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1. Introduction

The central purpose of this paper is the study of the Hodge decomposition of the variable exponent Lebesgue space of
Clifford-valued functions. In the compact case, the Hodge theory is a central tool for characterizing the topology of the un-
derlying manifold. In the second part of this paper, we apply this decomposition in order to solve the homogeneous A-Dirac
equations with variable growth and the Stokes equations in the setting of variable exponent spaces of Clifford-valued func-
tions. The approach we develop is in the spirit of Helmholtz [1858]. He first formulated a result on the splitting of vector
fields into vortices and gradients, which can be understood as a rudimentary form of what is now called the “Hodge decom-
position”. We also point out the pioneering papers by Hodge [1,2], de Rham [3,4], and Weyl [5].

Variable exponent Lebesgue spaces [P® appeared in the literature for the first time already in an article by W. Orlicz
in 1931, who considered the variable exponent function space I?® on the real line, see [6-8]. The next major step in the
research of variable exponent spaces was the paper by 0. Kovacik and J. Rakosnik [9], which established many of the basic
properties of Lebesgue spaces [P® and the corresponding Sobolev spaces W*P® In the last twenty years, these spaces have
attracted more and more attention. The study of these spaces has been stimulated by problems in elastic mechanics, fluid
dynamics, calculus of variations and differential equations with variable growth conditions, see [6,10,11,9,12]. In particu-
lar, one of the reasons that forced the rapid expansion of the theory of variable exponent spaces have been the models of
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electrorheological fluids introduced by Rajagopal and RuZicka [13], which can be described by the boundary value prob-
lem for the generalized Navier-Stokes equations, where the extra stress tensor is coercive and satisfies appropriate growth
assumptions. For the detailed accounts we refer to the monograph of RuZicka [12].

As a powerful tool for solving elliptic boundary value problems in the plane, the methods of complex functions theory
play an important role. One way to extend these ideas to higher dimension is to begin with a generalization of algebraic
and geometrical properties of the complex numbers. In this way, W.R. Hamilton studied the algebra of quaternions in 1843.
Further generalizations were investigated by W.K. Clifford in 1878. He introduced the so-called geometric algebras or Clifford
algebras, which are generalizations of the complex numbers, the quaternions, and the exterior algebras, see [14]. Initially
developed in the 1930-1940 and very intensively since 1970, theories for functions with values in Clifford algebras were
developed. Many advantages of the complex function theory were preserved in this process. Clifford analysis usually stud-
ies the solutions of the Dirac equation or of a generalized Cauchy-Riemann system for functions defined on domains in
Euclidean space and taken value in Clifford algebras, see [15,16]. Of course, the motivation for this development is closely
related with systems of partial differential equations in physics, see [17].

In [18,19], C.A. Nolder first introduced A-Dirac equations DA(x, Du) = 0 and developed tools for the study of weak solu-
tions to nonlinear A-Dirac equations in space Wol‘p (82, CL,). Note that under appropriate identifications, the scalar part of
DA(x, Du) = 0 is actually the A-harmonic equation divA(x, Vu) = 0. These equations have been extensively studied with
many applications, see for instance [20]. Recently, L. Diening and P. Kaplicky [17] studied the interior regularity of the local
weak solutions u € W'¥(2) and w € I (£2) of the following stationary generalized Stokes system:

—divA(Du) + Vo = —divG in 2
divu =0 in§$2,

where D is the symmetric part of the gradient, the extra stress tensor A determines properties of the fluid. For more detailed
discussions, we refer to [17,21,22] and the references therein. Obviously, A-Dirac equations correspond to the extra stress
tensor in the real-valued case.

However, the existence of weak solutions to the A-Dirac equations has not been proved. Y. Fu and B. Zhang [23-25] proved
the existence of weak solutions for A-Dirac equations with variable growth. For this purpose, they also established a theory
of variable exponent spaces of Clifford-valued functions. But so far they have proved the existence of weak solutions to the
scalar part of the A-Dirac equations in space Wol‘p(x) (82, CLy), see [ 13]. With the help of the orthogonal decomposition of the
space [%(£2), K. Giirlebeck and W. SpréRig [26,20] obtained the existence of uniqueness of solutions to the Stokes equations.
Therefore, it is natural to consider an extension of the orthogonal decomposition of the spaces L?(§2, C£,).

One of the most interesting results of complex and hyper-complex function theory is the orthogonal decomposition of
the space L?(£2, C¢,,), namely

12(£2, Cly) = (kerD N [*(£2, CLy)) @ DW,2(£2, CLy), (1.1)

where kerD denotes the set of all monogenic functions on £2. This decomposition has a number of applications, especially
to the theory of partial differential equations, see [27] for the complex case and [20] for the hypercomplex case. In [28],
U. Kdhler extended the orthogonal decomposition (1.1) to the spaces [P(£2) in form of a direct decomposition in the case
of Clifford analysis. In [29], J. Dubinski and M. Reissig considered decompositions for the spaces W™P(£2), which can be
applied to study nonlinear variational problems.

The goal of this paper is to generalize decomposition (1.1) in the framework of the variable exponent spaces and to give
applications to the A-Dirac equations and the Stokes equations. Next, using the Hodge-type decomposition that we obtain
in this paper, we prove the existence and uniqueness of weak solutions to A-Dirac equations with variable growth under
certain suitable assumptions. At the same time, the existence and uniqueness of solutions to Stokes equations are showed in
variable exponent product spaces of Clifford-valued functions. The whole treatment applies to a much larger class of elliptic
problems.

This paper is organized as follows. In Section 2, we start with a brief summary of basic knowledge of Clifford algebras
and variable exponent spaces of Clifford-valued functions, then discuss properties of some operators, which will be needed
in the sequel. In Section 3, we establish a Hodge-type decomposition for the space I?® (£2, C¢,). In Section 4, appealing to
this decomposition in combination with the Minty-Browder theory, we prove the existence and uniqueness of a solution to

the A-Dirac equations with variable growth in WO] ) (82, CLy). On the other hand, with the help of this decomposition, we
prove the existence and uniqueness of a solution in W(}’p(x)(ﬂ, Ce,) x [P¥(£2, R) of the Stokes problem, provided that the
right-hand side is in W="P® (82, C¢,,).

We refer to the excellent book by Ciarlet [30] for necessary abstract notions and useful related examples.

2. Preliminaries
2.1. Clifford algebra

We first recall some related notions and results from Clifford algebra. For a detailed account we refer to [15,31,20] and
the references therein.



Y. Fu et al. / Computers and Mathematics with Applications 70 (2015) 691-704 693

Let C¢,, be the real universal Clifford algebra over R". Then

C¢, = spanfep, €1,€z,...,€;,€1€2,...,€1_1€n, ..., €1€2 - - €y}
where eg = 1 (the identity element in R"), {eq, e, ..., e,} is an orthonormal basis of R" with the relation e;e; 4 eje; =
—24;e. Thus, the dimension of C¢, is 2". In particular, we denote by C¢{, = H the algebra of real quaternions. For
I={iy,....,i;} C{1,...,n}with1l <i; <ip <--- < i, < npute = e;ej,...e;,, whileforl = @, ey = e,. For

0 <r < nfixed, the space C¢], is defined by

C¢;, = spanfe; : |I| := card(l) = r}.
The Clifford algebra C¢, is a graded algebra as

ctn= P ca,.

1<r<n

Any element a € C¢,, may thus be written in a unique way as

a=[alo + [aly + - - - + [aln,
where [ ], : C¢;, — C£;, denotes the projection of C£, onto C}. It is customary to identify R with Cﬁg and identify R" with
CK:, respectively. This means that each element x of R" may be represented by

n
X = E Xi€;.
i=1

For u € C¢,, we denotes by [u], the scalar part of u, that is, the coefficient of the element eg. We define the Clifford conju-
gation as follows:

r(r+1)
€6, ...6; = (-1 2 €€, ... €

ForA € C¢,,, B € Cl,,, we have
AB=BA, A=A
We denote
(A, B) = [ABlo.
Then an inner product is thus obtained, which defines the norm | - | on C¢,, by
A? = [AA]o.
From [32] we know that this norm is submultiplicative, namely
|AB| < CI|A[ B,

where C is a positive constant depending only on n and smaller than 2"/2.

Let £2 C R" be a bounded domain with smooth boundary 9$2. A Clifford-valued function u : 2 — C£, can be written
as u = Xju;e;, where the coefficients u; : 2 — R are real-valued functions.

The Dirac operator on the Euclidean space used here is introduced by

e

This is a special case of the Atiyah-Singer-Dirac operator acting on sections of a spinor bundle. We also point out that the
most famous Dirac operator describes the propagation of a free fermion in three dimensions.

If u is a real-valued function defined on 2, then Du = Vu. Moreover, D> = — A, where A is the Laplace operator which
operates only on coefficients. A function is left monogenic if it satisfies the equation Du(x) = 0 for each x € £2. A similar
definition can be given for right monogenic function. An important example of a left monogenic function is the generalized
Cauchy kernel

60 1 X
X) = ——,
wy |x|"
where w, denotes the surface area of the unit ball in R". This function is a fundamental solution of the Dirac operator. We
refer the readers to [20,14,28,16] for basic properties of left monogenic functions.

2.2. Variable exponent spaces of Clifford-valued functions

Next, we investigate some basic properties of variable exponent spaces of Clifford-valued functions. Note that in what
follows, we use the short notation [P (§2), W1P® (£2), etc., instead of LP® (£2, R), WP (2, R), etc.
Throughout this paper we assume that

peP(2) and 1<p_:=infp() <p) <supp(x)=:p; < oo, (2.1)
xe2 xe?
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where P°%(£2) is the set of exponents p satisfying the so-called log-Holder continuity, that is,
C
— < -
POLS fogte+ =y

holds for all x, y € £2, see [G]. Let 2 (£2) be the set of all Lebesgue measurable functions p : 2 — (1, c0). Givenp € P(£2)
we define the conjugate function p’(x) € £(§2) by

p(x)
px) —1
The variable exponent Lebesgue space [P¥ (£2) is defined by

[p(x)

p(x) = , foreachx € 2.

PO (2) = [u cP(Q): / uP®dx < oo],
2

with the norm

u(x
lullpeo (@) = inf{t >0: / ‘Q
ol t

The variable exponent Sobolev space W1P® (£2) is defined by

p(x)
dx < 1}.

w9 (@) = fue () : |Vul e V().
with the norm
||u||wlyp(x>(g) = | Vullpeo o) + ||u||1,p(x}(g)- (2.2)

Denote by W, "™ (£2) the completion of CJ°(£2) in W'P®(2) with respect to the norm (2.2). The space W~"P® () is

defined as the dual of the space Wol’p/(x) (£2). For more details we refer to [6,33,9] and the references therein.
In what follows, we understand u e I[P®(£2, C¢,) coordinatewisely. For example, u € [P¥ (£, C¢,) means that
{u} C IPW(2) foru = Zjuje; € CL, with the norm [[ullpew . copy = Dy Ui ll oo (). In this way, the spaces W'P® (2, CLy),

Wol‘p(x) (£2, CLy), C§° (82, CLy), etc., can be understood similarly. In particular, the space 12(£2, C¢,) can be converted into a
right Hilbert C£,-module by defining the following Clifford-valued inner product (see [20, Definition 3.74])

(f.8)c, = / fog)dx. (2.3)
o)
Remark 2.1. A simple computation shows that |||l ;pw (o ¢, IS €quivalent to H |u| ||mx)(m. Furthermore, we also have that
1,p(x) . .
for every u € Wy (82, CLy), ||Dull pw (@ e, 1S an equivalent norm of ||u||Wg,p<x>(_chzn) (see [23]).

Lemma 2.2 ([10]). Let p(u) = [, [u(x)|P™dx. For u € [’ (£2), we have

p— p
() I Nl ey = 1, then [lullhy, o < p() <l o

() I ullpo ey < 1. then [lullP, o < o) < ully, o

Lemma 2.3 ([23]). Assume that p(x) € $(82). Then the inequality
s = cn plullmie o 1o
2

holds for every u € [P® (2, C¢,) and v € [P’ ® (82, CLy).

Lemma 2.4 ([24]). Assume that p(x) € $(§2). Then the following properties are true.
(1) The dual of the space [P® (£2, Ct,) is [ ® (82, CLy), i.e., (P9 (82, CZH))* = [P ™ (£2, CL,). Thus, the space LP® (2, CL,) is
a reflexive Banach space.
(2) The space W P® (2, CL,) is a reflexive Banach space.
Definition 2.5 ([20]). Let u € C(§2, C¢,). The Teodorescu operator is defined by
Tu(x) = / G(x — y)u(y)dy,
o)

where G(x) is the generalized Cauchy kernel mentioned above.



Y. Fu et al. / Computers and Mathematics with Applications 70 (2015) 691-704 695

Definition 2.6. Letu € LllOC (R™). The Hardy-Littlewood maximal operator is defined by

1
Mu(x) = sup —————
u() Srlilg meas(B(x, 1)) /I;(x,r)

where B(x,r) ={y e R": |y — x| <r1}.

lu(y)|dy,

Lemma 2.7 ([6]). Let x € 2 and u € L}, (R"). Then

/ %IUO')Idy < C(n) (diam2) Mu(x).
o lx=yI

Lemma 2.8 ([6]). If p(x) satisfies (2.1), then M is bounded in [P® (§2). Thus, there exists a constant C = C(n, p) such that
”MUHLP(X)(Q) = C(n»p)”u”Lﬂ(X)(_Q)-

Lemma 2.9 ([6]). Let @ be a Calderén-Zygmund operator with Calderon-Zygmund kernel K on R" x R". Then & is bounded on

[P RM).

Lemma 2.10 ([24]). The operator D : W'"P® (2, CL,) — LP®(£2, CL,,) is continuous.

Lemma 2.11 ([24]). The operator T : [P® (82, C¢,) — WP (2, CL,) is continuous.

Lemma 2.12. Let p(x) € £(§2). Then for u € wg’p“)(fz, C¢,), the Borel-Pompeiu formula TDu(x) = u(x) holds for all x € £2.
Moreover, for u € [P® (82, CL,), the equation DTu(x) = u(x) holds for all x € £2.

Proof. According to Remark 4.21 in [20], the conclusions are implied by WP® (2, C¢,) — W'P-(£2, C¢,) and [P®
(2,Cl,) < [P-(2,Cl,). O

Lemma 2.13. There exists a unique linear extension T of the operator T such that the operator T : W-lp® (£2,Cly) —
[P®(£2, CL,) is continuous.

Proof. In view of Proposition 12.3.2 in [6], we know that for each f € W~'P® (), there exists f, € [P®(2),k =
0,1,...,n,suchthat

i d
Foo)=>" | it (24)

=0 /2 8Xk

forallg € W01,p’(;<> (£2). Moreover, |[f |- 1.5t (o) is equivalent to Y ;o [lfill pw ()~ Obviously, for every f € W=1P® (2, CL,)
the equality (2.4) still holds for fi € [P®(2,Cty), k = 0, 1,...,n. Moreover, |f|ly-1.p0 g ¢, i €quivalent to Yo

fill oo (2.ce,y)- ON the other hand, by Proposition 12.3.4 in [6], the space C§°(£2, C¢;) is dense in W—1P® (2, CL,). Thus, we
may choose

L I 7
=4y
;Bxk

where u’é, uL e (§°(£2, CLy), such that v — fllw-1r0(2.ce,y — 0 and ||u{< — fillpw(a.ce,y —> 0asj — oo, where
k=0,1,...,n Here, we are using the fact that C§°(£2, C¢,) is dense in IPX (82, CL,) (see [24]). Set

w = [ G-y,
2
where G(x) is the above-mentioned generalized Cauchy kernel. Therefore

. . no9y .
T = fg c<x—y>(wo(y)+;8—ykwk(y>)dy

; n 9 .
= | Gx—yu,(y)d /—G — ) (y)dy.
/Q<x by + 3 [ =y
Since

. 1 .
[ x| = [ sl lay.
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Remark 2.1, Lemmas 2.7 and 2.8 imply that there exists a constant C; > 0 such that

| ctx=yuay] < Collt o o, ct- 25)

1P (22,Ce)

Now, let us extend u’, (x) by zeroto R" \ £2. Then G(x y) satisfies the conditions of Calder6n-Zygmund kernel on R" x R"
(see [24]). In view of Lemma 2.9, there exist posmve constant G, (k = 1, ..., n) such that

H f a—kc:(x—y)w,;(w H

Combining (2.5) with (2.6), we have

1w ||Lp(X)(_Q Cln) = H/ G(x — Y)up(y) yHW)(Q . ZH[ a—xkc(x W)

< Cellt I s : 2.6
PO (2.Cl) — Kkl k||u)()(:z,czn) (2.6)

LPX) (£2,Cln)

= C0||u’0 “ PX) (2,Cln) + Z Ck||”1<||w<)<>(9,an)'
k=1

Lettingj — oo, by means of the continuous linear extension theorem, the operator T can be uniquely extended to a bounded
linear operator T such that for all f € W~P® (8, C¢,), there exists a constant C > 0 such that

n
1Tl o < C(Wollwaan + D Mlo@.cen) < EWlw-tro.con:
k=1

This completes the proof of Lemma 2.13. O

In [34], L. Diening, D. Lengeler and M. RuZicka showed that the Dirichlet problem of the Poisson equation with homoge-
neous boundary data

—Au=f, ing
u=20, ond£2

(2.7)
possesses a unique weak solution u € WP® () for each f € W~P® (£2). Moreover, the following estimate holds
||u||wl,p(x)(_q) < C(n,p, Q)||f||w—1.P(X)(g)~
We say that u is a weak solution of problem (2.7) provided that
f,0) = / Vu-Vedx, Ve¢eW,”%).
2
Then it is easy to see that for all f € W~P® (2, C£,,) the problem (2.7) still has a unique weak solutionu € WP®(£2, C¢,,).
We denote by Ay ! the solution operator. On the other hand, the operator
A WP (R, Cly) — WHPO(2, Cey)

is continuous, so we gbtain that the operatorD = —AT : [P® (2, Cly) — W~1P® (82, C¢,) is continuous from Lemma 2.11,
where the operator D can be considered as a unique continuous linear extension of the Dirac operator. Hence we can derive
two useful results which will be needed later.

Lemma 2.14. Assume that p(x) satisfies relation (2.1).

i) If u € [P® (82, CLy,), then the equation TDuLl = u(x) holds for allx € 2.
(11) fuew- ”’(")(Q Ce,), then the equation DTu(x) = u(x) holds for all x € £2.

Proof. (i) follows from Lemma 2.12 and the density of W, *® (2, C£,) in [’® (22, CL,).
(i) follows from Lemma 2.12 and the density of C°(£2, C¢,) in W= 1P® (2, C¢,). O

Lemma 2.15. Assume that f € W, "™ (2, C¢,) and g € ['®(£2, CL,). Then the following equality holds
(Df’ g)cen = (f’ 5g)czn’

where (-, -)cg, is Clifford-valued product (2.3) above mentioned.

Proof. Let g, € Wol‘p,(")(.(z, Ct,) with g, — g in [P ®(£2, C¢,). Then we have
(Of. gk)czn = (f. ng)cen

By the density of Wol’p/(x) (£2, CL,) in [P ® (82, CL,), together with the continuity of D and Lemma 2.3, the desired conclusion
follows. O
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3. The Hodge decomposition of variable exponent Lebesgue spaces
Now we are ready to generalize (1.1) to the case of variable exponent Lebesgue spaces.
Theorem 3.1. The space [P® (£2, C¢,,) allows the Hodge-type decomposition

P® (82, Cl,) = (kerD N "X (82, CLy)) & DWyP¥ (2, CEy) (3.1)
with respect to the Clifford-valued product (2.3).
Proof. Similar to the proof of Theorem 6 in [28], we first prove that

(kerD N [’® (2, Ce,)) N DW,P¥ (2, Ce,) = {0}

Suppose f € (kerDNLP® (82, C¢,)) NDW, ¥ (2, CL,), then Df = 0.Because of f € DW, ™ (82, Ct,) there exists a function
v € wg"’“)(rz, C¢,) such that Dv = f. Hence, we get that —Av = 0 and v = 0 on d£2. From the uniqueness of Agl we
obtain v = 0. Consequently, f = 0. Therefore, the sum of the two subspaces is a direct one.

Now let u € [P®(£2, C¢,). Then we have u, = DAglﬁu € DWOLW)(.Q, Cly). Letu; = u — uy. Then u; € [PX (82, CLy).
Furthermore, we take u, € W, (82, C¢,) such that uy — u in [P® (82, C¢,), then by the density of W, "™ (82, C¢,) in

[P™ (2, CL,) and Lemma 2.3, we have for any ¢ € Wol'p/(x)(.Q, Ctn)
(u1,Dp)c, = (u—1uz,Dg)., = ’(1Lngo(1)uk — DDAy ' Dy, )c,

= klillgo(Duk — Du, ‘p)czn =0.

Thus, we getu; € kerD. Since u € [P® (2, CL,) is arbitrary, the desired result follows immediately. O
Beginning with this decomposition we get the following projections
P : [P™ (2, CL,) — kerD N I[PX(£2, CL,)
Q : IP™(2,Ct,) — DWPY (2, Cey).
For p(x) = 2, these are ortho-projections. Notice that directly from the proof of Theorem 3.1 we obtain
Q=DA;'D, P=I1-Q. (3.2)

It follows from (3.2) that the operator Q as well as P maps the space [P (£2, C¢,) into itself.
In the following we discuss the properties of the operator Q, which will be used later.

Theorem 3.2. The space "™ (£2, C£,) NimQ is a closed subspace of [P® (£2, CL,), that is, the space DWy P® (£2, C¢,) is closed
in [PM(£2, Cey).

Proof. Letu € DWOLP(X)(.Q, C¢,). Then there exists u; € DWOLP(X) (82, Cey,) such that [|Duy — ul|pw o cp,y — 0ask — oo.
Since Wol”’ <x)(9, C¢,) is a reflexive Banach space, we can extract a subsequence of {uy} (still denote by {u}), such that
u, — v weakly in Wg’p(x)(Q, C¢,). Since the norm in a Banach space is weakly lower semicontinuous and the operator
D: W P® (2, Ce,) — [PW(82, CL,) is continuous, we obtain

|[Dv — u”u)(x)(g,cgn) < linn_l)glf”Dun - u”LP(X)(Q’C[n) =0.
Thus u = Dv. Now we complete the proof of Theorem 3.2. O
Theorem 3.3. We have (L™ (£2, C¢,) N imQ)* = [P ™ (g, C,) NimQ, that is, the linear operator

@ : DWST (2, Cly) — (DWSP™ (2, Cly)
given by

@ (Du)(Dg) = (Dg, Du)s == / [DyDu]odx
2

is a Banach space isomorphism.

Proof. First, in view of Theorem 3.2, DW, "™ (82, C¢,) and DWOI"’/(X)(.Q, C¢,) are reflexive Banach spaces since they are
closed in [P™ (2, C¢,) and [” ¥ (£2, C¢,,) respectively. The linearity of @ is clear. For injectivity, suppose

@ (Du)(Dg) = (Dg, Du)s. = 0 (3.3)
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for all ¢ € W,"™ (82, C¢,) and some u € Wol’p/(x)(.Q, C¢,). For any w € IP®(£2, CL,,), according to Theorem 3.1, we may
write @ = a 4 f with & € kerD N [P® (82, C¢,) and B € DW,P¥ (2, CL,). From Lemma 2.15 we obtain

(a), Du)Sc = (Ol + ﬂa Du)Sc = (057 Du)Sc + (ﬂ’ Du)Sc = (,Ba Du)Sc-

This together with (3.3) gives (w, Du)s. = 0, hence Du = 0. It follows that @ is injective. To get surjectivity, letf € (DWOLP(X)
(£2, C¢y))". By the Hahn-Banach theorem, there is F € (LP®(£2, C¢,))" with ||F|| = |If|| and Flowt2 o cq,) = - In terms
0 ’ n

of Lemma 2.4, there exists ¢ € [ ® (2, C¢,) such that F(u) = (u, ¢)s for any u € [P® (2, C,). According to Theorem 3.1,
we can write ¢ = 5 + Da, where 7 € kerD N [P’ ® (82, C¢,), Da € DWOLP ® (g2, Cey,). For any Du € DWOLP(X)(.Q, Ct,), from
Lemma 2.15 we have
f(Du) = (Du, ¢)sc = (Du, n + Da)sc = (D, n)sc + (Du, D)
— (Du, Dat)s, = & (Dar)(Du).

Consequently, @ (Da) = f. It follows that @ is surjective. By means of Lemma 2.3 we have
|@ (Du)(Dg)| = |(Dy, Du)sc| < ClIDP |l o 2,com 1Pl o (.-

This means that @ is continuous. Furthermore, it is immediate that @ ! is continuous from the inverse function theorem.
This concludes the proof of Theorem 3.3. O

4. Applications

4.1. A-Dirac equations with variable growth

The Dirac equation arises in the study of nonlinear spinor fields in the unified theory of elementary particles, see Heisen-
berg [35] and Weyl [36]. The stationary states of the nonlinear Dirac field have been proposed as a model for elementary
extended fermions and nucleons, see Thaller [37].

In this subsection, we are interested in the existence of solutions to the following A-Dirac equations:

DA(Du) = 0, (4.1)
where A : C¢,,(£2) — C€,(£2) satisfies the following conditions:
(A1) |AG) —A()| < Ci(I§] + [n)PP721E — nl;
(A2) [(AE) —AM)(E — ], = GUEN + nDPDP2|E — nl?;
(A3) A(0) € "™ (£2, CLy),
where & and 7 are arbitrary elements in C¢,,, and C; and C, are positive constants. Of course, A(Du)(x) = A(Du(x)) and
DA(Du) = 0 are meant in the distributional sense.

Notice that when A(§) = |& — a|P®~2(£ — «), where o € [P® (82, Cl,) is fixed, then Eq. (4.1) generalizes the important
case of the equation D(|Du — aPY2(Dy — a)) = 0.As p(x) = p and @ = 0, p-Dirac equations were introduced and their
conformal invariance was investigated in [38]. These equations are nonlinear generalizations of the Dirac Laplace equation
as well as generalizations of elliptic equations of A-harmonic type div A(x, Vu) = 0. The study of these equations is partially
motivated by the fact that some arise as the Euler-Lagrange equations to variational integrals.

If u is a real-valued function, then the p(x)-Dirac equation becomes the so-called p(x)-Laplacian equation. In recent years

these equations have been extensively studied, see [6,33,39] and the references therein.
In order to get the existence of a solution to the A-Dirac equations, we need a theorem of Minty-Browder as follows.

Proposition 4.1 ([40, Theorem 5.16]). Let X be a reflexive Banach space and let G : X — X* be a continuous nonlinear mapping
such that

(i) (strict monotonicity) (Gv — Gw,v —w) > 0V v, w € X, v # w.
(ii) (coerciveness) limyy|— oo lvll~1(Gv, v) = oo.

Then for every f € X* there exists a unique solution u € X of the equation Gu = f.

Now we are ready to prove our result as follows.

Theorem 4.2. Under conditions (A1), (A2) and (A3), there exists a weak solution u € Wol”’ (x)(.Q, C¢,) to the A-Dirac
equations (4.1), hence there exists a Clifford-valued function u € Wg P (£2, CLy) such that

/ A(Du)Dvdx =0
Q

forany v € Wol’p(x)(.Q, C¢,). Furthermore, the solution is unique up to a monogenic function.



Y. Fu et al. / Computers and Mathematics with Applications 70 (2015) 691-704 699
Proof. We first claim that A(u) € [”'® (82, C¢,) for every u € [P®(£2, C¢,). Indeed, from (A1) and (A3) we obtain

/ AW W dx = / (JA(U) — A(0) + A(0)” ®)dx
£ 2

IA

2p’+/ |A(u) —A(0)|"/(")dx+2p'+/ IA0) [P @ dx
2 el

IA

’ P'®) ’ ’
v / (|u|P<X>*2|u|) dx + 2%+ / IA0)]” ® dx. (4.2)
2 2

This estimate together with Remark 2.1 and Lemma 2.2 yields the previous assertion.
Next we show that QA(DW, *™ (2, Ct,)) = (DWy ¥ (2, Cly))" = DW, P ¥ (82, CL,). Evidently, it follows from (3.2)

that QA(DWS”’(X)(.Q, Cly)) C DWOLP/(X) (£2, Cey). By Theorem 3.2, we get that DW, "™ (£2, C¢,) is a reflexive Banach space.
In the following, to get surjectivity of the operator QA, we need to verify the conditions of Proposition 4.1 respectively.

(1) The operator QA is continuous. Suppose that Duy, Dv € DW&"’(")(Q, C¢y) and ||Dug — Dv|lpew (o e,y — 0 as k — oo.
From (A1), we obtain

)P~ |Duy, — Do)

| |A(Du) — ADv)||

< 1| (1wl + v

Lp/(x)(g) LIJ’(X)(Q) .

Divide £2 into two parts: 21 = {x € 2 : p(x) < 2}and 2, = {x € 2 : p(x) > 2}. Then 2 = £2; U §2,.0n £2; we have

_ 469 (%
/ ((1Dwsd + pul)"™ " |Du — Dol dx < / (1Dug = DoP®~1)" dx.
24 Q

On §2,, according to Holder inequality we have

2 P'®) / 2 P’
/ <(|Du,<| + 1Dv))™™ 1Dy — Dv|> dx < 2” (1Duy] + 1Dv])” PP | s H ‘Duk - Dv‘ oo
2, LPR=2 () LP'® (2)
From Remark 2.1 and Lemma 2.2 we deduce that
_ P
/ ((|Duk| + Do) % Dy, — Dv|) dx — 0
2
as k — oo. By means of Remark 2.1 and Lemma 2.2, we obtain
|ADw) —ADY) |y .0y = O
as k — oo. Finally, the continuity follows immediately from the boundedness of the operator Q.
(2) The operator QA is strictly monotone. In view of Theorem 3.1, we have
QA(Du) = A(Du) — PA(Du)
for each u € Wy *® (82, Ct,). Thus, for any u, v € W) ?* (2, C¢,), (3.2) and Lemma 2.15 give
(QA(Dw), Dv), = (A(Du), Dv), — (PA(Du), Dv), = (A(Du), Dv), . (4.3)

Then the condition (A2) yields
(QA(Du) — QA(Dv), Du — Dv),. = (A(Du) — A(Dv), Du — Dv),,

= f [ (4Du) — ADv) (Du — Dv) dx
2 0

> CZ/ (1Du| + |Dv|)p<x)72|Du — Dv)dx > 0,
2
as Du # Dv.
(3) The operator QA is coercive. By means of (4.3) and (A2) we have

(QA(Dw), Du),,  (QA(0),Du),  (A(Du) —A(0), Du),

[l perey — IPul oy H1Pullpo e
_ Jo[(ADu) — A(0)) (Du — 0)] dx
[1Pul e o)

[ |DuP®dx

— L2 .
1Pulll 0 )



700 Y. Fu et al. / Computers and Mathematics with Applications 70 (2015) 691-704

Since

p()
fg |Du|P®dx 3 / ( IDul >p(x) (271|HDU|HM<)0(_Q>) ix
2 271‘ 1PX(2)

[Pl ooy | [Dul [1Pull poo
When H |Du’ HUJ(X)(Q) > 1, we have

[ IDuP®dx . o1

e 2 277 | |Dul | o ) -

I|Dul me @ e

Hence we get from Remark 2.1

(QA(Du), Du),.  (QA(0), Du),

||Du||LP(X)(_Q,cz,,) 1Dull e (2.ce,

as ||Dull;pe (.ce,) —> ©©- By Lemma 2.3, we obtain

(0. Du)s, (A, Du);, _ [o[AO)Du],dx

IDull o (2. ceny IDull o (2. ceny IDull oo (2. ceny

=< C||A(O)||Lp’(>¢)(,(z,c£n)'

Therefore,
(QA(Du), Du),,
1Dull peo 2. ce

as ||Dull;pe (. ce,y —> O©-

According to Proposition 4.1, let X = DWol’p O‘)(Q, C¢,) and G = QA. Then the operator QA is surjective. Consequently,
there exists u € WO1 P (£2, Cl,) such that QA(Du) = 0. Furthermore, Theorem 3.1 gives

/ A(Du)Dpdx = / (QA(Du) + PA(Du))Dpdx = / DPA(Du)¢dx = 0,
2 k2] 2

forany ¢ € Wol’p(x) (£2, CLy). Therefore, u is a weak solution of the A-Dirac equation (4.1).
Finally, if uy, u, are solutions to (4.1), then (A(Du;), Dp), = 0 (i = 1,2) forall ¢ € Wy PY(2, Cly). Set ¢ = uy — uy,
then the condition (A2) yields

0 = (A(Duy) — A(Duy), Duy — Duy),

- / [(A(Du1)—A(Du2))(Du1 —Duz)] dx
Q 0

> G, [ (1ous| -+ 1Dwal)”™? Du; ~ DusPe = .
2
Thus, Du; = Du,, hence u; — u, € ker D. The proof is now complete. O

4.2. Stokes equations in variable exponent spaces

In the study of the stationary Navier-Stokes equations, the corresponding Stokes equations plays a crucial role. It can be
said that any open question about Navier-Stokes equations, such as global existence of strong solutions, uniqueness and
regularity of weak solutions, and asymptotic behaviour, is closely related with the qualitative and quantitative properties
of the solutions of Stokes equations, see [41].

The Stokes system consists in finding a pair of function (u, w) solution of the following equations:

1
—Au+ —-Vo = Bf, in £2, (44)
n n
divu=fy, in$2, (4.5)
u=uvy, O0NnIL. (4.6)

With / o Jodx = f s 11+ vodx the necessary compatibility condition for the solvability is given. Here, u is the velocity, » the
hydrostatic pressure, p the density, n the viscosity, f the vector of the external forces and the scalar function f; a measure of
the compressibility of fluid. The boundary condition (4.6) describes the adhesion on the boundary for vy = 0. This system
describes the stationary flow of a homogeneous viscous incompressible fluid for small Reynold numbers. For more details
we refer to [26,42,28].
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In [34], L. Diening, D. Lengeler and M. Ruzicka proved the existence and uniqueness of a weak solution in (W“’(") (.Q))n X
[P®(£2) of the Stokes problem (4.3)-(4.5), provided that the right-hand side f € (W~1P® (Q))n,fo € IP®(2)and vy €
tr((WP® (2))"). The result is based on generalizations of the classical theories of Calderén-Zygmund and Ag-
mon-Douglis-Nirenberg to variable exponent spaces. In this subsection, with the help of our Hodge-type decomposition,
we obtain an analogous result in the context of Clifford analysis. Furthermore, we also give a representation of the solution.

We suppose thatf = ZLl fie;andu = Z?:l u;e;. Then the Stokes system may be written in the following hypercomplex
formulation (see [26,20]):

—Au+ bw="f e, (4.7)
n n
[Du]o :fo, in .Q, (48)
u=uvp, ONIs. (4.9)
For the sake of simplicity, we consider the following Stokes system:
DDu+Dw =f, in$2, (4.10)
[Dulo =0, in$2, (4.11)
u=0, onds. (4.12)

In the following, we require two basic results. The first one is an abstract algebraic result which is known as the
“Peetre-Tartar Lemma”.

Proposition 4.3 ([43], [44, Lemma 11.1]). Let E; be a Banach space, E,, E3 be normed spaces, A an operator in #(Eq, E;) and B
a compact operator in £ (Ey, E3). If |lullg, is equivalent to ||Aullg, + ||Bul|g, for each u € Ey, then the range space R(A) of the
operator A is a closed subspace of E,.

The second result we will use is a generalization of Necas’ theorem which implies an important equivalence of norms.
We first give the following definition.

Definition 4.4. The operator V : [P® (2) — (W~1P® (2))" is defined by
(V. 0) = —(f, divg) = —f £ divedx
2
forallf € [P™(£2) and ¢ € (C{°(£2))".

Proposition 4.5 ([6, Theorem 14.3.18]). Let §2 be a bounded Lipschitz domain of R". Then there exists a positive constant
C = C(n, p, £2) such that

Il oo 2y < C(Hgf‘”W*LP(x)(Q) + Ifllw-1p00(2)) (4.13)
holds for every f € [P®(£2).

Remark 4.6. From Theorem 14.3.18 in [6] we know that Proposition 4.5 holds for the domain 2 satisfying the emanating
chain condition. From [6, p. 239] it follows that a bounded domain satisfies the emanating chain condition if and only if it is
a John domain. From [6, p. 237] it follows that any bounded Lipschitz domain is a John domain.

As a first application of these two results, the following corollary derives an important property of the above-mentioned
gradient operator.

Corollary 4.7. Let $2 be a bounded Lipschitz domain of R™. Then the range space of the operator V € 2 (IP® (£2),(W~1P® (2))m)
is a closed subspace of (W~1P® ()",

Proof. To apply Proposition 4.3, we suppose E; = [P®(2),E, = (W™ 1P®(Q))" E; = W 'P®(2)A = V, B = [ (the
identity operator). Since the domain is bounded, the canonical embedding B of E; into E3 is compact (see [34]). On the other
hand, by virtue of Holder’s inequality, we have for every f € [P®(£2)

IVFllw-1p0(2) = sup  [(Vf, g)l

ligll / <1
ng (X)(Q)

= sup

=<C ||f||LP(X)(Q)'
<1
”gHW(}‘p/(X)(Q)

/ f divgdx
2

Therefore

IVfllw-1p02) + IfFlw-1000(0) < Clifllpw (o) forallf e (). (4.14)
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Then (4.13) and (4.14) yield the equivalence of the norms of both sides above. Thus, the desired conclusion follows from
Proposition 4.3. O

Now we begin our investigations with the following lemma which is a generalization of De Rham’s theorem to the variable
exponent spaces.

Lemma 4.8. Let 2 be a bounded Lipschitz domain of R". Let f € (W~1P® (2))" satisfy:
0= [ 1-oix=0,
2
foranyp e w(2) ={v e (Wol’p/(x)(.Q))" : div v = 0}. Then there exists q € LP™ (£2) such that f = Y

Proof. Since (—Vu,g) = (u,divg) foreveryu € [P®(2) and g € (w(}"’“*’(sz))", it follows that the operator —V &
ZL(IPY(£2), (W~ 1PX (£2))") is the adjoint of the operator

div e 2(WS7 Y (@), 1P (2)).

But according to Corollary 4.7, the range space R(%) is a closed subspace of (W ~1P® (£2))". Then the closed range theorem
of Banach (see [45]) implies that

R(V) = (ker(div))* = [y € W™P¥(2)": (y,v) =0,V v e 7(2)}.

This implies the desired conclusion. O

Remark 4.9. Note that Lemma 4.8 remains valid if the set 7 (§2) is replaced by
#(2) = {v € (C°(2))" : divv = 0}.

The proof is analogous to that of Theorem 2.8 in [46] and thus we omit it.

Definition 4.10. We call (u, w) € W, "™ (£2, Ct,) x [P™(£2) a solution of (4.10)(4.12) provided that it satisfies the system
(4.10)-(4.12) for every f € W—1P® (2, CL,).

Lemma 4.11. Assume that f € W~"P® (2, C¢,). Then for every solution (1, ) € Wy P® (£2, Cly) x [P® (£2) of system (4.10)-
(4.12) we have the representation

TQTf = u + TQw.

Proof. Let ¢, € W, P® (2, C¢,) with @, — ¢ in [P® (2, CL,). By Lemma 2.12, we have
TQT (Dgn) = TQ ¢n.

Since Wol’p(x)(Q, Ct,)isdensein [P® (£2, C¢,), it follows that TQTDg = TQ . Thus, foru € Wol’p(x)(.Q, C¢y)and w € [PX(£2)
we obtain

TQTf = TQT(DDu + Dw) = u + TQw,
as desired. O

We are now in a position to prove our result as follows.

Theorem 4.12. Suppose f € WIP®(Q CL,). Then the Stokes system (4.10)-(4.12) has a unique solution (u, w) €
WP (2, Cey) x [PW(82) in the form

u+TQw = TQTf,
with respect to the estimate
”u”WOl’p(x)(Q,Cén) + ”QU)”LP(X)(Q) = C“f”W’LP(X)(Q.Cen)-

Here, the hydrostatic pressure w is unique up to a constant.
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Proof. Lemma 4.11 implies that our system (4.10)-(4.12) is equivalent to the system

u+ TQw = TQTf, (4.15)
[Qwlo = [QTf 1o (4.16)

Observe that the equality (4.15) is equivalent to the following equality

Du+ Qu = QTf. (4.17)

Indeed, due to Lemma 2.12 we know that when D is applied to (4.15), this leads to (4.17). When T is applied to (4.17), this
reduces to (4.15).

Therefore we need to show that for each f € W=1P® (82, CZ,‘I), the function QTf can be decomposed into two functions
Du and Q. Notice that we are not decomposing the whole space [’ (£2, C¢,) but only the subspace [P® (£2, C¢1) N imQ.
Therefore, suppose Du + Qo = 0 for u € W, *¥ (22, C]) N ker div and @ € [P®(£2). Then (4.11) gives [Qw]o = 0. Notice
that the operator Q maps the space [P (£2) into itself. Thus, Qw = 0. Hence, Du = Qe = 0. This means that Du + Qw s a
direct sum, which is a subset of imQ.

Next we have to ask about the existence of a functional £ € (I’® (2, CQ) NimQ)* with #(Du) = 0and F(Qw) =0
but # (QTf) # 0.This amounts to asking if there exists g € WP’ ® (02, Cely, suchthatforallu € Wol’p(x) (£2, cehynker div
and o € [P®(2)

(Du, QTg)s: = O, (4.18)
(Qw, QTg)sc = 0, (4.19)

but (Q'ff, Q?g)SC # 0. Here, we have applied Theorem 3.3 and Lemma 2.13.

Thus, let us consider the system (4.18)and (4.19) with g € w—1r® (£, CZ;). Observe that, with the help of Lemmas 2.14
and 2.15, (4.19) yields

(Du, QTg)sc = (u, DQTg)sc = (u, DTg — DPTg)s = (u, &)sc =0,

which implies g = Vh = Dhwithh € LP/(")(.Q) because of Corollary 4.7. Notice that, from Lemma 2.14, (4.19) gives
(Qo, QTg)sc = (Qw, QTDh)sc = (Q, Qh)sc = 0

holds for each w € [’™(£2). Hence, Qw = |Qh|P ®~2Qh gives Qh = 0. Then we obtain
g = Dh = DQh + DPh = 0.

Furthermore, we get
(QTf.QTg)se =0, Vf e W "M (2, CLy).

Finally, since (4.17) yields
DUl ) .ty + 1@ 502y = 1QTS o .oy

By the norm equivalence theorem, we obtain
1DUll o ¢y + 1@ 2y < CIQTS llypeo g2.ctr-

By Remark 2.1, Lemma 2.13 and the boundedness of the operator Q, we get

”u”W[}'p(")(Q,Cen) + ||Qw||Lp(X>(Q) = C”f”wfl,p(X)(Q,c(ny (4.20)

From (4.20) the uniqueness of the solution follows. Notice that Qw = 0 implies w € kerD. Therefore, w is unique up to a
constant. Now we complete the proof of Lemma 4.11. O

The system (4.10)-(4.12) is just an example for the general way of treating such kinds of problems with the help of our
Hodge-type decomposition. We expect that this study can be extended to investigate Navier-Stokes problems.
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