 𝑠𝑀 > 0 such
that

𝐹(𝑥, 𝑠) ⩾ 𝑀𝑠𝑞 log(𝑒 + 𝑠) for a.a. 𝑥 ∈ Ω and for all 𝑠 ⩾ 𝑠𝑀.

On the other hand, from the continuity there exists 𝑐𝑀 > 0 such that

|𝐹(𝑥, 𝑠)| ⩽ 𝑐𝑀 for a.a. 𝑥 ∈ Ω and for all 𝑠 ⩽ 𝑠𝑀.

Thus, we have

𝐹(𝑥, 𝑠) ⩾ −𝑐𝑀 +𝑀𝑠𝑞 log(𝑒 + 𝑠) − 𝑀𝑠𝑞 log(𝑒 + 𝑠)

⩾ 𝑀𝑠𝑞 log(𝑒 + 𝑠) − (𝑐𝑀 +𝑀𝑠
𝑞
𝑀
log(𝑒 + 𝑠𝑀))

= 𝑀𝑠𝑞 log(𝑒 + 𝑠) − 𝑐𝑀 for a.a. 𝑥 ∈ Ω and for all 0 ⩽ 𝑠 ⩽ 𝑠𝑀.

Taking everything together, we conclude that

𝐹(𝑥, 𝑠) ⩾ 𝑀𝑠𝑞 log(𝑒 + 𝑠) − 𝑐𝑀 for a.a. 𝑥 ∈ Ω and for all 𝑠 ⩾ 0.

Consequently, for 𝑡 > 0, it follows that, for all 𝑢 ∈ 𝑊
1,log

0
(Ω) ⧵ {0} such that 𝑢 ⩾ 0 a.e. in Ω,

𝐼+(𝑡𝑢) =
𝑡𝑝

𝑝
‖∇𝑢‖𝑝𝑝 + 𝑡𝑞

𝑞 ∫Ω 𝜇(𝑥)|∇𝑢|𝑞 log(𝑒 + 𝑡|∇𝑢|) 𝑑𝑥
−𝑀𝑡𝑞 ∫Ω 𝑢

𝑞 log(𝑒 + 𝑡𝑢) 𝑑𝑥 − 𝑐𝑀|Ω|.
Since log(𝑒 + 𝑥𝑦) ⩽ log(𝑒 + 𝑥) + log(𝑒 + 𝑦) for all 𝑥, 𝑦 > 0, we have

𝐼+(𝑡𝑢) ⩽
𝑡𝑝

𝑝
‖∇𝑢‖𝑝𝑝 + 𝑡𝑞 log(𝑒 + 𝑡)

𝑞 ∫Ω 𝜇(𝑥)|∇𝑢|𝑞 𝑑𝑥
+
𝑡𝑞

𝑞 ∫Ω 𝜇(𝑥)|∇𝑢|𝑞 log(𝑒 + |∇𝑢|) 𝑑𝑥
−𝑀𝑡𝑞 ∫Ω 𝑢

𝑞 log(𝑒 + 𝑡𝑢) 𝑑𝑥 − 𝑐𝑀|Ω|.
(4.8)

From the inequality 𝑒 + 𝑡𝑢 ⩾ 𝑒 + 𝑡 for 𝑡 ⩾ 0 and 𝑢 ⩾ 1 along with the monotonicity of log, we
derive that

∫{𝑥∈Ω∶ 𝑢⩾1}
𝑢𝑞 log(𝑒 + 𝑡𝑢) 𝑑𝑥 ⩾ log(𝑒 + 𝑡)∫{𝑥∈Ω∶ 𝑢⩾1}

𝑢𝑞 𝑑𝑥

and

∫{𝑥∈Ω∶ 0<𝑢<1}
𝑢𝑞 log(𝑒 + 𝑡𝑢) 𝑑𝑥 = ∫{𝑥∈Ω∶ 0<𝑢<1}

𝑢𝑞+1
1

𝑢
log(𝑒 + 𝑡𝑢) 𝑑𝑥

⩾ log(𝑒 + 𝑡)∫{𝑥∈Ω∶ 0<𝑢<1}
𝑢𝑞+1 𝑑𝑥,
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16 RĂDULESCU et al.

where in the last inequality we used that 𝐶 log(𝑒 + 𝑠) ⩾ log(𝑒 + 𝐶𝑠) for all 𝐶 > 1 and 𝑠 ⩾ 0. Using
this in (4.8) gives

𝐼+(𝑡𝑢)

⩽
𝑡𝑝

𝑝
‖∇𝑢‖𝑝𝑝 + 𝑡𝑞 log(𝑒 + 𝑡)

(
1

𝑞 ∫Ω 𝜇(𝑥)|∇𝑢|𝑞 𝑑𝑥 −𝑀 ∫{𝑥∈Ω∶ 𝑢⩾1}
𝑢𝑞 𝑑𝑥

−𝑀 ∫{𝑥∈Ω∶ 0<𝑢<1}
𝑢𝑞+1 𝑑𝑥

)
+
𝑡𝑞

𝑞 ∫Ω 𝜇(𝑥)|∇𝑢|𝑞 log(𝑒 + |∇𝑢|) 𝑑𝑥 − 𝑐𝑀|Ω|.
(4.9)

Choosing𝑀 > 0 such that

1

𝑞 ∫Ω 𝜇(𝑥)|∇𝑢|𝑞 𝑑𝑥 < 𝑀

(
∫{𝑥∈Ω∶ 𝑢⩾1}

𝑢𝑞 𝑑𝑥 + ∫{𝑥∈Ω∶ 0<𝑢<1}
𝑢𝑞+1 𝑑𝑥

)
yields that lim𝑡→∞ 𝐼+(𝑡𝑢) = −∞. This proves the result. □

Now, we can prove the existence of two constant sign solutions to problem (1.7).

Proposition 4.5. Let hypotheses (H1) and (H2)(i)–(iv) be satisfied. Then, problem (1.7) admits two
nontrivial weak solutions 𝑢0, 𝑣0 ∈ 𝑊

1,log

0
(Ω) ∩ 𝐿∞(Ω) such that 𝑣0 ⩽ 0 ⩽ 𝑢0 inΩas well as 𝐼(𝑢0) >

0 and 𝐼(𝑣0) > 0.

Proof. From Proposition 4.3, we know that zero is a local minimum of 𝐼 and that there exist
𝜌,𝑚 > 0 such that

𝐼+(𝑢) ⩾ 𝑚 for all 𝑢 ∈ 𝑊
1,log

0
(Ω) with ‖𝑢‖ = 𝜌.

Taking Proposition 4.4 and Theorem 2.4 into account, we can find an element 𝑤 ∈ 𝑊
1,log

0
(Ω)

such that ‖𝑤‖ > 𝜌 and 𝐼(𝑤) < 0 = 𝐼(0). Thus,

𝑐 ∶= inf
𝛾∈Γ

max
0⩽𝑡⩽1

𝐼+(𝛾(𝑡)),

with

Γ =
{
𝛾 ∈ 𝐶

(
[0, 1],𝑊

1,log

0
(Ω)

)
∶ 𝛾(0) = 0, 𝛾(1) = 𝑤

}
,

is a critical point for 𝐼+. Since 𝑐 > 𝑚 and because critical points of 𝐼+ are all nonnegative, we
conclude that there exists a nonnegative weak solution 𝑢0 ∈ 𝑊

1,log

0
(Ω) of problem (1.7) such

that 𝐼(𝑢0) ⩾ 𝑚. Similarly, we can show the assertion for 𝐼− getting a nonnegative weak solution
𝑣0 ∈ 𝑊

1,log

0
(Ω). Using Theorem 3.1 gives the desired results. □

Remark 4.6. Note that condition (H2)(V) was not needed in the proof of Proposition 4.5.
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MULTIPLICITY RESULTS FOR LOGARITHMIC DOUBLE PHASE PROBLEMS 17

5 THIRD SOLUTION VIA CRITICAL GROUPS

In this section, we are going to prove the existence of a third nontrivial solutions by using tools
from critical groups.

Proposition 5.1. Let hypotheses (H1) and (H2) be satisfied. Then, 𝐶𝑘(𝐼±,∞) = 𝐶(𝐼,∞) = 0 for all
𝑘 ∈ ℕ0.

Proof. We show the proof only for 𝐼+, it works in a similar way for 𝐼− and 𝐼. Let 𝑢 ∈ 𝜕𝐵+
1
∶= {𝑢 ∈

𝑊
1,log

0
(Ω)∶ ‖𝑢‖ = 1 and 𝑢+ ≢ 0}. First, observe that, due to (4.9), we get

lim
𝑡→∞

𝐼+(𝑡𝑢)

𝑡𝑞
= −∞ for all 𝑢 ∈ 𝑊

1,log

0
(Ω) ⧵ {0}. (5.1)

Furthermore, due to Lemma 4.1, we have

𝑑

𝑑𝑡
𝐼+(𝑡𝑢) = 𝐼′+(𝑡𝑢)(𝑢) =

1

𝑡
𝐼′+(𝑡𝑢)(𝑡𝑢)

=
1

𝑡

(
𝑡𝑝‖∇𝑢‖𝑝𝑝 + 𝑡𝑞 ∫Ω 𝜇(𝑥)

(
log(𝑒 + 𝑡|∇𝑢|) + 𝑡|∇𝑢|

𝑞(𝑒 + 𝑡|∇𝑢|)
)|∇𝑢|𝑞 𝑑𝑥

−∫Ω 𝑓(𝑥, 𝑡𝑢
+)𝑡𝑢 𝑑𝑥

)
⩽
1

𝑡

(
𝑡𝑝‖∇𝑢‖𝑝𝑝 + 𝑡𝑞

(
1 +

𝜅

𝑞

)
∫Ω 𝜇(𝑥) log(𝑒 + 𝑡|∇𝑢|)|∇𝑢|𝑞 𝑑𝑥 − ∫Ω 𝑓(𝑥, 𝑡𝑢

+)𝑡𝑢 𝑑𝑥

)
⩽
1

𝑡

((
1 +

𝜅

𝑞

)(
𝑡𝑝‖∇𝑢‖𝑝𝑝 + 𝑡𝑞 ∫Ω 𝜇(𝑥) log(𝑒 + 𝑡|∇𝑢|)|∇𝑢|𝑞 𝑑𝑥)

−∫Ω 𝑓(𝑥, 𝑡𝑢
+)𝑡𝑢 𝑑𝑥

)
⩽
1

𝑡

((
1 +

𝜅

𝑞

)(
𝑞𝐼+(𝑡𝑢) + ∫Ω 𝑞𝐹(𝑥, 𝑡𝑢

+) 𝑑𝑥

)
− ∫Ω 𝑓(𝑥, 𝑡𝑢

+)𝑡𝑢 𝑑𝑥

)
=
1

𝑡

((
1 +

𝜅

𝑞

)
𝑞𝐼+(𝑡𝑢) + ∫Ω

(
𝑞

(
1 +

𝜅

𝑞

)
𝐹(𝑥, 𝑡𝑢+) − 𝑓(𝑥, 𝑡𝑢+)𝑡𝑢

)
𝑑𝑥

)
=
1

𝑡

(
(𝑞 + 𝜅)𝐼+(𝑡𝑢) + ∫Ω

(
(𝑞 + 𝜅)𝐹(𝑥, 𝑡𝑢+) − 𝑓(𝑥, 𝑡𝑢+)𝑡𝑢+

)
𝑑𝑥

)
,

where in the last line we used the fact that 𝑓(𝑥, 0) = 0 for a.a 𝑥 ∈ Ω. Consequently, using (1.11) in
(H2)(ii), we get

𝑑

𝑑𝑡
𝐼+(𝑡𝑢) ⩽

1

𝑡

(
(𝑞 + 𝜅)𝐼+(𝑡𝑢) + 𝑐|Ω|).

We conclude that

if 𝐼+(𝑡𝑢) < −
𝑐|Ω|
𝑞 + 𝜅

∶= −𝜈0, then
𝑑

𝑑𝑡
𝐼+(𝑡𝑢) < 0. (5.2)
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18 RĂDULESCU et al.

Now, let 𝜈 be a positive number such that −𝜈 < min{−𝜈0, inf 𝜕𝐵+
1
𝐼+}. From (5.1) we know that

for all 𝑢 ∈ 𝜕𝐵+
1
, there exists a number 𝑡𝑢 > 1 such that 𝐼+(𝑡𝑢𝑢) = −𝜈. Property (5.2) implies

that 𝑡𝑢 is unique. Thus, the function 𝜂∶ 𝜕𝐵+
1
→ ℝ given by 𝜂(𝑢) = 𝑡𝑢 is well defined and sat-

isfies 𝐼+(𝜂(𝑢)𝑢) = −𝜈 for all 𝑢 ∈ 𝜕𝐵+
1
. Moreover, the implicit function theorem implies that 𝜂

is continuous.
Let 𝐸+ = {𝑡𝑢∶ 𝑡 ⩾ 1, 𝑢 ∈ 𝜕𝐵+

1
}. We may extend 𝜂 to 𝐸+ by setting

𝜂0(𝑢) =
1‖𝑢‖𝜂

(
𝑢‖𝑢‖

)
.

Clearly, 𝜂0 ∈ 𝐶(𝐸+). Furthermore,

𝐼+(𝜂0(𝑢)𝑢) = 𝐼+

(
𝜂

(
𝑢‖𝑢‖

)
𝑢‖𝑢‖

)
= −𝜈 for all 𝑢 ∈ 𝐸+.

Moreover, if 𝐼+(𝑢) = −𝜈, then 𝜂( 𝑢‖𝑢‖ ) = ‖𝑢‖ and thus 𝜂0(𝑢) = 1 by using (5.2). Consequently, if
we define ℎ∶ [0, 1] × 𝐸+ → 𝐸+ by ℎ(𝑡, 𝑢) = (1 − 𝑡)𝑢 + 𝑡𝜂0(𝑢)𝑢, we get

ℎ(0, 𝑢) = 𝑢, ℎ(1, 𝑢) = 𝜂0(𝑢)𝑢 ∈ 𝐼
𝜇
+ for all 𝑢 ∈ 𝐸+

and

ℎ(𝑡, ⋅)||𝐼𝜈+ = id ||𝐼𝜈+ .
Thus, 𝐼𝜈+ is a strong deformation retract of 𝐸

+. Using the radial retraction, we obtain that 𝜕𝐵+
1
is

a deformation retract of 𝐸+, and thus 𝐼𝜈+ and 𝜕𝐵
+
1
are homotopically equivalent. Due to Corollary

6.1.24 by Papageorgiou–Rădulescu–Repovš [35, p 468], we conclude that

𝐻𝑘

(
𝑊

1,log

0
(Ω), 𝐼𝜈+

)
= 𝐻𝑘

(
𝑊

1,log

0
(Ω), 𝜕𝐵+

1

)
for all 𝑘 ∈ ℕ0.

Since 𝑊
1,log

0
(Ω) is infinite dimensional, we know that 𝜕𝐵+

1
is contractible in itself. Thus, by

Granas–Dugundji [23, p. 389], we know that

𝐻𝑘

(
𝑊

1,log

0
(Ω), 𝜕𝐵+

1

)
= 0 for all 𝑘 ∈ ℕ0.

Hence, if |𝜈| is large enough, we get
𝐶𝑘(𝐼+,∞) = 𝐻𝑘

(
𝑊

1,log

0
(Ω), 𝐼𝜈+

)
= 0 for all 𝑘 ∈ ℕ0. □

Proposition 5.2. Let hypotheses (H1) and (H2) be satisfied. Then, we have

𝐶𝑘(𝐼, 𝑢0) = 𝐶𝑘(𝐼+, 𝑢0) for all 𝑘 ∈ ℕ0.

Proof. Let𝑀 > ‖𝑢0‖𝐿∞(Ω), see Theorem 3.1 and consider the following truncation of 𝑓(𝑥, ⋅):

𝑓𝑀(𝑥, 𝑠) =

⎧⎪⎨⎪⎩
𝑓(𝑥, −𝑀) if 𝑠 < −𝑀,

𝑓(𝑥, 𝑠) if −𝑀 ⩽ 𝑠 ⩽ 𝑀

𝑓(𝑥,𝑀) if 𝑠 > 𝑀.
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Let the positive truncation of 𝑓𝑀(𝑥⋅) be the function

𝑓𝑀+ (𝑥, 𝑠) ∶= 𝑓𝑀(𝑥, 𝑠+).

We set 𝐹𝑀(𝑥, 𝑠) = ∫ 𝑠
0 𝑓

𝑀(𝑥, 𝑡) 𝑑𝑡 and 𝐹𝑀+ (𝑥, 𝑠) = ∫ 𝑠
0 𝑓

𝑀
+ (𝑥, 𝑡) 𝑑𝑡 and consider the 𝐶

1-functionals
𝐼∼𝑀 and 𝐼∼𝑀+ defined by

𝐼∼𝑀(𝑢) =
1

𝑝
‖∇𝑢‖𝑝𝑝 + 1

𝑞 ∫Ω 𝜇(𝑥)|∇𝑢|𝑞 log(𝑒 + |∇𝑢|) 𝑑𝑥 − ∫Ω 𝐹
𝑀(𝑥, 𝑢) 𝑑𝑥,

𝐼
∼𝑀
+ (𝑢) =

1

𝑝
‖∇𝑢‖𝑝𝑝 + 1

𝑞 ∫Ω 𝜇(𝑥)|∇𝑢|𝑞 log(𝑒 + |∇𝑢|) 𝑑𝑥 − ∫Ω 𝐹
𝑀
+ (𝑥, 𝑢) 𝑑𝑥.

Since 𝐹 satisfies (1.14) in hypothesis (H2) (v), we know that there exists a global constant 𝐶 > 0

such that

|𝐹𝑀(𝑥, 𝑠) − 𝐹𝑀(𝑥, 𝑡)| ⩽ 𝐶|𝑠 − 𝑡| and |𝐹𝑀+ (𝑥, 𝑠) − 𝐹𝑀+ (𝑥, 𝑡)| ⩽ 𝐶|𝑠 − 𝑡| (5.3)

for all 𝑠, 𝑡 ∈ ℝ. Using (5.3) and the embedding𝑊
1,log

0
(Ω) ↪ 𝐿1(Ω), we have

|𝐼∼𝑀(𝑢) − 𝐼
∼𝑀
+ (𝑢)|

⩽ ∫Ω |𝐹𝑀(𝑥, 𝑢) − 𝐹𝑀+ (𝑥, 𝑢)|𝑑𝑥
⩽ ∫Ω |𝐹𝑀(𝑥, 𝑢) − 𝐹𝑀(𝑥, 𝑢0)|𝑑𝑥 + ∫Ω |𝐹𝑀(𝑥, 𝑢0) − 𝐹𝑀+ (𝑥, 𝑢)|𝑑𝑥
= ∫Ω |𝐹𝑀(𝑥, 𝑢) − 𝐹𝑀(𝑥, 𝑢0)|𝑑𝑥 + ∫Ω |𝐹𝑀+ (𝑥, 𝑢0) − 𝐹𝑀+ (𝑥, 𝑢)|𝑑𝑥
⩽ 2𝐶 ∫Ω |𝑢 − 𝑢0|𝑑𝑥
⩽ 𝐶‖𝑢 − 𝑢0‖,

with 𝐶 > 0.
On the other hand, since 𝑓 satisfies (1.15), we know that 𝑓𝑀 and 𝑓𝑀+ also satisfy (1.15) with a

global constant 𝐶. Thus, using Hölder’s inequality and the embeddings𝑊
1,log

0
(Ω) ↪ 𝐿𝑝

∗
(Ω) as

well as𝑊
1,log

0
(Ω) ↪ 𝐿

𝑝∗

𝑝∗−𝛽 (Ω) (see Proposition 2.1 (ii), (iii)), we get for ℎ ∈ 𝑊
1,log

0
(Ω) that

|⟨(𝐼∼𝑀)′(𝑢) − (𝐼
∼𝑀
+ )′(𝑢), ℎ⟩|

⩽ ∫Ω |𝑓𝑀(𝑥, 𝑢) − 𝑓𝑀+ (𝑥, 𝑢)||ℎ|𝑑𝑥
⩽ ∫Ω |𝑓𝑀(𝑥, 𝑢) − 𝑓𝑀(𝑥, 𝑢0)||ℎ|𝑑𝑥 + ∫Ω |𝑓𝑀+ (𝑥, 𝑢0) − 𝑓𝑀(𝑥, 𝑢)||ℎ|𝑑𝑥
⩽ 2𝐶 ∫Ω |𝑢 − 𝑢0|𝛽|ℎ|𝑑𝑥
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20 RĂDULESCU et al.

⩽ 2𝐶 ‖𝑢 − 𝑢0‖𝛽𝑝∗ ‖ℎ‖ 𝑝∗

𝑝∗−𝛽

⩽ 𝐶‖𝑢 − 𝑢0‖𝛽 ‖ℎ‖,
because 𝑝∗

𝑝∗−𝛽
< 𝑝∗, since 𝛽 < 𝑝∗ − 1. Consequently, given 𝜀 > 0, it is possible to find 𝛿 > 0 such

that

‖𝐼∼𝑀 − 𝐼
∼𝑀
+ ‖𝐶1(𝐵𝛿(𝑢0)) < 𝜀.

Using the 𝐶1-continuity property of critical groups, see Gasiński–Papageorgiou [22, Theorem
5.126], we have

𝐶𝑘(𝐼
∼𝑀 , 𝑢0) = 𝐶𝑘(𝐼

∼𝑀
+ , 𝑢0) for all 𝑘 ∈ ℕ0.

Thus, we may let𝑀 →∞ and use Granas–Dugundji [23, Theorem D.6, p. 615] to conclude that

𝐶𝑘(𝐼, 𝑢0) = 𝐶𝑘(𝐼+, 𝑢0) for all 𝑘 ∈ ℕ0. □

Proposition 5.3. Let hypotheses (H1) and (H2) be satisfied. Then, we have

𝐶𝑘(𝐼+, 𝑢0) = 𝛿𝑘,1ℤ for all 𝑘 ∈ ℕ0.

Proof. Assume that 𝐾𝐼+
= {0, 𝑢0}. Otherwise we would have already had a third solution. From

Proposition 4.3 and (4.7), we can find 𝜌+ > 0 such that

𝑚+ ∶= inf
{
𝐼+(𝑢)∶ ‖𝑢‖ = 𝜌+

}
> 0.

Let 𝜈− and 𝜈+ be constants such that

𝜈− < 0 < 𝜈+ < 𝑚+ ⩽ 𝐼+(𝑢0).

We have

𝐼
𝜈−
+ ⊂ 𝐼

𝜈+
+ ⊂ 𝑊

1,log

0
(Ω) = 𝑋.

Let 𝑖 be the embedding of the map 𝐼
𝜈−
+ into 𝐼

𝜈+
+ , and consider the corresponding long exact

sequence of singular homology groups, see, for example, Papageorgiou–Rădulescu–Repovš [35,
Proposition 6.1.23 p. 466],

⋯ ⟶𝐻𝑘(𝑋, 𝐼
𝜈−
+ )

𝑖∗
⟶ 𝐻𝑘(𝑋, 𝐼

𝜈+
+ )

𝜕∗
⟶ 𝐻𝑘−1(𝐼

𝜈+
+ , 𝐼

𝜈−
+ )⟶ ⋯ , (5.4)

where 𝑖∗ is the grouphomomorphism related to the embedding 𝑖 and 𝜕∗ is the boundary homomor-
phism, see Papageorgiou–Rădulescu–Repovš [35] for more details. Since 𝐾𝐼+

= {0, 𝑢0} and using
Proposition 5.1, we get

𝐻𝑘

(
𝑋, 𝐼

𝜈−
+

)
= 𝐶𝑘(𝐼+,∞) = 0 for all 𝑘 ∈ ℕ0.

On the other hand, since

𝜈− < 0 = 𝐼+(0) < 𝜈+ < 𝑚+ ⩽ 𝐼+(𝑢0),
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it follows that

𝐻𝑘(𝑋, 𝐼
𝜈+
+ ) = 𝐶𝑘(𝐼+, 𝑢0) for all 𝑘 ∈ ℕ0, (5.5)

and (see Papageorgiou–Rădulescu–Repovš [35, Proposition 6.2.16, p. 486]).

𝐻𝑘−1(𝐼
𝜈+
+ , 𝐼

𝜈−
+ ) = 𝐶𝑘−1(𝐼+, 0) = 𝛿𝑘−1,0ℤ = 𝛿𝑘,1ℤ for all 𝑘 ∈ ℕ0. (5.6)

In the last sequence of equalities, we used the fact that 𝛿𝑘−1,0ℤ is the 𝑘 − 1th critical group of 𝐼+
at zero whenever zero is a local minimum, see Papageorgiou–Rădulescu–Repovš [35, Proposition
6.2.3, p. 477]. Furthermore, we know that 𝑢0 is a critical point of mountain-pass type, and thus
(see Papageorgiou–Rădulescu–Repovš [35, Theorem 6.5.8, p. 527])

𝐶1(𝐼+, 𝑢0) ≠ 0.

From this and (5.5), we conclude that

𝐻1(𝑋, 𝐼
𝜈+
+ ) ≠ 0.

However, using the exactness of the sequence (5.4), leads to

rank𝐻1(𝑋, 𝐼
𝜈+
+ ) = rank ker𝜕∗ + rank im𝜕∗

= rank im𝑖∗ + rank im𝜕∗ ⩽ 1,

because𝐻1(𝑋, 𝐼
𝜈−
+ ) = 0. Thus im 𝑖∗ = {0} and because𝐻0(𝐼

𝜈+
+ , 𝐼

𝜈−
+ ) = ℤ, see (5.6). We thus obtain

𝐶1(𝐼+, 𝑢0) = 𝐻1(𝑋, 𝐼
𝜈+
+ ) = ℤ.

On the other hand, for 𝑘 > 1, we know that

𝐻𝑘(𝐼
𝜈+
+ , 𝐼

𝜈−
+ ) = 0 and 𝐻𝑘(𝑋, 𝐼

𝜈−
+ ) = 0.

Consequently, the exactness of the sequence yields

𝐻𝑘(𝑋, 𝐼
𝜈+
+ ) = 0.

We have thus shown that 𝐶𝑘(𝑋, 𝐼
𝜈+
+ ) = 𝛿𝑘,1ℤ. This proves the result. □

We have analogously results for the functional 𝐼− and 𝑣0.

Proposition 5.4. Let hypotheses (H1) and (H2) be satisfied. Then, we have

𝐶𝑘(𝐼, 𝑣0) = 𝐶𝑘(𝐼−, 𝑣0) for all 𝑘 ∈ ℕ0,

and

𝐶𝑘(𝐼−, 𝑣0) = 𝛿𝑘,1ℤ for all 𝑘 ∈ ℕ0.

Proof. The proof is similar to the proofs of Propositions 5.2 and 5.3. □
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Proposition 5.5. Let hypotheses (H1) and (H2) be satisfied. Then, problem (1.7) has three nontrivial
bounded weak solutions 𝑣0, 𝑦0 and 𝑢0 such that 𝑣0 ⩽ 0 ⩽ 𝑢0.

Proof. From Proposition 4.5, we know that 𝑣0 and 𝑢0 are bounded nontrivial weak solutions of
(1.7) such that 𝑣0 ⩽ 0 ⩽ 𝑢0. Suppose that 𝐾𝐼 = {0, 𝑣0, 𝑢0}. Since zero is a local minimum, we know
that

𝐶𝑘(𝐼, 0) = 𝛿𝑘,0ℤ.

From Proposition 5.1, we also know that

𝐶𝑘(𝐼,∞) = 0.

Moreover, Propositions 5.2, 5.3, and 5.4 yield that

𝐶𝑘(𝐼, 𝑢0) = 𝛿𝑘,1ℤ = 𝐶𝑘(𝐼, 𝑣0).

Then, from the Morse relation stated in (2.4), we conclude that

(−1)0 + 2(−1)0 = 0,

which is a contradiction. Hence, there exists 𝑦0 ∈ 𝐾𝐼 such that 𝑦0 ∉ {0, 𝑢0, 𝑣0}. This proves the
result. □

Theorem 1.3 follows now from Propositions 4.5 and 5.5.
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