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a b s t r a c t

In this paper, we establish a Hodge-type decomposition of variable exponent Lebesgue
spaces of Clifford-valued functions, where one of the subspaces is the space of all mono-
genic Lp(x)-functions. Using this decomposition, we obtain the existence and uniqueness of
solutions to the homogeneous A-Dirac equations with variable growth under certain ap-
propriate conditions and to the Stokes equations in the setting of variable exponent spaces
of Clifford-valued functions.
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1. Introduction

The central purpose of this paper is the study of the Hodge decomposition of the variable exponent Lebesgue space of
Clifford-valued functions. In the compact case, the Hodge theory is a central tool for characterizing the topology of the un-
derlying manifold. In the second part of this paper, we apply this decomposition in order to solve the homogeneous A-Dirac
equations with variable growth and the Stokes equations in the setting of variable exponent spaces of Clifford-valued func-
tions. The approach we develop is in the spirit of Helmholtz [1858]. He first formulated a result on the splitting of vector
fields into vortices and gradients, which can be understood as a rudimentary form of what is now called the ‘‘Hodge decom-
position’’. We also point out the pioneering papers by Hodge [1,2], de Rham [3,4], and Weyl [5].

Variable exponent Lebesgue spaces Lp(x) appeared in the literature for the first time already in an article by W. Orlicz
in 1931, who considered the variable exponent function space Lp(x) on the real line, see [6–8]. The next major step in the
research of variable exponent spaces was the paper by O. Kováčik and J. Rákosník [9], which established many of the basic
properties of Lebesgue spaces Lp(x) and the corresponding Sobolev spacesW k,p(x). In the last twenty years, these spaces have
attracted more and more attention. The study of these spaces has been stimulated by problems in elastic mechanics, fluid
dynamics, calculus of variations and differential equations with variable growth conditions, see [6,10,11,9,12]. In particu-
lar, one of the reasons that forced the rapid expansion of the theory of variable exponent spaces have been the models of
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electrorheological fluids introduced by Rajagopal and Ružička [13], which can be described by the boundary value prob-
lem for the generalized Navier–Stokes equations, where the extra stress tensor is coercive and satisfies appropriate growth
assumptions. For the detailed accounts we refer to the monograph of Ružička [12].

As a powerful tool for solving elliptic boundary value problems in the plane, the methods of complex functions theory
play an important role. One way to extend these ideas to higher dimension is to begin with a generalization of algebraic
and geometrical properties of the complex numbers. In this way, W.R. Hamilton studied the algebra of quaternions in 1843.
Further generalizations were investigated byW.K. Clifford in 1878. He introduced the so-called geometric algebras or Clifford
algebras, which are generalizations of the complex numbers, the quaternions, and the exterior algebras, see [14]. Initially
developed in the 1930–1940 and very intensively since 1970, theories for functions with values in Clifford algebras were
developed. Many advantages of the complex function theory were preserved in this process. Clifford analysis usually stud-
ies the solutions of the Dirac equation or of a generalized Cauchy–Riemann system for functions defined on domains in
Euclidean space and taken value in Clifford algebras, see [15,16]. Of course, the motivation for this development is closely
related with systems of partial differential equations in physics, see [17].

In [18,19], C.A. Nolder first introduced A-Dirac equations DA(x,Du) = 0 and developed tools for the study of weak solu-
tions to nonlinear A-Dirac equations in space W 1,p

0 (Ω, Cℓn). Note that under appropriate identifications, the scalar part of
DA(x,Du) = 0 is actually the A-harmonic equation div A(x, ∇u) = 0. These equations have been extensively studied with
many applications, see for instance [20]. Recently, L. Diening and P. Kaplicky [17] studied the interior regularity of the local
weak solutions u ∈ W 1,ϕ(Ω) and ω ∈ Lϕ∗

(Ω) of the following stationary generalized Stokes system:
−divA(Du) + ∇ω = −divG in Ω

div u = 0 in Ω,

where D is the symmetric part of the gradient, the extra stress tensor A determines properties of the fluid. For more detailed
discussions, we refer to [17,21,22] and the references therein. Obviously, A-Dirac equations correspond to the extra stress
tensor in the real-valued case.

However, the existence ofweak solutions to theA-Dirac equations has not been proved. Y. Fu and B. Zhang [23–25] proved
the existence of weak solutions for A-Dirac equations with variable growth. For this purpose, they also established a theory
of variable exponent spaces of Clifford-valued functions. But so far they have proved the existence of weak solutions to the
scalar part of the A-Dirac equations in spaceW 1,p(x)

0 (Ω, Cℓn), see [13]. With the help of the orthogonal decomposition of the
space L2(Ω), K. Gürlebeck andW. Sprößig [26,20] obtained the existence of uniqueness of solutions to the Stokes equations.
Therefore, it is natural to consider an extension of the orthogonal decomposition of the spaces L2(Ω, Cℓn).

One of the most interesting results of complex and hyper-complex function theory is the orthogonal decomposition of
the space L2(Ω, Cℓn), namely

L2(Ω, Cℓn) = (kerD ∩ L2(Ω, Cℓn)) ⊕ DW 1,2
0 (Ω, Cℓn), (1.1)

where kerD denotes the set of all monogenic functions on Ω . This decomposition has a number of applications, especially
to the theory of partial differential equations, see [27] for the complex case and [20] for the hypercomplex case. In [28],
U. Kähler extended the orthogonal decomposition (1.1) to the spaces Lp(Ω) in form of a direct decomposition in the case
of Clifford analysis. In [29], J. Dubinski and M. Reissig considered decompositions for the spaces Wm,p(Ω), which can be
applied to study nonlinear variational problems.

The goal of this paper is to generalize decomposition (1.1) in the framework of the variable exponent spaces and to give
applications to the A-Dirac equations and the Stokes equations. Next, using the Hodge-type decomposition that we obtain
in this paper, we prove the existence and uniqueness of weak solutions to A-Dirac equations with variable growth under
certain suitable assumptions. At the same time, the existence and uniqueness of solutions to Stokes equations are showed in
variable exponent product spaces of Clifford-valued functions. The whole treatment applies to a much larger class of elliptic
problems.

This paper is organized as follows. In Section 2, we start with a brief summary of basic knowledge of Clifford algebras
and variable exponent spaces of Clifford-valued functions, then discuss properties of some operators, which will be needed
in the sequel. In Section 3, we establish a Hodge-type decomposition for the space Lp(x)(Ω, Cℓn). In Section 4, appealing to
this decomposition in combination with the Minty–Browder theory, we prove the existence and uniqueness of a solution to
the A-Dirac equations with variable growth in W 1,p(x)

0 (Ω, Cℓn). On the other hand, with the help of this decomposition, we
prove the existence and uniqueness of a solution inW 1,p(x)

0 (Ω, Cℓn) × Lp(x)(Ω, R) of the Stokes problem, provided that the
right-hand side is inW−1,p(x)(Ω, Cℓn).

We refer to the excellent book by Ciarlet [30] for necessary abstract notions and useful related examples.

2. Preliminaries

2.1. Clifford algebra

We first recall some related notions and results from Clifford algebra. For a detailed account we refer to [15,31,20] and
the references therein.
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Let Cℓn be the real universal Clifford algebra over Rn. Then
Cℓn = span{e0, e1, e2, . . . , en, e1e2, . . . , en−1en, . . . , e1e2 · · · en}

where e0 = 1 (the identity element in Rn), {e1, e2, . . . , en} is an orthonormal basis of Rn with the relation eiej + ejei =

−2δije0. Thus, the dimension of Cℓn is 2n. In particular, we denote by Cℓ2 = H the algebra of real quaternions. For
I = {i1, . . . , ir} ⊂ {1, . . . , n} with 1 ≤ i1 < i2 < · · · < in ≤ n, put eI = ei1ei2 . . . eir , while for I = ∅, e∅ = e0. For
0 ≤ r ≤ n fixed, the space Cℓr

n is defined by
Cℓr

n = span{eI : |I| := card(I) = r}.
The Clifford algebra Cℓn is a graded algebra as

Cℓn =


1≤r≤n

Cℓr
n.

Any element a ∈ Cℓn may thus be written in a unique way as
a = [a]0 + [a]1 + · · · + [a]n,

where [ ]r : Cℓn → Cℓr
n denotes the projection of Cℓn onto Cℓr

n. It is customary to identify R with Cℓ0
n and identify Rn with

Cℓ1
n respectively. This means that each element x of Rn may be represented by

x =

n
i=1

xiei.

For u ∈ Cℓn, we denotes by [u]0 the scalar part of u, that is, the coefficient of the element e0. We define the Clifford conju-
gation as follows:

ei1ei2 . . . eir = (−1)
r(r+1)

2 ei1ei2 . . . eir .
For A ∈ Cℓn, B ∈ Cℓn, we have

AB = B A, A = A.

We denote
(A, B) = [AB]0.

Then an inner product is thus obtained, which defines the norm | · | on Cℓn by
|A|

2
= [AA]0.

From [32] we know that this norm is submultiplicative, namely
|AB| ≤ C |A| |B|,

where C is a positive constant depending only on n and smaller than 2n/2.
Let Ω ⊂ Rn be a bounded domain with smooth boundary ∂Ω . A Clifford-valued function u : Ω → Cℓn can be written

as u = ΣIuIeI , where the coefficients uI : Ω → R are real-valued functions.
The Dirac operator on the Euclidean space used here is introduced by

D =

n
j=1

ej
∂

∂xj
.

This is a special case of the Atiyah–Singer–Dirac operator acting on sections of a spinor bundle. We also point out that the
most famous Dirac operator describes the propagation of a free fermion in three dimensions.

If u is a real-valued function defined on Ω , then Du = ∇u. Moreover, D2
= −∆, where ∆ is the Laplace operator which

operates only on coefficients. A function is left monogenic if it satisfies the equation Du(x) = 0 for each x ∈ Ω . A similar
definition can be given for right monogenic function. An important example of a left monogenic function is the generalized
Cauchy kernel

G(x) =
1
ωn

x
|x|n

,

where ωn denotes the surface area of the unit ball in Rn. This function is a fundamental solution of the Dirac operator. We
refer the readers to [20,14,28,16] for basic properties of left monogenic functions.

2.2. Variable exponent spaces of Clifford-valued functions

Next, we investigate some basic properties of variable exponent spaces of Clifford-valued functions. Note that in what
follows, we use the short notation Lp(x)(Ω), W 1,p(x)(Ω), etc., instead of Lp(x)(Ω, R), W 1,p(x)(Ω, R), etc.

Throughout this paper we assume that

p ∈ Plog(Ω) and 1 < p− := inf
x∈Ω

p(x) ≤ p(x) ≤ sup
x∈Ω

p(x) =: p+ < ∞, (2.1)
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where Plog(Ω) is the set of exponents p satisfying the so-called log-Hölder continuity, that is,

|p(x) − p(y)| ≤
C

log(e + |x − y|−1)

holds for all x, y ∈ Ω , see [6]. Let P (Ω) be the set of all Lebesgue measurable functions p : Ω → (1, ∞). Given p ∈ P (Ω)
we define the conjugate function p′(x) ∈ P (Ω) by

p′(x) =
p(x)

p(x) − 1
, for each x ∈ Ω.

The variable exponent Lebesgue space Lp(x)(Ω) is defined by

Lp(x)(Ω) =


u ∈ P (Ω) :


Ω

|u|p(x)dx < ∞


,

with the norm

∥u∥Lp(x)(Ω) = inf

t > 0 :


Ω

u(x)
t

p(x)dx ≤ 1

.

The variable exponent Sobolev spaceW 1,p(x)(Ω) is defined by

W 1,p(x)(Ω) =


u ∈ Lp(x)(Ω) : |∇u| ∈ Lp(x)(Ω)


,

with the norm

∥u∥W1,p(x)(Ω) = ∥∇u∥Lp(x)(Ω) + ∥u∥Lp(x)(Ω). (2.2)

Denote by W 1,p(x)
0 (Ω) the completion of C∞

0 (Ω) in W 1,p(x)(Ω) with respect to the norm (2.2). The space W−1,p(x)(Ω) is
defined as the dual of the spaceW 1,p′(x)

0 (Ω). For more details we refer to [6,33,9] and the references therein.
In what follows, we understand u ∈ Lp(x)(Ω, Cℓn) coordinatewisely. For example, u ∈ Lp(x)(Ω, Cℓn) means that

{uI} ⊂ Lp(x)(Ω) for u = ΣIuIeI ∈ Cℓn with the norm ∥u∥Lp(x)(Ω,Cℓn) =


I ∥uI∥Lp(x)(Ω). In this way, the spacesW 1,p(x)(Ω, Cℓn),
W 1,p(x)

0 (Ω, Cℓn), C∞

0 (Ω, Cℓn), etc., can be understood similarly. In particular, the space L2(Ω, Cℓn) can be converted into a
right Hilbert Cℓn-module by defining the following Clifford-valued inner product (see [20, Definition 3.74])

f , g

Cℓn

=


Ω

f (x)g(x)dx. (2.3)

Remark 2.1. A simple computation shows that ∥u∥Lp(x)(Ω,Cℓn) is equivalent to
 uLp(x)(Ω)

. Furthermore, we also have that

for every u ∈ W 1,p(x)
0 (Ω, Cℓn), ∥Du∥Lp(x)(Ω,Cℓn) is an equivalent norm of ∥u∥W1,p(x)

0 (Ω,Cℓn)
(see [23]).

Lemma 2.2 ([10]). Let ρ(u) =


Ω
|u(x)|p(x)dx. For u ∈ Lp(x)(Ω), we have

(1) If ∥u∥Lp(x)(Ω) ≥ 1, then ∥u∥p−

Lp(x)(Ω)
≤ ρ(u) ≤ ∥u∥p+

Lp(x)(Ω)
.

(2) If ∥u∥Lp(x)(Ω) ≤ 1, then ∥u∥p+

Lp(x)(Ω)
≤ ρ(u) ≤ ∥u∥p−

Lp(x)(Ω)
.

Lemma 2.3 ([23]). Assume that p(x) ∈ P (Ω). Then the inequality
Ω

|uv|dx ≤ C(n, p)∥u∥Lp(x)(Ω,Cℓn)∥v∥Lp′(x)(Ω,Cℓn)

holds for every u ∈ Lp(x)(Ω, Cℓn) and v ∈ Lp
′(x)(Ω, Cℓn).

Lemma 2.4 ([24]). Assume that p(x) ∈ P (Ω). Then the following properties are true.

(1) The dual of the space Lp(x)(Ω, Cℓn) is Lp
′(x)(Ω, Cℓn), i.e.,


Lp(x)(Ω, Cℓn)

∗
= Lp

′(x)(Ω, Cℓn). Thus, the space Lp(x)(Ω, Cℓn) is
a reflexive Banach space.

(2) The space W 1,p(x)(Ω, Cℓn) is a reflexive Banach space.

Definition 2.5 ([20]). Let u ∈ C(Ω, Cℓn). The Teodorescu operator is defined by

Tu(x) =


Ω

G(x − y)u(y)dy,

where G(x) is the generalized Cauchy kernel mentioned above.
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Definition 2.6. Let u ∈ L1loc(R
n). The Hardy–Littlewood maximal operator is defined by

Mu

x


= sup
r>0

1

meas

B(x, r)

 
B(x,r)

u(y)dy,
where B(x, r) = {y ∈ Rn

: |y − x| < r}.

Lemma 2.7 ([6]). Let x ∈ Ω and u ∈ L1loc(R
n). Then

Ω

1
|x − y|n−1

|u(y)|dy ≤ C(n) (diamΩ)Mu(x).

Lemma 2.8 ([6]). If p(x) satisfies (2.1), then M is bounded in Lp(x)(Ω). Thus, there exists a constant C = C(n, p) such that

∥Mu∥Lp(x)(Ω) ≤ C(n, p)∥u∥Lp(x)(Ω).

Lemma 2.9 ([6]). Let Φ be a Calderón–Zygmund operator with Calderón–Zygmund kernel K on Rn
× Rn. Then Φ is bounded on

Lp(x)(Rn).

Lemma 2.10 ([24]). The operator D : W 1,p(x)(Ω, Cℓn) → Lp(x)(Ω, Cℓn) is continuous.

Lemma 2.11 ([24]). The operator T : Lp(x)(Ω, Cℓn) → W 1,p(x)(Ω, Cℓn) is continuous.

Lemma 2.12. Let p(x) ∈ P (Ω). Then for u ∈ W 1,p(x)
0 (Ω, Cℓn), the Borel–Pompeiu formula TDu(x) = u(x) holds for all x ∈ Ω .

Moreover, for u ∈ Lp(x)(Ω, Cℓn), the equation DTu(x) = u(x) holds for all x ∈ Ω .

Proof. According to Remark 4.21 in [20], the conclusions are implied by W 1,p(x)(Ω, Cℓn) ↩→ W 1,p−(Ω, Cℓn) and Lp(x)
(Ω, Cℓn) ↩→ Lp−(Ω, Cℓn). �

Lemma 2.13. There exists a unique linear extension T of the operator T such that the operator T : W−1,p(x)(Ω, Cℓn) →

Lp(x)(Ω, Cℓn) is continuous.

Proof. In view of Proposition 12.3.2 in [6], we know that for each f ∈ W−1,p(x)(Ω), there exists fk ∈ Lp(x)(Ω), k =

0, 1, . . . , n, such that

⟨f , ϕ⟩ =

n
k=0


Ω

fk
∂ϕ

∂xk
dx, (2.4)

for all ϕ ∈ W 1,p′(x)
0 (Ω). Moreover, ∥f ∥W−1,p(x)(Ω) is equivalent to

n
k=0 ∥fk∥Lp(x)(Ω). Obviously, for every f ∈ W−1,p(x)(Ω, Cℓn)

the equality (2.4) still holds for fk ∈ Lp(x)(Ω, Cℓn), k = 0, 1, . . . , n. Moreover, ∥f ∥W−1,p(x)(Ω,Cℓn) is equivalent to
n

k=0
∥fk∥Lp(x)(Ω,Cℓn). On the other hand, by Proposition 12.3.4 in [6], the space C∞

0 (Ω, Cℓn) is dense inW−1,p(x)(Ω, Cℓn). Thus, we
may choose

uj
= uj

0 +

n
k=1

∂uj
k

∂xk
,

where uj
0, u

j
k ∈ C∞

0 (Ω, Cℓn), such that ∥uj
− f ∥W−1,p(x)(Ω,Cℓn) → 0 and ∥uj

k − fk∥Lp(x)(Ω,Cℓn) → 0 as j → ∞, where
k = 0, 1, . . . , n. Here, we are using the fact that C∞

0 (Ω, Cℓn) is dense in Lp(x)(Ω, Cℓn) (see [24]). Set

Tuj
=


Ω

G(x − y)uj(y)dy,

where G(x) is the above-mentioned generalized Cauchy kernel. Therefore

Tuj
=


Ω

G(x − y)

uj
0(y) +

n
k=1

∂

∂yk
uj
k(y)


dy

=


Ω

G(x − y)uj
0(y)dy +

n
k=1


Ω

∂

∂xk
G(x − y)uj

k(y)dy.

Since 
Ω

G(x − y)uj
0(y)dy

 ≤


Ω

1
|x − y|n−1

uj
0(y)

dy,
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Remark 2.1, Lemmas 2.7 and 2.8 imply that there exists a constant C0 > 0 such that
Ω

G(x − y)uj
0(y)dy


Lp(x)(Ω,Cℓn)

≤ C0∥u
j
0∥Lp(x)(Ω,Cℓn). (2.5)

Now, let us extend uj
k(x) by zero to Rn

\Ω . Then ∂
∂xk

G(x−y) satisfies the conditions of Calderón–Zygmund kernel on Rn
×Rn

(see [24]). In view of Lemma 2.9, there exist positive constant Ck (k = 1, . . . , n) such that
Ω

∂

∂xk
G(x − y)uj

k(y)

Lp(x)(Ω,Cℓn)

≤ Ck∥u
j
k∥Lp(x)(Ω,Cℓn). (2.6)

Combining (2.5) with (2.6), we haveTuj

Lp(x)(Ω,Cℓn)

≤


Ω

G(x − y)uj
0(y)dy


Lp(x)(Ω,Cℓn)

+

n
k=1


Ω

∂

∂xk
G(x − y)uj

k(y)

Lp(x)(Ω,Cℓn)

≤ C0
uj

0


Lp(x)(Ω,Cℓn)

+

n
k=1

Ck
uj

k


Lp(x)(Ω,Cln)

.

Letting j → ∞, bymeans of the continuous linear extension theorem, the operator T can be uniquely extended to a bounded
linear operatorT such that for all f ∈ W−1,p(x)(Ω, Cℓn), there exists a constantC > 0 such that

∥T f ∥Lp(x)(Ω,Cℓn) ≤ C

∥f0∥Lp(x)(Ω,Cln) +

n
k=1

∥fk∥Lp(x)(Ω,Cℓn)


≤ C∥f ∥W−1,p(x)(Ω,Cℓn).

This completes the proof of Lemma 2.13. �

In [34], L. Diening, D. Lengeler and M. Ružička showed that the Dirichlet problem of the Poisson equation with homoge-
neous boundary data

−1u = f , in Ω

u = 0, on ∂Ω
(2.7)

possesses a unique weak solution u ∈ W 1,p(x)(Ω) for each f ∈ W−1,p(x)(Ω). Moreover, the following estimate holds
∥u∥W1,p(x)(Ω) ≤ C(n, p, Ω)∥f ∥W−1,p(x)(Ω).

We say that u is a weak solution of problem (2.7) provided that

⟨f , ϕ⟩ =


Ω

∇u · ∇ϕdx, ∀ ϕ ∈ W 1,p′(x)
0 (Ω).

Then it is easy to see that for all f ∈ W−1,p(x)(Ω, Cℓn) the problem (2.7) still has a uniqueweak solution u ∈ W 1,p(x)(Ω, Cℓn).
We denote by ∆−1

0 the solution operator. On the other hand, the operator

∆ : W 1,p(x)(Ω, Cℓn) → W−1,p(x)(Ω, Cℓn)

is continuous, sowe obtain that the operatorD = −1T : Lp(x)(Ω, Cℓn) → W−1,p(x)(Ω, Cℓn) is continuous from Lemma2.11,
where the operatorD can be considered as a unique continuous linear extension of the Dirac operator. Hence we can derive
two useful results which will be needed later.

Lemma 2.14. Assume that p(x) satisfies relation (2.1).
(i) If u ∈ Lp(x)(Ω, Cℓn), then the equationTDu(x) = u(x) holds for all x ∈ Ω .
(ii) If u ∈ W−1,p(x)(Ω, Cℓn), then the equationDTu(x) = u(x) holds for all x ∈ Ω .

Proof. (i) follows from Lemma 2.12 and the density ofW 1,p(x)
0 (Ω, Cℓn) in Lp(x)(Ω, Cℓn).

(ii) follows from Lemma 2.12 and the density of C∞

0 (Ω, Cℓn) in W−1,p(x)(Ω, Cℓn). �

Lemma 2.15. Assume that f ∈ W 1,p(x)
0 (Ω, Cℓn) and g ∈ Lp

′(x)(Ω, Cℓn). Then the following equality holds
Df , g


Cℓn

=

f ,DgCℓn ,

where (·, ·)Cℓn is Clifford-valued product (2.3) above mentioned.

Proof. Let gk ∈ W 1,p′(x)
0 (Ω, Cℓn) with gk → g in Lp

′(x)(Ω, Cℓn). Then we have
Df , gk


Cℓn

=

f ,Dgk


Cℓn

.

By the density ofW 1,p′(x)
0 (Ω, Cℓn) in Lp

′(x)(Ω, Cℓn), together with the continuity ofD and Lemma 2.3, the desired conclusion
follows. �
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3. The Hodge decomposition of variable exponent Lebesgue spaces

Now we are ready to generalize (1.1) to the case of variable exponent Lebesgue spaces.

Theorem 3.1. The space Lp(x)(Ω, Cℓn) allows the Hodge-type decomposition

Lp(x)(Ω, Cℓn) = (kerD ∩ Lp(x)(Ω, Cℓn)) ⊕ DW 1,p(x)
0 (Ω, Cℓn) (3.1)

with respect to the Clifford-valued product (2.3).

Proof. Similar to the proof of Theorem 6 in [28], we first prove that

(kerD ∩ Lp(x)(Ω, Cℓn)) ∩ DW 1,p(x)
0 (Ω, Cℓn) = {0}.

Suppose f ∈ (kerD∩Lp(x)(Ω, Cℓn))∩DW 1,p(x)
0 (Ω, Cℓn), thenDf = 0. Because of f ∈ DW 1,p(x)

0 (Ω, Cℓn) there exists a function
v ∈ W 1,p(x)

0 (Ω, Cℓn) such that Dv = f . Hence, we get that −1v = 0 and v = 0 on ∂Ω . From the uniqueness of ∆−1
0 we

obtain v = 0. Consequently, f = 0. Therefore, the sum of the two subspaces is a direct one.
Now let u ∈ Lp(x)(Ω, Cℓn). Then we have u2 = D∆−1

0
Du ∈ DW 1,p(x)

0 (Ω, Cℓn). Let u1 = u − u2. Then u1 ∈ Lp(x)(Ω, Cℓn).
Furthermore, we take uk ∈ W 1,p(x)

0 (Ω, Cℓn) such that uk → u in Lp(x)(Ω, Cℓn), then by the density of W 1,p(x)
0 (Ω, Cℓn) in

Lp(x)(Ω, Cℓn) and Lemma 2.3, we have for any ϕ ∈ W 1,p′(x)
0 (Ω, Cℓn)

u1,Dϕ

Cℓn

=

u − u2,Dϕ


Cℓn

= lim
k→∞


Duk − DD∆−1

0 Duk, ϕ

Cℓn

= lim
k→∞


Duk − Duk, ϕ


Cℓn

= 0.

Thus, we get u1 ∈ kerD. Since u ∈ Lp(x)(Ω, Cℓn) is arbitrary, the desired result follows immediately. �

Beginning with this decomposition we get the following projections

P : Lp(x)(Ω, Cℓn) → kerD ∩ Lp(x)(Ω, Cℓn)

Q : Lp(x)(Ω, Cℓn) → DW 1,p(x)
0 (Ω, Cℓn).

For p(x) ≡ 2, these are ortho-projections. Notice that directly from the proof of Theorem 3.1 we obtain

Q = D∆−1
0

D, P = I − Q . (3.2)

It follows from (3.2) that the operator Q as well as P maps the space Lp(x)(Ω, Cℓn) into itself.
In the following we discuss the properties of the operator Q , which will be used later.

Theorem 3.2. The space Lp(x)(Ω, Cℓn) ∩ imQ is a closed subspace of Lp(x)(Ω, Cℓn), that is, the space DW
1,p(x)
0 (Ω, Cℓn) is closed

in Lp(x)(Ω, Cℓn).

Proof. Let u ∈ DW 1,p(x)
0 (Ω, Cℓn). Then there exists uk ∈ DW 1,p(x)

0 (Ω, Cℓn) such that ∥Duk − u∥Lp(x)(Ω,Cℓn) → 0 as k → ∞.
Since W 1,p(x)

0 (Ω, Cℓn) is a reflexive Banach space, we can extract a subsequence of {uk} (still denote by {uk}), such that
uk ⇀ v weakly in W 1,p(x)

0 (Ω, Cℓn). Since the norm in a Banach space is weakly lower semicontinuous and the operator
D : W 1,p(x)

0 (Ω, Cℓn) → Lp(x)(Ω, Cℓn) is continuous, we obtain

∥Dv − u∥Lp(x)(Ω,Cℓn) ≤ lim inf
n→∞

∥Dun − u∥Lp(x)(Ω,Cℓn) = 0.

Thus u = Dv. Now we complete the proof of Theorem 3.2. �

Theorem 3.3. We have

Lp(x)(Ω, Cℓn) ∩ imQ

∗
= Lp

′(x)(Ω, Cℓn) ∩ imQ , that is, the linear operator

Φ : DW 1,p′(x)
0 (Ω, Cℓn) →


DW 1,p(x)

0 (Ω, Cℓn)
∗

given by

Φ(Du)(Dϕ) = (Dϕ,Du)Sc :=


Ω

[DϕDu]0dx

is a Banach space isomorphism.

Proof. First, in view of Theorem 3.2, DW 1,p(x)
0 (Ω, Cℓn) and DW 1,p′(x)

0 (Ω, Cℓn) are reflexive Banach spaces since they are
closed in Lp(x)(Ω, Cℓn) and Lp

′(x)(Ω, Cℓn) respectively. The linearity of Φ is clear. For injectivity, suppose

Φ(Du)(Dϕ) = (Dϕ,Du)Sc = 0 (3.3)
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for all ϕ ∈ W 1,p(x)
0 (Ω, Cℓn) and some u ∈ W 1,p′(x)

0 (Ω, Cℓn). For any ω ∈ Lp(x)(Ω, Cℓn), according to Theorem 3.1, we may
write ω = α + β with α ∈ kerD ∩ Lp(x)(Ω, Cℓn) and β ∈ DW 1,p(x)

0 (Ω, Cℓn). From Lemma 2.15 we obtain

(ω,Du)Sc = (α + β,Du)Sc = (α,Du)Sc + (β,Du)Sc = (β,Du)Sc .

This together with (3.3) gives (ω,Du)Sc = 0, henceDu = 0. It follows thatΦ is injective. To get surjectivity, let f ∈

DW 1,p(x)

0

(Ω, Cℓn)
∗
. By the Hahn–Banach theorem, there is F ∈


Lp(x)(Ω, Cℓn)

∗
with ∥F∥ = ∥f ∥ and F |DW1,p(x)

0 (Ω,Cℓn)
= f . In terms

of Lemma 2.4, there exists ϕ ∈ Lp
′(x)(Ω, Cℓn) such that F(u) = (u, ϕ)Sc for any u ∈ Lp(x)(Ω, Cℓn). According to Theorem 3.1,

we can write ϕ = η + Dα, where η ∈ kerD ∩ Lp
′(x)(Ω, Cℓn), Dα ∈ DW 1,p′(x)

0 (Ω, Cℓn). For any Du ∈ DW 1,p(x)
0 (Ω, Cℓn), from

Lemma 2.15 we have

f (Du) = (Du, ϕ)Sc = (Du, η + Dα)Sc = (Du, η)Sc + (Du,Dα)Sc

= (Du,Dα)Sc = Φ(Dα)(Du).

Consequently, Φ(Dα) = f . It follows that Φ is surjective. By means of Lemma 2.3 we have

|Φ(Du)(Dϕ)| = |(Dϕ,Du)Sc | ≤ C∥Dϕ∥Lp(x)(Ω,Cℓn)∥Du∥Lp′(x)(Ω,Cℓn)
.

This means that Φ is continuous. Furthermore, it is immediate that Φ−1 is continuous from the inverse function theorem.
This concludes the proof of Theorem 3.3. �

4. Applications

4.1. A-Dirac equations with variable growth

The Dirac equation arises in the study of nonlinear spinor fields in the unified theory of elementary particles, see Heisen-
berg [35] and Weyl [36]. The stationary states of the nonlinear Dirac field have been proposed as a model for elementary
extended fermions and nucleons, see Thaller [37].

In this subsection, we are interested in the existence of solutions to the following A-Dirac equations:

DA(Du) = 0, (4.1)

where A : Cℓn(Ω) → Cℓn(Ω) satisfies the following conditions:
(A1) |A(ξ) − A(η)| ≤ C1(|ξ | + |η|)p(x)−2

|ξ − η|;
(A2)


A(ξ) − A(η)


(ξ − η)


0 ≥ C2(|ξ | + |η|)p(x)−2

|ξ − η|
2;

(A3) A(0) ∈ Lp
′(x)(Ω, Cℓn),

where ξ and η are arbitrary elements in Cℓn, and C1 and C2 are positive constants. Of course, A(Du)(x) = A(Du(x)) and
DA(Du) = 0 are meant in the distributional sense.

Notice that when A(ξ) = |ξ − α|
p(x)−2(ξ − α), where α ∈ Lp(x)(Ω, Cℓn) is fixed, then Eq. (4.1) generalizes the important

case of the equation D

|Du − α|

p(x)−2(Du − α)


= 0. As p(x) ≡ p and α ≡ 0, p-Dirac equations were introduced and their
conformal invariance was investigated in [38]. These equations are nonlinear generalizations of the Dirac Laplace equation
as well as generalizations of elliptic equations of A-harmonic type div A(x, ∇u) = 0. The study of these equations is partially
motivated by the fact that some arise as the Euler–Lagrange equations to variational integrals.

If u is a real-valued function, then the p(x)-Dirac equation becomes the so-called p(x)-Laplacian equation. In recent years
these equations have been extensively studied, see [6,33,39] and the references therein.

In order to get the existence of a solution to the A-Dirac equations, we need a theorem of Minty–Browder as follows.

Proposition 4.1 ([40, Theorem 5.16]). Let X be a reflexive Banach space and let G : X → X∗ be a continuous nonlinear mapping
such that
(i) (strict monotonicity) (Gv − Gw, v − w) > 0 ∀ v, w ∈ X, v ≠ w.
(ii) (coerciveness) lim∥v∥→∞ ∥v∥

−1(Gv, v) = ∞.
Then for every f ∈ X∗ there exists a unique solution u ∈ X of the equation Gu = f .

Now we are ready to prove our result as follows.

Theorem 4.2. Under conditions (A1), (A2) and (A3), there exists a weak solution u ∈ W 1,p(x)
0 (Ω, Cℓn) to the A-Dirac

equations (4.1), hence there exists a Clifford-valued function u ∈ W 1,p(x)
0 (Ω, Cℓn) such that

Ω

A(Du)Dvdx = 0

for any v ∈ W 1,p(x)
0 (Ω, Cℓn). Furthermore, the solution is unique up to a monogenic function.
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Proof. We first claim that A(u) ∈ Lp
′(x)(Ω, Cℓn) for every u ∈ Lp(x)(Ω, Cℓn). Indeed, from (A1) and (A3) we obtain

Ω

|A(u)|p
′(x)dx =


Ω

(|A(u) − A(0) + A(0)|p
′(x))dx

≤ 2p′
+


Ω

|A(u) − A(0)|p
′(x)dx + 2p′

+


Ω

|A(0)|p
′(x)dx

≤ 2p′
+


Ω


|u|p(x)−2

|u|
p′(x)

dx + 2p′
+


Ω

|A(0)|p
′(x)dx. (4.2)

This estimate together with Remark 2.1 and Lemma 2.2 yields the previous assertion.
Next we show that QA


DW 1,p(x)

0 (Ω, Cℓn)


=

DW 1,p(x)

0 (Ω, Cℓn)
∗

= DW 1,p′(x)
0 (Ω, Cℓn). Evidently, it follows from (3.2)

that QA

DW 1,p(x)

0 (Ω, Cℓn)


⊂ DW 1,p′(x)
0 (Ω, Cℓn). By Theorem 3.2, we get that DW 1,p(x)

0 (Ω, Cℓn) is a reflexive Banach space.
In the following, to get surjectivity of the operator QA, we need to verify the conditions of Proposition 4.1 respectively.

(1) The operator QA is continuous. Suppose that Duk,Dv ∈ DW 1,p(x)
0 (Ω, Cℓn) and ∥Duk − Dv∥Lp(x)(Ω,Cℓn) → 0 as k → ∞.

From (A1), we obtainA(Duk) − A(Dv)


Lp′(x)(Ω)
≤ C1


|Duk| + |Dv|

p(x)−2
|Duk − Dv|


Lp′(x)(Ω)

.

Divide Ω into two parts: Ω1 = {x ∈ Ω : p(x) ≤ 2} and Ω2 = {x ∈ Ω : p(x) > 2}. Then Ω = Ω1 ∪ Ω2. On Ω1 we have
Ω1


|Duk| + |Dv|

p(x)−2
|Duk − Dv|

p′(x)
dx ≤


Ω


|Duk − Dv|

p(x)−1
p′(x)

dx.

On Ω2, according to Hölder inequality we have
Ω2


|Duk| + |Dv|

p(x)−2
|Duk − Dv|

p′(x)
dx ≤ 2


|Duk| + |Dv|

p′(x)(p(x)−2)

L
p(x)−1
p(x)−2 (Ω)

Duk − Dv

p′(x)
L
p(x)
p′(x) (Ω)

.

From Remark 2.1 and Lemma 2.2 we deduce that
Ω


|Duk| + |Dv|

p(x)−2
|Duk − Dv|

p′(x)
dx → 0

as k → ∞. By means of Remark 2.1 and Lemma 2.2, we obtainA(Duk) − A(Dv)

Lp′(x)(Ω,Cℓn)

→ 0

as k → ∞. Finally, the continuity follows immediately from the boundedness of the operator Q .
(2) The operator QA is strictly monotone. In view of Theorem 3.1, we have

QA(Du) = A(Du) − PA(Du)

for each u ∈ W 1,p(x)
0 (Ω, Cℓn). Thus, for any u, v ∈ W 1,p(x)

0 (Ω, Cℓn), (3.2) and Lemma 2.15 give
QA(Du),Dv


Sc =


A(Du),Dv


Sc −


PA(Du),Dv


Sc =


A(Du),Dv


Sc . (4.3)

Then the condition (A2) yields
QA(Du) − QA(Dv),Du − Dv


Sc =


A(Du) − A(Dv),Du − Dv


Sc

=


Ω


A(Du) − A(Dv)


(Du − Dv)


0
dx

≥ C2


Ω


|Du| + |Dv|

p(x)−2
|Du − Dv|

2dx > 0,

as Du ≠ Dv.
(3) The operator QA is coercive. By means of (4.3) and (A2) we have

QA(Du),Du

ScDuLp(x)(Ω)

−


QA(0),Du


ScDuLp(x)(Ω)

=


A(Du) − A(0),Du


ScDuLp(x)(Ω)

=


Ω


A(Du) − A(0)


(Du − 0)


0dxDuLp(x)(Ω)

≥ C2


Ω

|Du|p(x)dxDuLp(x)(Ω)

.
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Since 
Ω

|Du|p(x)dxDuLp(x)(Ω)

=


Ω


|Du|

2−1
DuLp(x)(Ω)

p(x)

·


2−1

DuLp(x)(Ω)

p(x)

DuLp(x)(Ω)

dx.

When
DuLp(x)(Ω)

≥ 1, we have
Ω

|Du|p(x)dxDuLp(x)(Ω)

≥ 2−p+
Dup−−1

Lp(x)(Ω)
.

Hence we get from Remark 2.1
QA(Du),Du


Sc

∥Du∥Lp(x)(Ω,Cℓn)
−


QA(0),Du


Sc

∥Du∥Lp(x)(Ω,Cℓn)
→ ∞

as ∥Du∥Lp(x)(Ω,Cℓn) → ∞. By Lemma 2.3, we obtain
QA(0),Du


Sc

∥Du∥Lp(x)(Ω,Cℓn)
=


A(0),Du


Sc

∥Du∥Lp(x)(Ω,Cℓn)
=


Ω


A(0)Du


0dx

∥Du∥Lp(x)(Ω,Cℓn)
≤ C∥A(0)∥Lp′(x)(Ω,Cℓn)

.

Therefore,
QA(Du),Du


Sc

∥Du∥Lp(x)(Ω,Cℓn)
→ ∞

as ∥Du∥Lp(x)(Ω,Cℓn) → ∞.
According to Proposition 4.1, let X = DW 1,p(x)

0 (Ω, Cℓn) and G = QA. Then the operator QA is surjective. Consequently,
there exists u ∈ W 1,p(x)

0 (Ω, Cln) such that QA(Du) = 0. Furthermore, Theorem 3.1 gives
Ω

A(Du)Dϕdx =


Ω


QA(Du) + PA(Du)


Dϕdx =


Ω

DPA(Du)ϕdx = 0,

for any ϕ ∈ W 1,p(x)
0 (Ω, Cℓn). Therefore, u is a weak solution of the A-Dirac equation (4.1).

Finally, if u1, u2 are solutions to (4.1), then

A(Dui),Dϕ


Sc = 0 (i = 1, 2) for all ϕ ∈ W 1,p(x)

0 (Ω, Cℓn). Set ϕ = u1 − u2,
then the condition (A2) yields

0 =

A(Du1) − A(Du2),Du1 − Du2


Sc

=


Ω


A(Du1) − A(Du2)


(Du1 − Du2)


0
dx

≥ C2


Ω


|Du1| + |Du2|

p(x)−2
|Du1 − Du2|

2dx ≥ 0.

Thus, Du1 = Du2, hence u1 − u2 ∈ kerD. The proof is now complete. �

4.2. Stokes equations in variable exponent spaces

In the study of the stationary Navier–Stokes equations, the corresponding Stokes equations plays a crucial role. It can be
said that any open question about Navier–Stokes equations, such as global existence of strong solutions, uniqueness and
regularity of weak solutions, and asymptotic behaviour, is closely related with the qualitative and quantitative properties
of the solutions of Stokes equations, see [41].

The Stokes system consists in finding a pair of function (u, ω) solution of the following equations:

−1u +
1
η
∇ω =

ρ

η
f , in Ω, (4.4)

div u = f0, in Ω, (4.5)
u = v0, on ∂Ω. (4.6)

With


Ω
f0dx =


∂Ω

n ·v0dx the necessary compatibility condition for the solvability is given. Here, u is the velocity,ω the
hydrostatic pressure, ρ the density, η the viscosity, f the vector of the external forces and the scalar function f0 a measure of
the compressibility of fluid. The boundary condition (4.6) describes the adhesion on the boundary for v0 = 0. This system
describes the stationary flow of a homogeneous viscous incompressible fluid for small Reynold numbers. For more details
we refer to [26,42,28].
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In [34], L. Diening, D. Lengeler andM. Ružička proved the existence and uniqueness of a weak solution in

W 1,p(x)(Ω)

n
×

Lp(x)(Ω) of the Stokes problem (4.3)–(4.5), provided that the right-hand side f ∈

W−1,p(x)(Ω)

n
, f0 ∈ Lp(x)(Ω) and v0 ∈

tr((W 1,p(x)(Ω))n). The result is based on generalizations of the classical theories of Calderón–Zygmund and Ag-
mon–Douglis–Nirenberg to variable exponent spaces. In this subsection, with the help of our Hodge-type decomposition,
we obtain an analogous result in the context of Clifford analysis. Furthermore, we also give a representation of the solution.

We suppose that f =
n

i=1 fiei and u =
n

i=1 uiei. Then the Stokes systemmay bewritten in the following hypercomplex
formulation (see [26,20]):

−1u +
1
η
Dω =

ρ

η
f , in Ω, (4.7)

[Du]0 = f0, in Ω, (4.8)
u = v0, on ∂Ω. (4.9)

For the sake of simplicity, we consider the following Stokes system:DDu +Dω = f , in Ω, (4.10)
[Du]0 = 0, in Ω, (4.11)
u = 0, on ∂Ω. (4.12)

In the following, we require two basic results. The first one is an abstract algebraic result which is known as the
‘‘Peetre–Tartar Lemma’’.

Proposition 4.3 ([43], [44, Lemma 11.1]). Let E1 be a Banach space, E2, E3 be normed spaces, A an operator in L (E1, E2) and B
a compact operator in L (E1, E3). If ∥u∥E1 is equivalent to ∥Au∥E2 + ∥Bu∥E3 for each u ∈ E1, then the range space R(A) of the
operator A is a closed subspace of E2.

The second result we will use is a generalization of Nečas’ theorem which implies an important equivalence of norms.
We first give the following definition.

Definition 4.4. The operator ∇ : Lp(x)(Ω) → (W−1,p(x)(Ω))n is defined by

⟨∇f , ϕ⟩ = −⟨f , divϕ⟩ := −


Ω

f divϕ dx

for all f ∈ Lp(x)(Ω) and ϕ ∈ (C∞

0 (Ω))n.

Proposition 4.5 ([6, Theorem 14.3.18]). Let Ω be a bounded Lipschitz domain of Rn. Then there exists a positive constant
C = C(n, p, Ω) such that

∥f ∥Lp(x)(Ω) ≤ C(∥∇f ∥W−1,p(x)(Ω) + ∥f ∥W−1,p(x)(Ω)) (4.13)

holds for every f ∈ Lp(x)(Ω).

Remark 4.6. From Theorem 14.3.18 in [6] we know that Proposition 4.5 holds for the domain Ω satisfying the emanating
chain condition. From [6, p. 239] it follows that a bounded domain satisfies the emanating chain condition if and only if it is
a John domain. From [6, p. 237] it follows that any bounded Lipschitz domain is a John domain.

As a first application of these two results, the following corollary derives an important property of the above-mentioned
gradient operator.

Corollary 4.7. Let Ω be a bounded Lipschitz domain of Rn. Then the range space of the operator ∇∈L (Lp(x)(Ω),(W−1,p(x)(Ω))n)
is a closed subspace of (W−1,p(x)(Ω))n.

Proof. To apply Proposition 4.3, we suppose E1 = Lp(x)(Ω), E2 = (W−1,p(x)(Ω))n, E3 = W−1,p(x)(Ω) A = ∇ , B = I (the
identity operator). Since the domain is bounded, the canonical embedding B of E1 into E3 is compact (see [34]). On the other
hand, by virtue of Hölder’s inequality, we have for every f ∈ Lp(x)(Ω)

∥∇f ∥W−1,p(x)(Ω) = sup
∥g∥

W1,p′(x)
0 (Ω)

≤1
|⟨∇f , g⟩|

= sup
∥g∥

W1,p′(x)
0 (Ω)

≤1


Ω

f divgdx
 ≤ C∥f ∥Lp(x)(Ω).

Therefore

∥∇f ∥W−1,p(x)(Ω) + ∥f ∥W−1,p(x)(Ω) ≤ C∥f ∥Lp(x)(Ω) for all f ∈ Lp(x)(Ω). (4.14)
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Then (4.13) and (4.14) yield the equivalence of the norms of both sides above. Thus, the desired conclusion follows from
Proposition 4.3. �

Nowwebegin our investigationswith the following lemmawhich is a generalization ofDeRham’s theorem to the variable
exponent spaces.

Lemma 4.8. Let Ω be a bounded Lipschitz domain of Rn. Let f ∈ (W−1,p(x)(Ω))n satisfy:

⟨f , ϕ⟩ :=


Ω

f · ϕdx = 0,

for any ϕ ∈ W (Ω) :=

v ∈ (W 1,p′(x)

0 (Ω))n : div v = 0

. Then there exists q ∈ Lp(x)(Ω) such that f = ∇q.

Proof. Since ⟨−∇u, g⟩ = ⟨u, div g⟩ for every u ∈ Lp(x)(Ω) and g ∈ (W 1,p′(x)
0 (Ω))n, it follows that the operator −∇ ∈

L (Lp(x)(Ω), (W−1,p(x)(Ω))n) is the adjoint of the operator

div ∈ L ((W 1,p′(x)
0 (Ω))n, Lp

′(x)(Ω)).

But according to Corollary 4.7, the range space R(∇) is a closed subspace of (W−1,p(x)(Ω))n. Then the closed range theorem
of Banach (see [45]) implies that

R(∇) = (ker(div))⊥ :=

y ∈ (W−1,p(x)(Ω))n : ⟨y, v⟩ = 0, ∀ v ∈ W (Ω)


.

This implies the desired conclusion. �

Remark 4.9. Note that Lemma 4.8 remains valid if the set W (Ω) is replaced by

W̃ (Ω) = {v ∈ (C∞

0 (Ω))n : div v = 0}.

The proof is analogous to that of Theorem 2.8 in [46] and thus we omit it.

Definition 4.10. We call (u, ω) ∈ W 1,p(x)
0 (Ω, Cℓn)×Lp(x)(Ω) a solution of (4.10)–(4.12) provided that it satisfies the system

(4.10)–(4.12) for every f ∈ W−1,p(x)(Ω, Cℓn).

Lemma 4.11. Assume that f ∈ W−1,p(x)(Ω, Cℓn). Then for every solution (u, ω) ∈ W 1,p(x)
0 (Ω, Cℓn)×Lp(x)(Ω) of system (4.10)–

(4.12) we have the representation

TQT f = u + TQω.

Proof. Let ϕn ∈ W 1,p(x)
0 (Ω, Cℓn) with ϕn → ϕ in Lp(x)(Ω, Cℓn). By Lemma 2.12, we have

TQT (Dϕn) = TQϕn.

SinceW 1,p(x)
0 (Ω, Cℓn) is dense in Lp(x)(Ω, Cℓn), it follows that TQTDϕ = TQϕ. Thus, foru ∈ W 1,p(x)

0 (Ω, Cℓn) andω ∈ Lp(x)(Ω)
we obtain

TQT f = TQT (DDu +Dω) = u + TQω,

as desired. �

We are now in a position to prove our result as follows.

Theorem 4.12. Suppose f ∈ W−1,p(x)(Ω, Cℓn). Then the Stokes system (4.10)–(4.12) has a unique solution (u, ω) ∈

W 1,p(x)
0 (Ω, Cℓn) × Lp(x)(Ω) in the form

u + TQω = TQT f ,
with respect to the estimate

∥u∥W1,p(x)
0 (Ω,Cℓn)

+ ∥Qω∥Lp(x)(Ω) ≤ C∥f ∥W−1,p(x)(Ω,Cℓn).

Here, the hydrostatic pressure ω is unique up to a constant.
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Proof. Lemma 4.11 implies that our system (4.10)–(4.12) is equivalent to the system

u + TQω = TQT f , (4.15)

[Qω]0 = [QT f ]0. (4.16)

Observe that the equality (4.15) is equivalent to the following equality

Du + Qω = QT f . (4.17)

Indeed, due to Lemma 2.12 we know that when D is applied to (4.15), this leads to (4.17). When T is applied to (4.17), this
reduces to (4.15).

Therefore we need to show that for each f ∈ W−1,p(x)(Ω, Cℓ1
n), the function QTf can be decomposed into two functions

Du and Qω. Notice that we are not decomposing the whole space Lp(x)(Ω, Cℓn) but only the subspace Lp(x)(Ω, Cℓ1
n) ∩ imQ .

Therefore, suppose Du + Qω = 0 for u ∈ W 1,p(x)
0 (Ω, Cℓ1

n) ∩ ker div and ω ∈ Lp(x)(Ω). Then (4.11) gives [Qω]0 = 0. Notice
that the operator Q maps the space Lp(x)(Ω) into itself. Thus, Qω = 0. Hence, Du = Qω = 0. This means that Du + Qω is a
direct sum, which is a subset of imQ .

Next we have to ask about the existence of a functional F ∈ (Lp(x)(Ω, Cℓ1
n) ∩ imQ )∗ with F (Du) = 0 and F (Qω) = 0

butF (QT f ) ≠ 0. This amounts to asking if there exists g ∈ W−1,p′(x)(Ω, Cℓ1
n), such that for all u ∈ W 1,p(x)

0 (Ω, Cℓ1
n)∩ker div

and ω ∈ Lp(x)(Ω)

(Du,QTg)Sc = 0, (4.18)

(Qω,QTg)Sc = 0, (4.19)

but (QT f ,QTg)Sc ≠ 0. Here, we have applied Theorem 3.3 and Lemma 2.13.
Thus, let us consider the system (4.18) and (4.19) with g ∈ W−1,p′(x)(Ω, Cℓ1

n). Observe that, with the help of Lemmas 2.14
and 2.15, (4.19) yields

(Du,QTg)Sc = (u,DQTg)Sc = (u,DTg −DPTg)Sc = (u, g)Sc = 0,

which implies g = ∇h = Dh with h ∈ Lp
′(x)(Ω) because of Corollary 4.7. Notice that, from Lemma 2.14, (4.19) gives

(Qω,QTg)Sc = (Qω,QTDh)Sc = (Qω,Qh)Sc = 0

holds for each ω ∈ Lp(x)(Ω). Hence, Qω = |Qh|p
′(x)−2Qh gives Qh = 0. Then we obtain

g = Dh = DQh +DPh = 0.

Furthermore, we get

(QT f ,QTg)Sc = 0, ∀f ∈ W−1,p(x)(Ω, Cℓ1
n).

Finally, since (4.17) yields

∥Du∥Lp(x)(Ω,Cℓn) + ∥Qω∥Lp(x)(Ω) ≥ ∥QT f ∥Lp(x)(Ω,Cℓn).

By the norm equivalence theorem, we obtain

∥Du∥Lp(x)(Ω,Cℓn) + ∥Qω∥Lp(x)(Ω) ≤ C∥QT f ∥Lp(x)(Ω,Cℓn).

By Remark 2.1, Lemma 2.13 and the boundedness of the operator Q , we get

∥u∥W1,p(x)
0 (Ω,Cℓn)

+ ∥Qω∥Lp(x)(Ω) ≤ C∥f ∥W−1,p(x)(Ω,Cℓn). (4.20)

From (4.20) the uniqueness of the solution follows. Notice that Qω = 0 implies ω ∈ kerD. Therefore, ω is unique up to a
constant. Now we complete the proof of Lemma 4.11. �

The system (4.10)–(4.12) is just an example for the general way of treating such kinds of problems with the help of our
Hodge-type decomposition. We expect that this study can be extended to investigate Navier–Stokes problems.
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