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a b s t r a c t

We consider a periodic evolution inclusion defined on an evolution triple of spaces. The
inclusion involves also a subdifferential term. We prove existence theorems for both the
convex and the nonconvex problem, and we also produce extremal trajectories. Moreover,
we show that every solution of the convex problem can be approximated uniformly by
certain extremal trajectories (strong relaxation). We illustrate our results by examining a
nonlinear parabolic control system.
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1. Introduction

Let T = [0, b] and let (X,H, X∗) be an evolution of spaces (see Section 2). We assume that X is embedded compactly into
H . In this paper, we study the following periodic evolution inclusion{

−u′(t) ∈ A(t, u(t)) + ∂ϕ(u(t)) + F (t, u(t)) for almost all t ∈ T ,
u(0) = u(b).

}
(1)

In this problem, A : T × X → X∗ is a map which is a measurable in t ∈ T and monotone in x ∈ X . Also, ϕ ∈ Γ0(H)
(see Section 2) and ∂ϕ(·) denotes the subdifferential of ϕ in the sense of convex analysis. Finally, F : T × H → 2H

\ {∅} is a
multivalued perturbation.

Periodic problems for evolution inclusions have been studied either with ϕ ≡ 0 (see Hu & Papageorgiou [1, Section 1.5],
Xue & Zheng [2]) or with A ≡ 0 (see Papageorgiou & Rădulescu [3] and Papageorgiou, Rădulescu & Repovš [4]). In (1) both
terms are present and this distinguishes the present work from the aforementioned papers. Their methods and techniques
are not applicable here. We prove existence theorems for the ‘‘convex’’ problem (that is, F has convex values) and for
the ‘‘nonconvex’’ problem (that is, F has nonconvex values). We also prove the existence of extremal trajectories, that
is, we produce solutions which move through the extreme points of the multivalued perturbation F (t, x). Moreover, we
show that every solution of the convex problem can be approximated in the C(T ,H)-norm by certain extremal trajectories
(strong relaxation). In the final part of this paper we illustrate our results by examining a parabolic distributed parameter
system.
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2. Mathematical background

The tools that we use in the study of problem (1) come from multivalued analysis and from the theory of operators of
monotone type. A detailed presentation of these theories can be found in the books of Hu & Papageorgiou [5] and Zeidler [6].

Let (Ω,Σ) be a measurable space and V a separable Banach space. Throughout this work we will use the following
notations:

Pf(c) (V ) = {C ⊆ V : C is nonempty, closed (and convex)} ,
P(w)k(c)(V ) = {C ⊆ V : C is nonempty, (w)-compact (and convex)} .

A multifunction (set-valued function) F : Ω → 2V
\ {∅} is a said to be ‘‘graph measurable’’, if

Gr F = {(ω, v) ∈ Ω × V : v ∈ F (ω)} ∈ Σ ⊗ B(V ),

where B(V ) is the Borel σ -field of V . A multifunction G : Ω → Pf (V ) is ‘‘measurable’’, if for all v ∈ V , the function

ω ↦→ d(v, F (ω)) ≡ inf {∥v − y∥V : y ∈ F (ω)}

isΣ-measurable. For multifunctions with values in Pf (V ), measurability implies graph measurability, while the converse is
true if there is a σ -finite measure µ onΣ andΣ is µ-complete.

Suppose that (Ω,Σ, µ) is a σ -finite measure space and F : Ω → 2V
\ {∅}. For 1 ⩽ p ⩽ ∞, we define

SpF =
{
h ∈ Lp(Ω, V ) : h(ω) ∈ F (ω) µ− almost everywhere

}
.

A straightforward application of the Yankov–von Neumann–Aumann selection theorem (see Theorem 2.14 in Hu &
Papageorgiou [5, p. 158]), implies that

‘‘SpF ̸= ∅ if and only if inf{∥y∥V : y ∈ F (ω)} ∈ Lp(Ω)’’.

The set SpF is ‘‘decomposable’’ in the sense that, if (C, h1, h2) ∈ Σ×SpF ×SpF then χCh1 +χΩ\Ch2 ∈ SpF . Since χΩ\C = 1−χC ,
decomposability formally looks like the notion of convexity, only now the coefficients in the linear combination are functions.
In fact, decomposable sets exhibit some properties which are similar to those of convex sets (see Hu & Papageorgiou
[5, Section 2.3]).

Suppose now that Z and Y are Hausdorff topological spaces and F : Z → 2Y
\ {∅}. We say that F (·) is ‘‘upper

semicontinuous (usc)‘‘ (resp. ‘‘lower semicontinuous (lsc)’’), if for all open U ⊆ Y the set F+(U) = {z ∈ Z : F (z) ⊆ U} (resp.
F−(U) = {z ∈ Z : F (z)∩U ̸= ∅}) is open. If F (·) has closed values and is usc, then Gr F ⊆ Z ×Y is closed. The converse is true
if F (·) is locally compact (that is, for every z ∈ Z , we can find a neighborhood U of z such that F (U) ⊆ Y is compact). Also, if Y
is a metric space, then F : Z → 2Y

\ {∅} is lsc if and only if for all y ∈ Y , the mapping z ↦→ d(y, F (z)) = inf{d(y, v) : v ∈ F (z)}
is an upper semicontinuous R+-valued function.

Suppose that Y is a metric space. On Pf (Y ) we can define a generalized metric, known as the ‘‘Hausdorff metric’’, by

h(C, E) = sup {|d(u, C) − d(u, E)| : u ∈ Y } = max{sup
c∈C

d(c, E), sup
e∈E

d(e, C)} for all C, E ⊆ Y .

If Y is a complete metric space, then so is (Pf (Y ), h). A multifunction F : Z → Pf (Y ) is said to be ‘‘h-continuous’’, if it is
continuous from Z into (Pf (Y ), h).

Suppose that V , Y are Banach spaces and assume that V is embedded continuously and densely into Y (denoted by
V ↪→ Y ). Then

(a) Y ∗ is embedded continuously in V ∗;
(b) if V is reflexive, then Y ∗ ↪→ V ∗.

A triple of spaces (X,H, X∗) is said to be an ‘‘evolution triple’’, if the following properties hold:

(a) X is a separable, reflexive Banach space;
(b) H is a separable Hilbert space which we identify with its dual (that is, H∗

= H);
(c) X ↪→ H (hence H ↪→ X∗).

By ∥ · ∥ (resp. |·|, ∥ · ∥∗) we denote the norm of X (resp. of H, X∗). Property (c) above implies that

|·| ⩽ ĉ1∥ · ∥ and ∥ · ∥∗ ⩽ ĉ2|·| for some ĉ1, ĉ2 > 0.

We denote by ⟨·, ·⟩ the duality brackets for the pair (X∗, X) and by (·, ·) the inner product of H . We have

⟨·, ·⟩|H×X = (·, ·).

Let T = [0, b] and 1 < p < ∞. By p′
∈ (1,∞) we denote the conjugate exponent of p, that is, 1

p +
1
p′ = 1. We define

Wp(T ) =

{
u ∈ Lp(T , X) : u′

∈ Lp
′

(T , X∗)
}
.
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Here, the derivative u′ is understood in the sense of vector-valued distributions. If u ∈ Wp(T ), then if we view u(·) as an
X∗-valued function, then u(·) is absolutely continuous, hence it is differentiable almost everywhere. This derivative coincides
with the distributional one and we have

Wp(T ) ⊆ AC1,p′

(T , X∗) = W 1,p′

((0, b), X∗).

We endowWp(T ) with the norm

∥u∥Wp = ∥u∥Lp(T ,X) + ∥u′
∥Lp′ (T ,X∗) for all u ∈ Wp(T ).

ThenWp(T ) becomes a separable reflexive Banach space and we have

Wp(T ) ↪→ C(T ,H) andWp(T ) ↪→ Lp(T ,H) compactly.

The elements ofWp(T ) satisfy the so-called ‘‘integration by parts formula’’.

Proposition 1. If u, v ∈ Wp(T ) and θ (t) = (u(t), v(t)) for all t ∈ T , then θ (·) is absolutely continuous and

dθ
dt

(t) = ⟨u′(t), v(t)⟩ + ⟨u(t), v′(t)⟩ for almost all t ∈ T .

Let V be a reflexive Banach space, L : D ⊆ V → V ∗ a linear maximal monotone map and A : V → 2V∗

. We say that A is
‘‘L-pseudomonotone’’, if the following conditions hold

(a) For every v ∈ V , A(v) ∈ Pwkc(V ∗).
(b) A is usc from every finite dimensional subspace of V into V ∗ furnished with the weak topology.
(c) If {vn}n⩾1 ⊆ D, vn

w
−→ v in V , L(vn)

w
−→ L(v) in V ∗, v∗

n ∈ A(vn)
v∗
n

w
−→ v∗ in V ∗ and lim supn→∞⟨v∗

n , vn − v⟩V ⩽ 0, then v∗
∈ A(v) and ⟨v∗

n , vn⟩V → ⟨v∗, v⟩V (here by ⟨·, ·⟩V we denote
the duality brackets for the pair (V ∗, V )).

Also, we say that A(·) is ‘‘strongly coercive’’, if
inf[⟨v∗, v⟩V : v∗

∈ A(v)]
∥v∥V

→ +∞ as ∥v∥V → +∞.

L-pseudomonotone and strongly coercive maps exhibit remarkable surjectivity properties. More precisely, we have the
following result (see Lions [7] for A(·) single-valued) and Papageorgiou, Papalini & Renzacci [8] (for A(·) multivalued).

Proposition 2. If V is a reflexive Banach space, L : D ⊆ V → V ∗ is linear maximal monotone and A : V → 2V∗

is bounded,
L-pseudomonotone and strongly coercive, then L + A is surjective (that is, R(L + A) = V ∗).

Suppose that Y is a Banach space and {Cn}n⩾1 ⊆ 2Y
\ {∅}. We define

w − lim sup
n→∞

Cn =

{
y ∈ Y : y = w − lim

k→∞

ynk , ynk ∈ Cnk , n1 < n2 < · · · < nk < · · ·

}
,

lim inf
n→∞

Cn =

{
y ∈ Y : y = lim

n→∞
yn, yn ∈ Cn, n ∈ N

}
=

{
y ∈ Y : lim

n→∞
d(y, Cn) = 0

}
.

We denote by Γ0(Y ) the cone of all lower semicontinuous, convex proper functions. So, ϕ ∈ Γ0(Y ) if ϕ : Y → R =

R ∪ {+∞} is lower semicontinuous, convex and dom ϕ = {y ∈ Y : ϕ(y) < +∞} (the effective domain of ϕ) is nonempty.
By ∂ϕ(·) we denote the subdifferential in the sense of convex analysis. So,

∂ϕ(y) =
{
y∗

∈ Y ∗
: ⟨y∗, h⟩ ⩽ ϕ(y + h) − ϕ(y) for all h ∈ Y

}
.

It is well known that ∂ϕ : Y → 2Y∗

is maximal monotone.
Given a nonempty set C ⊆ Y , we set

|C | = sup {∥y∥Y : y ∈ C} .

Finally, we denote by ∥ · ∥w the ‘‘weak norm’’ on the Lebesgue–Bochner space L1(T , Y ), defined by

∥h∥w = sup
{
∥

∫ t

s
h(τ )dτ∥Y : 0 ⩽ s ⩽ t ⩽ b

}
or, equivalently,

∥h∥w = sup
{
∥

∫ t

0
h(τ )dτ∥Y : 0 ⩽ t ⩽ b

}
.

The norm is equivalent to the Petils norm on L1(T , Y ) (see Egghe [9]). By L1w(T , Y ) we denote the space L1(T , Y ) furnished
with the weak norm.
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3. The ‘‘convex’’ problem

In this section we prove an existence theorem for the ‘‘convex’’ problem, that is, we assume that the multivalued
perturbation F (t, x) is convex-valued.

We work on an evolution triple (X,H, X∗) with X ↪→ H compactly. Hence H ↪→ X∗ compactly, too. We impose two sets
of hypotheses on the data A(t, x) and ∂ϕ(x).

H(A): A : T × X → X∗ is a map such that

(i) for all x ∈ X, t ↦→ A(t, x) is measurable;
(ii) for almost all t ∈ T , x ↦→ A(t, x) is demicontinuous (that is, xn → x in X implies A(t, xn)

w
−→ A(t, x)) and

c0∥x∥p ⩽ ⟨A(t, x), x⟩ for almost all t ∈ T , and all x ∈ R;

(iii) ∥A(t, x)∥∗ ⩽ a1(t) + c1∥x∥p−1 for almost all t ∈ T , and all x ∈ X , with a1 ∈ Lp
′

(T ) and c1 > 0.

H(ϕ): ϕ ∈ Γ0(H) is bounded above on bounded sets, for all u ∈ Lp(T , X) we have Sp
′

∂ϕ(u(·)) ̸= ∅, ∂ϕ(0) ⊆ H is bounded and
for all (u, h), (u′, h′) ∈ Gr ∂ϕ we have

c0|u − u′
|
2
⩽ (h − h′, u − u′).

Alternatively, we can assume the following conditions on A and ϕ.

H(A)′: A : T × X → X∗ is a map such that hypotheses H(A)′(i), (iii) are the same as hypotheses H(A)(i), (iii) and

(ii) for almost all t ∈ T , x ↦→ A(t, x) is demicontinuous,

c0∥x∥p ⩽ ⟨A(t, x), x⟩ for almost all t ∈ T , and all x ∈ X with c0 > 0,

c0∥x − y∥2 ⩽ ⟨A(t, x) − A(t, y), x − y⟩ for almost all t ∈ T , and all x, y ∈ X .

H(ϕ)′: ϕ ∈ Γ0(H) is bounded above on bounded sets, for all u ∈ Lp(T , X), Sp
′

∂ϕ(u(·)) ̸= ∅ and ∂ϕ(0) ⊆ H is bounded.

The hypotheses on the multivalued perturbation F (t, x) are:

H(F )1: F : T × H → Pfc (H) is a multifunction such that

(i) for every x ∈ H, t ↦→ F (t, x) is graph measurable;
(ii) for almost all t ∈ T , Gr F (t, ·) ⊆ H × Hw is sequentially closed (by Hw we denote the Hilbert space H furnished with

the weak topology);
(iii) there existsM > 0 such that

0 ⩽ (h, x) for almost all t ∈ T , and all |x| = M, h ∈ F (t, x),

|F (t, x)| ⩽ aM (t) for almost all t ∈ T , and all |x| ⩽ M, with aM ∈ Lp
′

(T ).

Alternatively, we may assume the following conditions on F (t, x):

H(F )′1: F : T × H → Pfc (H) is a multifunction such that hypotheses H(F )′1(i), (ii) are the same as the corresponding
hypotheses H(F )1(i), (ii) and

(iii) |F (t, x)| ⩽ k(t)[1 + |x|] for almost all t ∈ T , and all x ∈ H , with k ∈ Lp
′

(T ).

Remark 1. Hypotheses H(F )1(i), (ii) imply that for all u ∈ L∞(T ,H) the multifunction u ↦→ F (t, u(t)) admits a measurable
selection. Indeed, let {sn}n⩾1 be a sequence of simple functions such that sn(t) → u(t) as n → ∞ and |sn(t)| ⩽ |u(t)| for
almost all t ∈ T , all n ∈ N. Then hypothesis H(F )1(i) and the Yankov–von Neumann–Aumann selection theorem imply
that there exists a measurable function hn : T → H such that hn(t) ∈ F (t, sn(t)) for almost all t ∈ T and all n ∈ N.
Then {hn}n⩾1 ⊆ L∞(T ,H) is bounded and so we may assume that hn

w
−→ h in L1(T ,H). Invoking Proposition 3.9 of Hu &

Papageorgiou [5, p. 694] and using hypothesis H(F )1(ii) we conclude that h(t) ∈ F (t, u(t)) for almost all t ∈ T . Hypothesis
H(F )1(iii) is a multivalued version of a condition due to Hartman (see [8]).

Let x0 ∈ H and h ∈ Lp
′

(T ,H) and consider the following Cauchy problem:{
−u′(t) ∈ A(t, u(t)) + ∂ϕ(u(t)) + h(t) for almost all t ∈ T ,
u(0) = x0.

}
(2)

Proposition 3. If hypotheses H(A), H(ϕ) or H(A)′, H(ϕ)′ hold, then problem (2) admits a unique solution u0 ∈ Wp(T ).
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Proof. First we do the proof when H(A) and H(ϕ) hold.
Consider the map L : D ⊆ Lp(T , X) → Lp

′

(T , X∗) defined by

L(u) = u′ for all u ∈ D = {u ∈ Wp(T ) : u(0) = x0}.

By Lemma 8.93 of Roubicek [10, p. 289] we know that L(·) is maximal monotone and densely defined.
We introduce the map a : Lp(T , X) → Lp

′

(T , X∗) and the functionalΦ : Lp(T ,H) → R = R ∪ {+∞} defined by

a(u)(·) = A(·, u(·)) for all u ∈ Lp(T , X),

Φ(u) =

∫ b

0
ϕ(u(t))dt for all u ∈ Lp(T ,H).

Theorem 2.35 in Hu & Papageorgiou [1, p. 41] implies that

a(·) is L-pseudomonotone.

Also, Φ ∈ Γ0(Lp(T ,H)) and ∂Φ(u) = Sp
′

∂ϕ(u(·)) ⊆ Lp
′

(T ,H) = Lp(T ,H∗) for all u ∈ Lp(T ,H) (see Theorem 9.24 in Hu &
Papageorgiou [5, p. 271]). Moreover, hypothesis H(ϕ) implies that Lp(T , X) ⊆ D(∂Φ).

We claim that the multivalued map u ↦→ a(u)+ ∂Φ(u) is L-pseudomonotone. Evidently, this multifunction has values in
Pwkc(Lp

′

(T , X∗)) and it is usc from every finite dimensional subspace of Lp(T , X) into Lp
′

(T , X∗)w (see Proposition 2.23 in Hu
& Papageorgiou [5, p. 43]). Consider two sequences {un}n⩾1 ⊆ Wp(T ) and {gn}n⩾1 ⊆ Lp

′

(T ,H) such that

un
w
−→ u in Wp(T ), gn

w
−→ g in Lp

′

(T ,H), gn ∈ ∂Φ(un) for all n ∈ N,

lim sup
n→∞

((a(un) + gn, un − u)) ⩽ 0
(3)

with ((·, ·)) denoting the duality brackets for the pair (Lp
′

(T , X∗), Lp(T , X)). Recall that Lp(T , X)∗ = Lp
′

(T , X∗) (see Theorem
2.2.9 in Gasinski & Papageorgiou [11, p. 129]). So

((g, h)) =

∫ b

0
⟨g(t), h(t)⟩dt for all (g, h) ∈ Lp

′

(T , X∗) × Lp(T , X).

We know thatWp(T ) ↪→ Lp(T ,H) compactly. Therefore we have

un → u in Lp(T ,H) (see (3)). (4)

On the other hand, ∂Φ(·) is maximal monotone and so Gr ∂Φ is sequently closed in Lp(T ,H)× Lp
′

(T ,H)w . Then it follows
from (3) and (4) that

(u, g) ∈ Gr ∂Φ. (5)

Also, we have

((gn, un − u)) =

∫ b

0
⟨gn(t), un(t) − u(t)⟩dt =

∫ b

0
(gn(t), un(t) − u(t))dt → 0

as n → ∞ (see (4)). (6)

Returning to the last convergence in (3) and using (6), we obtain

lim sup
n→∞

((a(un), un − u)) ⩽ 0. (7)

But recall that a(·) is L-pseudomonotone. So, from (7) we infer that

a(un)
w
−→ a(u) in Lp

′

(T , X∗) and ((a(un), un)) → ((a(u), u)). (8)

Then from (5), (6) and (11), we conclude that

u ↦→ a(u) + ∂Φ(u) is L-pseudomonotone. (9)

For every u ∈ Lp(T , X) and every g ∈ ∂Φ(u), we have

((a(u) + g, u)) =

∫ b

0
⟨A(t, u(t)), u(t)⟩dt +

∫ b

0
(g(t), u(t))dt. (10)

Hypothesis H(A)(ii) implies that

c0∥u∥
p
Lp(T ,X) ⩽

∫ b

0
⟨A(t, u(t)), u(t)⟩dt. (11)
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Also, g ∈ ∂Φ(u) implies that

g(t) ∈ ∂ϕ(u(t)) for almost all t ∈ T ,
⇒ (g(t), u(t)) = (g(t) − h, u(t)) + (h, u(t)) for all h ∈ ∂ϕ(0)

⩾ (h, u(t)) (since ∂ϕ(·) is monotone),

⇒

∫ b

0
(g(t), u(t))dt ⩾ −∥u∥Lp(T ,H)|∂Φ(0)|

⩾ −c1∥u∥Lp(T ,X)|∂Φ(0)| for some c1 > 0 (recall that X ↪→ H)
⩾ −c2∥u∥Lp(T ,X)| for some c2 > 0 (see hypothesis H(ϕ)). (12)

We return to (10) and use (11), (12). Then

((a(u) + g, u)) ⩾ c0∥u∥
p
Lp(T ,X) − c2∥u∥Lp(T ,X),

⇒ u ↦→ a(u) + ∂Φ(u) is strongly coercive. (13)

Then (9) and (13) permit the use of Proposition 2 and so

R(L + a + ∂Φ) = Lp
′

(T , X∗).

Therefore we can find u0 ∈ Wp(T ) such that

− u′

0 ∈ a(u0) + ∂Φ(u0) + h.

Next, we show that this solution is unique. To this end, suppose that v0 ∈ Wp(T ) is another solution of problem (2). We
have

−u′

0(t) = A(t, u0(t)) + gu0 (t) + h(t) for almost all t ∈ T , u0(0) = x0, gu0 ∈ ∂Φ(u0), (14)

−v′

0(t) = A(t, v0(t)) + gv0 (t) + h(t) for almost all t ∈ T , v0(0) = x0, gv0 ∈ ∂Φ(v0). (15)

We subtract (15) from (14) and obtain

u′

0(t) − v′

0(t) + A(t, u0(t)) − A(t, v0(t)) + gu0 (t) − gv0 (t) = 0 for almost all t ∈ T . (16)

On (16) we act with u0(t) − v0(t) ∈ X and then integrate. Using the integration by parts formula (see Proposition 1), the
monotonicity of A(t, ·) and hypothesis H(ϕ), we have

|u0(t) − v0(t)|2 ⩽ −c0

∫ t

0
|u0(s) − v0(s)|2ds ⩽ 0 for all t ∈ T ,

⇒ u0 = v0.

This proves the uniqueness of the solution u0 ∈ Wp(T ) of problem (2).
Now suppose that hypotheses H(A)′ and H(ϕ)′ hold. The existence part of the above proof remains unchanged. For the

uniqueness part, the only change is that now we have

|u0(t) − v0(t)|2 ⩽ −c0

∫ t

0
|u0(s) − v0(s)|2ds ⩽ 0 (see hypothesis H(A)′(ii))

⇒ u0 = v0.

The proof is now complete. □

We can introduce the Poincaré map K : H → H defined by

K (x0) = u(b),

where u ∈ Wp(T ) is the unique solution of (2) (see Proposition 3).

Proposition 4. If hypotheses H(A), H(ϕ) of H(A)′, H(ϕ′) hold, then K (·) is a contraction.

Proof. Let x0, x̂0 ∈ H be two distinct initial conditions for problem (2) and let u0, û ∈ Wp(T ) be the corresponding unique
solutions of the Cauchy problem (2) (see Proposition 3). We have

−u′

0(t) ∈ A(t, u0(t)) + ∂ϕ(u0(t)) + h(t) for almost all t ∈ T , u0(0) = x0, (17)

−û′(t) ∈ A(t, û(t)) + ∂ϕ(û(t)) + h(t) for almost all t ∈ T , û0(t) = x̂0. (18)

First we assume that hypotheses H(A) and H(ϕ) hold.
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As before, subtracting (18) from (17) and using Proposition 1 and hypothesis H(ϕ), we obtain
1
2

d
dt

|u0(t) − û(t)|2 ⩽ −c0|u0(t) − û(t)|2 for almost all t ∈ T ,

⇒
d
dt

[
e2c0t |u0(t) − û(t)|2

]
⩽ 0 for almost all t ∈ T ,

⇒ |u0(t) − û(t)| ⩽ e−2c0t |x0 − x̂| for all t ∈ T .

It follows that

|K (x0) − K (x̂)| ⩽ e−2c0b|x0 − x̂|,
⇒ K (·) is a contraction.

If hypotheses H(A)′ and H(ϕ)′ hold, then
1
2

d
dt

|u0(t) − û(t)|2 ⩽ −c0∥u0(t) − û(t)∥2

⩽ −c3|u0(t) − û(t)|2 for almost all t ∈ T
and some c3 > 0 (recall that X ↪→ H)

and then continuing as above, we obtain

|K (x0) − K (x̂)| ⩽ e−2c3b|x0 − x̂|.

The proof is now complete. □

Given h ∈ Lp
′

(T ,H), we consider the following periodic problem:{
−u′(t) ∈ A(t, u(t)) + ∂ϕ(u(t)) + h(t) for almost all t ∈ T ,
u(0) = u(b).

}
(19)

Proposition 5. If hypotheses H(A), H(ϕ) or H(A)′, H(ϕ)′ hold, then problem (19) has a unique solution

u0 ∈ Wp(T ) ⊆ C(T ,H)

and we have

|u0(t)| ⩽ ĉ +

∫ t

0
|h(s)|ds for all t ∈ T , and some ĉ > 0. (20)

Proof. By Proposition 4, we know that for both cases the Poincaré map K : H → H is a contraction. So, the Banach fixed
point theorem guarantees the existence of a unique x0 ∈ H such that

K (x0) = x0. (21)

Let u0 ∈ Wp(T ) ⊆ C(T ,H) be the unique solution of (2) with u0(0) = x0 ∈ H . From (21) it follows that this is the unique
solution of (21).

Next, we establish the uniform bound in (20). We have{
−u′(t) ∈ A(t, u0(t)) + ∂ϕ(u0(t)) + h(t) for almost all t ∈ T ,
u0(0) = u0(b).

}
The proof is common for both cases. We act with u0(t) and use Proposition 1. Then for some g0 ∈ Sp

′

∂ϕ(u0(·))
and for all

η ∈ ∂ϕ(0), we have
1
2

d
dt

|u0(t)|2 ⩽ −c4|u0(t)|2 − (g0(t) − η, u0(t)) − (η, u0(t)) − (h(t), u0(t))

for almost all t ∈ T , and some c4 > 0 (see hypothesis H(A)(ii))
⩽ −c4|u0(t)|2 + [|∂ϕ(0)| + |h(t)|]|u0(t)| for almost all t ∈ T
(since ∂ϕ(·) is monotone)

⇒ |u0(t)|
d
dt

|u0(t)| ⩽ −c4|u0(t)|2 + [|∂ϕ(0)| + |h(t)|]|u0(t)| for almost all t ∈ T ,

⇒
d
dt

|u0(t)| ⩽ −c4|u0(t)| + [|∂ϕ(0)| + |h(t)|] for almost all t ∈ T ,

⇒
d
dt

[ec4t |u0(t)|] ⩽ ec4t [|∂ϕ(0)| + |h(t)|]
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⇒ |u0(t)| ⩽ e−c4t |u0(0)| + e−c4t
∫ t

0
ec4s[|∂ϕ(0)| + |h(t)|]ds

⩽ e−c4t |u0(0)| + |∂ϕ(0)|b +

∫ t

0
|h(s)|ds for all t ∈ T . (22)

If t = b, then using the periodic boundary condition, we have

ec4b−1

ec4b
|u0(0)| ⩽ |∂ϕ(0)|b + ∥h∥L1(T ,H),

⇒ |u0(0)| ⩽
ec4b

ec4b−1

[
|∂ϕ(0)|b + ∥h∥L1(T ,H)|

]
. (23)

We return to (22) and use (23). Then

|u0(t)| ⩽
ec4b

ec4b − 1

[
|∂ϕ(0)|b + ∥h∥L1(T ,H)

]
+ |∂ϕ(0)|b +

∫ t

0
|h(s)|ds

⇒ |u0(t)| ⩽ ĉ +

∫ t

0
|h(s)|ds for all t ∈ T , and some ĉ > 0.

The proof is now complete. □

LetM > 0 be as in hypothesis H(F )(iii) and let pM : H → H be the M-radial retraction defined by

pM (x) =

⎧⎨⎩x if |x| ⩽ M
Mx
|x|

ifM < |x|
for all x ∈ H.

We set F̂ (t, x) = F (t, pM (x)) for all (t, x) ∈ T × H . Clearly, F̂ (t, x) satisfies hypotheses H(F ), (i), (ii) and

|F̂ (t, x)| ⩽ aM (t) for almost all t ∈ T , and all x ∈ H, where aM ∈ Lp
′

(T )
(see hypothesis H(F ), (iii)).

In what follows, we denote by Ŝ ⊆ Wp(T ) the solution set of (1) with F replaced by F̂ , and by S ⊆ Wp(T ) the solution set
of (1) with the original F .

Also, we will need the following extra condition on ϕ.
H0: For all (u, h) ∈ Gr ∂ϕ, we have 0 ⩽ (h, u).

Remark 2. Evidently, this condition is satisfied if 0 ∈ ∂ϕ(0) (hence 0 is a minimizer of ϕ).

Proposition 6.

(a) If hypotheses H(A), H(ϕ) or H(A′), H(ϕ)′ and H(F )1, H0 hold, then |u(t)| ⩽ M for all t ∈ T , u ∈ Ŝ.
(b) If hypotheses H(A), H(ϕ) or H(A)′, H(ϕ)′ and H(F )′1 hold, then there exists M > 0 such that |u(t)| ⩽ M for all t ∈ T , u ∈ S.

Proof. (a) Suppose that the conclusion of this part is not true. Then for some u ∈ Ŝ one of the following assertions holds.

• |u(t)| > M for all t ∈ T .
• There exist τ , r ∈ T with τ < r such that |u(τ )| = M and |u(r)| > M .

We have

− u′(t) ∈ A(t, u(t)) + ∂ϕ(u(t)) + ĥ(t) a.e on T , u(0) = u(b)

with ĥ ∈ Sp
′

F̂ (·,u(·))
. As before, using Proposition 1 and hypotheses H(A)(iii) and H0 we have

|u(t)|2 + c0

∫ t

0
∥u(s)∥2ds ⩽ |u(0)|2 −

∫ t

0
(ĥ(s), u(s))ds

= |u(0)|2 −

∫ t

0

u(s)
M

(ĥ(s), pM (u(s)))ds

⩽ |u(0)|2 (see hypothesis H(F )1(iii)),
⇒ |u(b)|2 < |u(0)|2, a contradiction.

If the second case holds, then repeating the above argument on the interval [τ , r], we obtain

|u(r)|2 < |u(τ )|2, again a contradiction.
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Therefore we conclude that

|u(t)| ⩽ M for all t ∈ T , u ∈ Ŝ.

(b) Let u ∈ S ⊆ Wp(T ). Then we have

− u′(t) ∈ A(t, u(t)) + ∂ϕ(u(t)) + h(t) for almost all t ∈ T ,
u(0) = u(b),

with h ∈ Sp
′

F (·,u(·)). Then from (20) of Proposition 5, we have

|u(t)| ⩽ ĉ +

∫ t

0
|h(s)|ds

⩽ ĉ +

∫ t

0
k(s)[1 + |u(s)|]ds (see hypothesis H(F )′1(iii))

⇒ |u(t)| ⩽ M for someM > 0, and all t ∈ T , u ∈ S (use Gronwall’s inequality).

This completes the proof. □

On account of Proposition 6, we see that we can replace F (t, x) by

F̂ (t, x) = F (t, pM (x)) for all (t, x) ∈ T × H.

As we have already mentioned, F̂ preserves the properties of F . More precisely, we have:

• For all x ∈ H, t ↦→ F̂ (t, x) is graph measurable.
• For almost all t ∈ T , Gr F̂ (t, ·) ⊆ H × Hw is sequentially closed.

Moreover, we have

|F̂ (t, x)| ⩽ η̂(t) for almost all t ∈ T , and all x ∈ H

with η̂ ∈ Lp
′

(T ) (η̂ = aM if H(F )1,H0 hold and η̂ = (1 + M)k if H(F )2 holds).
Let ξ : Lp

′

(T ) → C(T ,H) be the solution map for problem (19). So, for every h ∈ Lp
′

(T ,H), ξ (h) ∈ Wp(T ) ⊆ C(T ,H) is the
unique solution of problem (19) (see Proposition 5).

Proposition 7. If hypotheses H(A), H(ϕ) or H(A)′, H(ϕ)′ hold, then ξ : Lp
′

(T ,H) → C(T ,H) is completely continuous (that is,
if hn

w
−→ h in Lp

′

(T ,H), then ξ (hn) → ξ (h) in C(T ,H)).

Proof. Suppose that hn
w
−→ h in Lp

′

(T ,H) and let un = ξ (hn) for all n ∈ N, u = ξ (h). Then there exist {gn, g}n⩾1 ⊆ Lp
′

(T ,H)
such that

gn(t) ∈ ∂ϕ(un(t)) for almost all t ∈ T , and all n ∈ N, and g(t) ∈ ∂ϕ(u(t))
for almost all t ∈ T . (24)

We have

u′

n(t) + A(t, un(t)) + gn(t) + hn(t) = 0, for almost all t ∈ T , and all n ∈ N,
un(0) = un(b). (25)

u′(t) + A(t, u(t)) + g(t) + h(t) = 0 for almost all t ∈ T , u(0) = u(b). (26)

On (25) we act with un(t). Using Proposition 1 (the integration by parts formula) and hypothesis H(A)(ii) or H(A)′(ii) we
obtain

1
2

d
dt

|un(t)|2 + c0∥un(t)∥p
+ (gn(t), un(t)) + (hn(t), un(t)) = 0 for almost all t ∈ T ,

Integrating over T and using the periodic boundary condition, we have

c0∥un∥
p
Lp(T ,X) +

∫ b

0
(gn(t) − v∗, un(t))dt +

∫ b

0
(v∗, un(t))dt ⩽ c5∥un∥Lp(T ,X)

for some c5 > 0, and all n ∈ Nwith v∗
∈ ∂ϕ(0).

Hypothesis H(ϕ) or H(ϕ)′ implies that

c0∥un∥
p
Lp(T ,X) ⩽ c6∥un∥Lp(T ,X) for some c6 > 0, and all n ∈ N,

⇒ {un}n⩾1 ⊆ Lp(T , X) is bounded. (27)
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Recall that ∂ϕ(·) is bounded (see hypothesis H(ϕ) and [5]). Hence, ifM > 0 is as in Proposition 6 and BM = {x ∈ H : |x| ⩽
M}, then

∂ϕ(BM ) ⊆ H is bounded.

So, we can findM1 > 0 such that

|∂ϕ(un(t))| ⩽ M1 for all n ∈ N, t ∈ T . (28)

From (25), (27), (28) and hypothesis H(A)(iii) it follows that

∥u′

n∥Lp′ (T ,X∗) ⩽ M2 for someM2 > 0, and all n ∈ N. (29)

From (27) and (29) we infer that

{un}n⩾1 ⊆ Wp(T ) is bounded. (30)

So by passing to a suitable subsequence if necessary, we may assume that

un → û in Lp(T ,H) and un
w
−→ û in C(T ,H) (31)

(recall thatWp(T ) ↪→ Lp(T ,H) compactly,Wp(T ) ↪→ C(T ,H) and see (30)).

Let ϵm → 0+ be such that for all m ∈ N, un(ϵm) → û(ϵm) in H as n → ∞ (see the first convergence in (31)). As before,
using (25), (26) and Proposition 1 (the integration by parts formula), we have for all n, m ∈ N and all t ∈ [ϵm, b]

|un(t) − u(t)|2 ⩽ |un(ϵm) − u(ϵm)|2 +

∫ t

ϵm

⟨A(s, un(s)) − A(s, u(s)), u(s) − un(s)⟩ds

+

∫ t

ϵm

(gn(s) − g(s), u(s) − un(s))ds +

∫ t

ϵm

(hn(s) − h(s), u(s) − un(s))ds

⩽ |un(ϵm) − u(ϵm)|2 − c7

∫ t

ϵm

|un(s) − u(s)|2ds + (32)∫ t

ϵm

(hn(s) − h(s), u(s) − un(s))ds for some c7 > 0, and all n ∈ N.

To derive (32) if H(A) and H(ϕ) hold, we have used H(A)(ii), the monotonicity of ∂ϕ(·) and the fact that X ↪→ H , while if
H(A)′, H(ϕ)′ hold, we have used the strong monotonicity of ∂ϕ(·) and the monotonicity of A(t, ·).

In (32) we pass to the limit as n → ∞ and obtain

|û(t) − u(t)|2 ⩽ |û(ϵm) − u(ϵm)|
2
− c7

∫ t

ϵm

|û(s) − u(s)|2ds for allm ∈ N

(see (31) and recall that un(ϵm) → û(ϵm) in H for allm ∈ N and 2 ⩽ p).

Finally, lettingm → ∞ we get

|û(t) − u(t)|2 ⩽ |û(0) − u(0)|2 − c7

∫ t

0
|û(s) − u(s)|2ds for all t ∈ T .

Choosing t = b and recalling that û(0) = û(b), u(0) = u(b), we have

0 ⩽ −c7

∫ b

0
|û(s) − u(s)|2ds ⩽ 0

⇒ û = u.

It follows from (32) that

∥un − u∥C(T ,H) → 0 as n → ∞.

Hence for the original sequence we have

un = ξ (hn) → ξ (h) = u in C(T ,H) as n → ∞,

⇒ ξ : Lp
′

(T ,H) → C(T ,H) is completely continuous.

The proof is complete. □

As we have already indicated by replacing F by F̂ if necessary, we may assume that

|F (t, x)| ⩽ η̂(t) for almost all t ∈ T , and all x ∈ H with η̂ ∈ Lp
′

(T ).
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Based on this, we introduce the following set

W = {h ∈ Lp
′

(T ,H) : |h(t)| ⩽ η̂(t) for almost all t ∈ T }.

From the Eberlein–Smulian theorem we know that W ⊆ Lp
′

(T ,H) is sequentially weakly compact. Therefore, using
Proposition 7, we conclude that

E = ξ (W ) ⊆ C(T ,H) is compact. (33)

Now we are ready for our first existence theorem for the ‘‘convex’’ problem (that is, the multivalued perturbation F (t, x)
is convex-valued).

Theorem8. If hypothesesH(A), H(ϕ) or H(A)′,H(ϕ)′ andH(F )1, H0 or H(F )′1 hold, then problem (1) admits a solution û ∈ Wp(T ).

Proof. We furnishW ⊆ Lp
′

(T ,H) with the relative weak topology and consider the multifunction H : W → Pkc(W ) defined
by

H(h) = Sp
′

F (·,ξ (h)(·)).

Let {(hn, gn)}n⩾1 ⊆ GrH and assume that

hn
w
→ h, gn

w
→ g in Lp

′

(T ,H) as n → ∞. (34)

Then (34) and Proposition 7 imply that

ξ (hn) → ξ (h) in C(T ,H) as n → ∞. (35)

Invoking Proposition 3.9 of Hu & Papageorgiou [5, p. 694], we have

g(t) ∈ convw − lim sup
n→∞

F (t, ξ (hn)(t))

⊆ F (t, ξ (h)(t)) for almost all t ∈ T
(see (35) and hypothesis H(F )1(ii) = H(F )′1(ii))

⇒ (h, g) ∈ GrH,
⇒ H(·) is usc (see Proposition 2.23 of Hu & Papageorgiou [5, p. 43]).

By the Kakutani–Ky Fan fixed point theorem (see Theorem 2.6.7 in Papageorgiou, Kyritsi & Yiallourou [12, p. 114]), H(·)
admits a fixed point. So, there exists h0 ∈ W such that

h0 ∈ H(g0),

⇒ h0 ∈ Sp
′

F (·),ξ (h0)(·)
.

Let u0 = ξ (h0) ∈ Wp(T ). Then

−u′

0(t) ∈ A(t, u0(t)) + ∂ϕ(u0(t)) + h0(t) for almost all t ∈ T , u0(0) = u0(b),
⇒ u0 ∈ Wp(T ) is a solution of problem (1).

The proof of Theorem 8 is complete. □

The above existence theoremwas proved under the assumption that at least one of A(t, ·) and ∂ϕ(·) is strongly monotone
(see hypotheses H(A)′ and H(ϕ)). Next, we remove this requirement.

So, the new hypotheses on A(t, x) and ∂ϕ(x) are the following:
H(A)1: A : T × X → X∗ is a map such that

(i) for all x ∈ X, t ↦→ A(t, x) is measurable;
(ii) for almost all t ∈ T , x ↦→ A(t, x) is demicontinuous and

c0∥x∥p ⩽ ⟨A(t, x), x⟩ for almost all t ∈ T , all x ∈ X;

(iii) ∥A(t, x), x∥∗ ⩽ a1(t) + c1∥x∥p−1 for almost all t ∈ T , and all x ∈ X with a1 ∈ Lp
′

(T ), c1 > 0.

H(ϕ)1: ϕ ∈ Γ0(H) is bounded above on bounded sets, for all u ∈ Lp(T , X) we have Sp
′

∂ϕ(u(·)) ̸= ∅ and ∂ϕ(0) ⊆ H is bounded.
By the Troyanski renorming theorem (see Gasinski–Papageorgiou [11, p. 911]) we may assume without any loss of

generality that both X and X∗ are locally uniformly convex.
Let F : X → X∗ be the duality map defined by

F(x) = {x∗
∈ X∗

:
⟨
x∗, x

⟩
= ∥x∥2

= ∥x∗
∥
2
∗
}.
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The local uniform convexity of X and X∗ implies that F(·) is single-valued, bounded, monotone, bicontinuous bijection
(hencemaximalmonotone, too), coercive andF−1 is the dualitymap of X∗ (see Gasinski & Papageorgiou [11] and Zeidler [6]).

Note that, if ψ(x) =
1
2∥x∥

2 for all x ∈ X , then

F(x) = ∂ψ(x) (see [11, p. 132])

and so by Rockafellar & Wets [13, p. 565] we have

F(·) is strongly monotone.

Using this observation we can prove the following existence theorem.

Theorem 9. If hypotheses H(A)1, H(ϕ)1 and H(F )1, H0 or H(ξ )′1 hold, then problem (1) admits a solution û ∈ Wp(T ).

Proof. Let ϵn → 0+ and consider the following approximating evolution inclusion{
−u′(t) ∈ A(t, u(t)) + ϵnF(u(t)) + ∂ϕ(u(t)) + F (t, u(t)) for almost all t ∈ T ,
u(0) = u(b).

}
Note that for every n ∈ N the mapping x ↦→ A(t, x) + ϵnF(x) satisfies the strong monotonicity condition in hypothesis

H(A)(ii). So, by Theorem 8 we can find a solution un ∈ Wp(T ) (n ∈ N) for the periodic problem. We have {un}n⩾1 ⊆ E and so

{un}n⩾1 ⊆ C(T ,H) is relatively compact.

Also, since |un(t)| ⩽ M for all t ∈ T , n ∈ N, it follows that

{un}n⩾1 ⊆ Wp(T ) is bounded.

So, by passing to a suitable subsequence if necessary, we may assume that

un
w
→ û in Wp(T ) and un → û in C(T ,H).

Then as in the proofs of Propositions 3 and 7, taking the limit as n → ∞, we have{
−û′(t) ∈ A(t, û(t)) + ∂ϕ(û(t)) + F (t, û(t)) for almost all t ∈ T ,
û(0) = û(b),

}
which shows that û ∈ Wp(T ) is a solution of (1). □

Let Ŝc ⊆ Wp(T ) ⊆ C(T ,H) denote the solution set of ‘‘convex’’ problem. Then we have the following property.

Theorem 10. If hypotheses H(A)1, H(ϕ)1 and H(F )1, H0 or H(F )′1 hold, then Ŝc ∈ Pk(C(t,H)).

4. The ‘‘nonconvex’’ problem

In this section we consider problem (1) when the multivalued perturbation F (t, x) has nonconvex values.
Now, the hypotheses on F (t, x) are the following:
H(F )2: F : T × H → Pf (H) is a multifunction such that

(i) the mapping (t, x) ↦→ F (t, x) is graph measurable;
(ii) for almost all t ∈ T , x ↦→ F (t, x) is lsc;
(iii) there existsM > 0 such that

0 ⩽ (h, x) for almost all t ∈ T , and all |x| = M, h ∈ F (t, x),
|F (t, x)| ⩽ aM (t) for almost all t ∈ T , and all |x| ⩽ M, with aM ∈ Lp

′

(T ).

Alternatively, we can assume the following:
H(F )′2: F : T × H → Pf (H) is a multifunction such that hypotheses H(F )′2(i), (ii) are the same as the corresponding

hypotheses H(F )2(i), (ii) and

(iii) |F (t, x)| ⩽ k(t)[1 + |x|] for almost all t ∈ T , and all x ∈ H , with k ∈ Lp
′

(T ).

Following the approach of the previous section, we first consider problem (1) under the strong monotonicity conditions.

Theorem 11. If hypotheses H(A), H(ϕ) or H(A)′, H(ϕ)′ and H(F )2, H0 or H(F )′2 hold, then problem (1) admits a solution
û ∈ Wp(T ).
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Proof. Clearly, Proposition 6 can also be applied here. So, by replacing F (t, x) with F̂ (t, x), we may assume that

|F (t, x)| ⩽ η̂(t) for almost all t ∈ T , and all x ∈ H, with η̂ ∈ Lp
′

(T ). (36)

As before, we introduce the set

W = {h ∈ Lp
′

(T ,H) : |h(t)| ⩽ η̂(t) for almost all t ∈ T }.

On account of Proposition 7, we have

ξ = ξ (W ) ∈ Pk(C(T ,H)).

Let E∗ = conv E ∈ Pkc(C(T ,H)) and consider the multifunction H : E∗ → Pwk(Lp
′

(T ,H)) defined by

H(u) = Sp
′

F (·,u(·)) for all u ∈ E∗ (see (36)).

We claim that H(·) is lsc. According to Proposition 2.6 of Hu & Papageorgiou [5, p. 37], to show the lower semicontinuity
of H(·), it suffices to prove that

if un → u in C(T ,H), then H(u) ⩽ lim inf
n→∞

H(un).

Let h ∈ V (u) and for every n ∈ N consider the multifunction Gn : T → Pwk(H) defined by

Gn(t) =

{
v ∈ F (t, un(t)) : |h(t) − v| ⩽ d(h(t), F (t, un(t))) +

1
n

}
.

Hypothesis H(F )2(i) implies that the mapping t ↦→ F (t, un(t)) is measurable for every n ∈ N. It follows that

GrGn ∈ LT ⊗ B(H),

with LT being the Lebesgue σ -field of T and B(H) the Borel σ -field of H . Invoking the Yankov–von Neumann–Aumann
selection theorem, we can find a measurable function hn : T → H such that

hn(t) ∈ Gn(t) for almost t ∈ T ,

⇒ |h(t) − hn(t)| ⩽ d(h(t), F (t, un(t))) +
1
n
for almost all t ∈ T , and all n ∈ N,

⇒ lim sup
n→∞

|h(t) − hn(t)| ⩽ lim sup
n→∞

d(h(t), F (t, un(t)))

⩽ d(h(t), lim inf
n→∞

F (t, un(t)))

(see Proposition 1.47 in Hu & Papageorgiou [5, p. 672])
⩽ d(h(t), F (t, u(t))) for almost all t ∈ T ,
(see H(F )2(ii) and recall that un → u in C(T ,H)),

⇒ hn(t) → h(t) in H for almost all t ∈ T ,

⇒ hn → h in Lp
′

(T ,H) and hn ∈ H(un) = Sp
′

F (·,un(·)) for all n ∈ N,
⇒ H(·) is lsc.

Also, H(·) has decomposable values. So, we can apply the Bressan–Colombo selection theorem [14] and find a continuous
map v : E∗ → Lp

′

(T ,H) such that

v(u) ∈ H(u) for all u ∈ E∗.

We define τ = ξ ◦ v : E∗ → E∗. This is a continuous map (see Proposition 7). Invoking the Schauder fixed point theorem,
we can find û ∈ E∗ such that

û = τ (û).

From the definition of H(·) we see that û ∈ Wp(T ) is a solution of the nonconvex problem. The proof is now complete. □

Since we have the result for the strongly monotone case, we can now pass to the general setting.

Theorem 12. If hypotheses H(A)1,H(ϕ)1 and H(F )2,H0 or H(F )′2 hold, then problem (1) admits a solution û ∈ Wp(T ).

Proof. Let ϵn → 0+ and consider the approximate problem{
−u′(t) ∈ A(t, u(t)) + ϵnF(u(t)) + ∂ϕ(u(t)) + F (t, u(t)) for almost all t ∈ T ,
u(0) = u(b).

}
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This problem satisfies the conditions of Theorem 11 and we obtain a solution un ∈ Wp(T ) for all n ∈ N. From the proof
of Theorem 11, we know that {un}n⩾1 ⊆ E∗. Hence {un}n⩾1 ⊆ Wp(T ) is bounded and given the compactness of E∗ ⊆ C(T ,H),
we may assume that

un
w
→ û inWp(T ) and un → û in C(T ,H).

We have that

un = (ξn ◦ v)(un) for all n ∈ N

with ξn(·) being the solutionmap for the approximate problem (see Proposition 7) and v(·) is the continuous selection of the
multifunction H(·) (see the proof of Theorem 11). We have{

−u′

n(t) = A(t, un(t)) + ϵnF(un(t)) + gn(t) + v(un)(t) for almost all t ∈ T ,
un(0) = un(b)

}
with gn ∈ ∂Φ(un), n ∈ N. Since ∂φ(·) maps bounded sets to bounded sets we may assume that

gn
w
→ g in Lp

′

(T ,H) and g ∈ ∂Φ(u)

(since ∂Φ(·) is maximal monotone). As in the proof of Proposition 3, using the L-pseudomonotonicity of a(·), in the limit as
n → ∞, we obtain{

−u′(t) = A(t, u(t)) + g(t) + v(u)(t) almost everywhere on T ,
u(0) = u(b).

}
We conclude that u ∈ Wp(T ) is a solution of the nonconvex problem. □

5. Extremal trajectories

In this section we establish the existence of extremal periodic trajectories for problem (1), that is, solutions which move
through the extreme points of themultivalued perturbation F (t, x). We know that even if F (t, ·) is regular, themultifunction
x ↦→ ext F (t, x) assigning the extreme points of F (t, x), need not have any continuity properties (see Hu & Papageorgiou [5,
Section 2.4]).

In this section, the problem under consideration is the following:{
−u′(t) ∈ A(t, u(t)) + ∂ϕ(u(t)) + ext F (t, u(t)) for almost all t ∈ T ,
u(0) = u(b).

}
(37)

To be able to solve (37), we need to strengthen the conditions on the multifunction F (t, x):
H(F )3: F : T × H → Pfc(H) is a multifunction such that

(i) for all x ∈ H, t ↦→ F (t, x) is graph measurable;
(ii) for all t ∈ T , F (t, ·) is h-continuous;
(iii) there existsM > 0 such that

0 ⩽ (h, x) for almost all t ∈ T , and all |x| = M, h ∈ F (t, x),
|F (t, x)| ⩽ aM (t) for almost all t ∈ T , and all |x| ⩽ M, with aM ∈ Lp

′

(T ).

Alternatively, we can assume the following:
H(F )′3: F : T × H → Pfc(H) is a multifunction such that hypotheses H(F )′3(i), (ii) are the same as the corresponding

hypotheses H(F )3(i), (ii) and

(iii) |F (t, x)| ⩽ k(t)[1 + |x|] for almost all t ∈ T , and all x ∈ H , with k ∈ Lp
′

(T ).

Again, we first deal with problem (37) under the strong monotonicity conditions on the data.

Theorem 13. If hypotheses H(A), H(ϕ) or H(A)′, H(ϕ)′ and H(F )3, H0 or H(F )′3 hold, then problem (37) admits a solution
û ∈ Wp(T ).

Proof. The a priori bounds from Proposition 6, allow us to replace F (t, x) by F̂ (t, x) = F (t, pM (x)). So, without any loss of
generality, we may assume that

|F (t, x)| ⩽ η̂(t) for almost all t ∈ T , and all x ∈ H, with η̂ ∈ Lp
′

(T ). (38)
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As before, we introduce the set

W = {h ∈ Lp
′

(T ,H) : |h(t)| ⩽ η̂(t) for almost all t ∈ T }

and we define

E∗ = conv ξ (W ) ∈ Pkc(C(T ,H)).

Theorem 8.31 of Hu & Papageorgiou [5, p. 260] implies that there exists a continuous map γ : E∗ → L1w(T ,H) such that

γ (u) ∈ ext Sp
′

F (·,u(·)) = Sp
′

ext F (·,u(·)) for all u ∈ E∗

(see Hu & Papageorgiou [5, Theorem 4.5, p. 191]). (39)

We consider the map σ = ξ ◦ γ : E∗ → E∗ (see (38)). Suppose that un → u in E∗. Then γ (un) → γ (u) in L1w(T ,H).
Invoking Lemma 2.8 of Hu & Papageorgiou [1, p. 24], we have γ (un)

w
→ γ (u) in Lp

′

(T ,H). Then by Proposition 7, we have

σ (un) = ξ (γ (un)) → ξ (γ (u)) = σ (u) in C(T ,H),
⇒ σ : E∗ → E∗ is continuous.

Since E∗ ∈ Pkc(C(T ,H)), we can apply the Schauder fixed point theorem and find û ∈ E∗ such that

û = σ (û),
⇒ û ∈ Wp(T ) is a solution of problem (37) (see (39)).

The proof of Theorem 13 is complete. □

Next, we remove the strong monotonicity condition.

Theorem 14. If hypotheses H(A)1, H(ϕ)1 and H(F )3, H0 or H(F )′3 hold, then problem (37) admits a solution û ∈ Wp(T ).

Proof. Again we choose ϵn → 0+ and consider the approximate problems{
−u′(t) ∈ A(t, u(t)) + ϵnF(u(t)) + ∂ϕ(u(t)) + ext F (t, u(t)) for almost all t ∈ T ,
u(0) = u(b).

}
This problem satisfies the strong monotonicity condition and so Theorem 13 can be applied to produce a solution

un ∈ Wp(T ) for all n ∈ N. We have

{un}n⩾1 ⊆ E∗ and un = (ξ ◦ γ )(un) for all n ∈ N.

Therefore {un}n⩾1 is bounded inWp(T ) and relatively compact in C(T ,H). So, we may assume that

un
w
→ û in Wp(T ) and un → û in C(T ,H) as n → ∞.

We have

γ (un) → γ (û) in L1w(T ,H),

⇒ γ (un)
w
→ γ (û) in Lp

′

(T ,H)
(see Hu & Papageorgiou [1, Lemma 2.8, p. 24] and (38)).

We know that for every n ∈ N

−u′

n(t) ∈ A(t, un(t)) + ϵnF(un(t)) + gn(t) + γ (un)(t) for almost all t ∈ T ,
un(0) = un(b)

with gn ∈ ∂Φ(un), n ∈ N. Since ∂ϕ(·) maps bounded sets to bounded sets and it is maximal monotone, we have (at least for
a subsequence)

gn
w
→ g in Lp

′

(T ,H) and g ∈ ∂Φ(û).

Passing to the limit as n → ∞ in the evolution equation and using the L-pseudo-monotonicity of a(·), as before, we obtain

−û′(t) ∈ A(t, û(t)) + g(t) + γ (û)(t) for almost all t ∈ T ,
u(0) = u(b),

⇒ û ∈ Wp(T ) is a solution of (37).

This completes the proof of Theorem 14. □
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6. Strong relaxation

In this section we show that every solution of the convex problem can be approximated in the C(T ,H)-norm topology
by certain extremal trajectories. Such a result is known as ‘‘strong relaxation’’ and is important for many applications. For
example, in control theory it is related to the so-called ‘‘bang–bang principle’’. In this context the result says that any state
of the control system can be approximated by states which are generated by bang–bang controls. So, in the operation of the
system, we can economize in the use of control functions.

To prove such an approximation result, we need to strengthen the conditions on the multivalued perturbation F (t, x). So,
the hypotheses are the following:

H(F )4: F : T × X → Pwkc(H) is a multifunction such that

(i) for all x ∈ H, t ↦→ F (t, x) is graph measurable;
(ii) h(F (t, x), F (t, y)) ⩽ l(t)|x − y| for almost all t ∈ T , and all x, y ∈ H , with l ∈ L1(T );
(iii) there existsM > 0 such that

0 ⩽ (h, x) for almost all t ∈ T , and all |x| = M, h ∈ F (t, x),
|F (t, x)| ⩽ aM (t) for almost all t ∈ T , and all |x| ⩽ M, with aM ∈ Lp

′

(T ).

Alternatively, we can impose the following conditions on F (t, x).
H(F )′1: F : T × H → Pwkc(H) is a multifunction such that hypotheses H(F )′4(i), (ii) are the same as the corresponding

hypotheses H(F )4(i), (ii) and

(iii) |F (t, x)| ⩽ k(t)[1 + |x|] for almost all t ∈ T , and all x ∈ H , with k ∈ Lp
′

(T ).

In what follows, we denote by Ŝc ⊆ Wp(T ) the solution set of problem (1) with the multivalued perturbation F (t, x) being
convex-valued. Suppose u ∈ Ŝc . Then by Ŝe(u(0)) we denote the solution set of the following Cauchy problem

− v′(t) ∈ A(t, v(t)) + ∂ϕ(v(t)) + ext F (t, v(t)) for almost all t ∈ T , v(0) = u(0).

Reasoning as in the proof of Theorem 13, we show that Ŝe(u(0)) ⊆ Wp(T ) is nonempty.

Theorem 15. If hypotheses H(A)1, H(ϕ)1 and H(F )4, H0 or H(F )′4 hold and u ∈ Ŝc , then we can find {un}n⩾1 ⊆ Ŝe(u(0)) such
that un → u in C(T ,H).

Proof. As before, as a result of the a priori bounds established in Proposition 6, wemay assumewithout any loss of generality
that

|F (t, x)| ⩽ η̂(t) for almost all t ∈ T , and all x ∈ H, with η̂ ∈ Lp
′

(T ). (40)

Since u ∈ Ŝc , there exists h ∈ Sp
′

F (·,u(·)) such that{
−u′(t) ∈ A(t, u(t)) + ∂ϕ(u(t)) + h(t) for almost all t ∈ T ,
u(0) = u(b).

}
Again, we introduce the following two sets

W = {h ∈ Lp
′

(T ,H) : |h(t)| ⩽ η̂(t) for almost all t ∈ T },

E∗ = conv ξ (W ) ∈ Pkc(C(T ,H)).

Given v ∈ E∗ and ϵ > 0, we consider the multifunction Γv,ϵ : T → 2H
\ {∅} defined by

Γv,ϵ(t) =

{
y ∈ F (t, v(t)) : |h(t) − y| <

ϵ

2Mb
+ d(h(t), F (t, v(t)))

}
.

Here, M > 0 is the a priori bound from Proposition 6. Hypotheses H(F )4(i), (ii) imply that the mapping t ↦→ F (t, v(t)) is
measurable. It follows that t ↦→ Γv,ϵ(t) is graph measurable and by invoking the Yankov–von Neumann–Aumann selection
theorem, we can find a measurable function ĥv,ϵ : T → H such that

ĥv,ϵ(t) ∈ Γv,ϵ(t) for almost all t ∈ T ,

⇒ ĥv,ϵ ∈ Lp
′

(T ,H) (see (40)). (41)

Therefore, if we introduce the multifunction Ĥϵ : E∗ → 2Lp
′
(T ,H) defined by

Ĥϵ(v) = Sp
′

Γv,ϵ
,



N.S. Papageorgiou et al. / Computers and Mathematics with Applications 75 (2018) 3047–3065 3063

then from (41) we see that Ĥϵ(v) ̸= ∅ for all v ∈ E∗. In addition, Lemma 8.3 of Hu & Papageorgiou [5, p. 239] implies that

v → Ĥϵ(v) is lsc,

⇒ v → Ĥϵ
|·|

(v) is lsc
(see Hu & Papageorgiou [5, Proposition 2.38, p. 50]).

Moreover, v ↦→ Ĥϵ
|·|

(v) has decomposable values. So, using the Bressan–Colombo [14] selection theorem, we produce a
continuous map γϵ : E∗ → Lp

′

(T ,H) such that

γϵ(v) ∈ Ĥϵ
|·|

(v) for all v ∈ E∗.

Then Theorem 8.31 of Hu & Papageorgiou [5, p. 260] gives a continuous map βϵ : E∗ → L1w(T ,H) such that

βϵ(v) ∈ ext Sp
′

F (·,v(·)) = Sp
′

ext F (·,v(·)) and ∥βϵ(v) − γϵ(v)∥w < ϵ for all v ∈ E∗. (42)

Now let ϵn =
1
n , γn = γϵn , βn = βϵn for all n ∈ N and u0 = u(0) = u(b). We consider the following Cauchy problem

− u′(t) ∈ A(t, u(t)) + ∂ϕ(u(t)) + βn(u(t)) for almost all t ∈ T , u(0) = u0. (43)

Let un ∈ Wp(T ) be a solution of (42). It is clear that {un}n⩾1 ⊆ Ŝe(u0). Therefore {un}n⩾1 ⊆ C(T ,H) is relatively compact.
Also, directly from (43) we see that {un}n⩾1 ⊆ Wp(T ) is bounded. So, we may assume that

un
w
→ û in Wp(T ) and un → û in C(T ,H) as n → ∞. (44)

From (32) (with ϵm = 0) and since un(0) = u0 = u(0) for all n ∈ N, we have

|un(t) − u(t)|2 ⩽

∫ t

0
(βn(un)(s) − h(s), un(s) − u(s))ds

⩽

∫ t

0
(βn(un)(s) − γn(un)(s), un(s) − u(s))ds

+

∫ t

0
|γn(un)(s) − h(s)| · |un(s) − u(s)|ds

⩽

∫ t

0
(βn(un)(s) − γn(un)(s), un(s) − u(s))ds

+

∫ t

0

[
1

2Mbn
+ d(h(s), F (s, un(s)))

]
|un(s) − u(s)|ds

⩽

∫ t

0
(βn(un)(s) − γn(un)(s), un(s) − u(s))ds

+
1
n

+

∫ t

0
h(F (s, u(s)), F (s, un(s)))|un(s) − u(s)|ds

⩽

∫ t

0
(βn(un)(s) − γn(un)(s), un(s) − u(s))ds + ϵ +∫ t

0
l(s)|un(s) − u(s)|2ds. (45)

By (42) and Lemma 2.8 of Hu & Papageorgiou [1, p. 24], we have

βn(un) − γn(un)
w
→ 0 in Lp

′

(T ,H) as n → ∞,

⇒

∫ b

0
(βn(un)(s) − γn(un)(s), un(s) − u(s))ds → 0 as n → ∞ (see (44)). (46)

Therefore, if in (45) we pass to the limit as n → ∞ and use (44) and (46), then

|û(t) − u(t)|2 ⩽

∫ t

0
l(s)|û(s) − u(s)|2ds,

⇒ û = u (by Gronwall’s inequality).

Hence u = limn→∞un in C(T ,H) with un ∈ Ŝe(u(0)) for all n ∈ N. □
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7. Examples

In this section we illustrate the previous results, by considering parabolic distributed parameter control systems.
Let T = [0, b] and assume that Ω ⊆ RN is a bounded domain with Lipschitz boundary ∂Ω . We consider the following

nonlinear control system⎧⎪⎪⎨⎪⎪⎩
∂u
∂t

−∆pu + β(u) ∋ f0(t, z, u) + (k(t, z), v(t, z))RN in (0, b) ×Ω,

u(t, ·)|∂Ω = 0 for all t ∈ (0, b), u(0, ·) = u(b, ·) inΩ,

v(t, z) ∈ K (t, z) for almost all (t, z) ∈ T ×Ω.

⎫⎪⎪⎬⎪⎪⎭ (47)

In this problem,∆p (2 ⩽ p < ∞) denotes the p-Laplacian differential operator defined by

∆pu = div (|Du|p−2Du) for all u ∈ W 1,p(Ω).

The nonlinearity f0 : T ×Ω × R → R is a Carathéodory function, that is,

• for all x ∈ R, the mapping (t, z) ↦→ f0(t, z, x) is measurable;
• for almost all (t, z) ∈ T ×Ω , x ↦→ f0(t, z, x) is continuous;
• |f0(t, z, x)| ⩽ k0(t, z)(1 + |x|) for almost all (t, z) ∈ T ×Ω , and all x ∈ R, with k0 ∈ L2(T ×Ω).

Also, β : R → 2R is a maximal monotone map. Then

β = ∂ j with j ∈ Γ0(R)

(see Corollary 3.2.40 of Papageorgiou & Kyritsi Yiallourou [12, p. 176]). We set

ϕ(u) =

⎧⎨⎩
∫
Ω

j(u(z))dz if j(u(·)) ∈ L1(Ω)

+∞ otherwise
for all u ∈ L2(Ω).

We know that ϕ ∈ Γ0(L2(Ω)) and

y ∈ ∂ϕ(u) if and only if y(z) ∈ ∂ j(u(z)) = β(u(z)) for almost all z ∈ Ω

(see Hu & Papageorgiou [5]). We assume that if B ⊆ L2(Ω) is bounded, then
∫
Ω
j(u(z))dz ⩽ M for all u ∈ B, someM > 0, and

for every u ∈ Lp(T ,W 1,p
0 (Ω)), the multifunction (t, z) ↦→ β(u(t, z)) has a selection in the space Lp

′

(T , L2(Ω)). Since p ⩾ 2,
this is satisfied if (t, z) ↦→ β(u(t, z)) admits a selection in L2(T ×Ω).

The function v ∈ L2(T ×Ω), v : T ×Ω → Rm is the control function and K (t, z) ⊆ Rm is the control constant set. We
assume that the multifunction K : T ×Ω → Pkc(Rm) is graph measurable and |K (t, z)| ⩽ M̂ for some M̂ > 0 and for almost
all (t, z) ∈ T ×Ω .

We formulate problem (47) in the form of an abstract evolution inclusion as (1). The evolution triple consists of the
following spaces

X = W 1,p
0 (Ω), H = L2(Ω), X∗

= W−1,p′

(Ω)
(
1
p

+
1
p′

= 1
)
.

The Sobolev embedding theorem implies that X ↪→ H compactly. Let A : X → X∗ be the nonlinear map defined by

⟨A(u), h⟩ =

∫
Ω

|Du|p−2(Du,Dh)RN dz.

Evidently, A(·) is continuous, strictly monotone, hence maximal monotone, too. Also, we have

⟨A(u), u⟩ = ∥Du∥p
p = ∥u∥p (by the Poincaré inequality)

and ⟨A(u), h⟩ ⩽ ∥u∥p−1
∥h∥p for all h ∈ W 1,p

0 (Ω) (by Hölder’s inequality).

So, hypotheses H(A)1 are satisfied.
Let f : T × H → H be the Nemitsky map corresponding to the function f0, that is,

f (t, u)(·) = f0(t, ·, u(·)) for all u ∈ H = L2(Ω).

We introduce the multifunction G : T → Pwkc(L2(Ω)) defined by

G(t) = {(k(t, ·), v(·))Rm : v ∈ S2K (t,·)}.

Then G(·) is measurable and |G(·)| ∈ L2(T ). We set

F (t, u) = f (t, u) + G(t) for all (t, u) ∈ T × L2(Ω).
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It follows that this multifunction satisfies hypotheses H(F )′1. Then problem (47) is equivalent to the following nonlinear
evolution inclusion{

−u′(t) ∈ A(u(t)) + ∂ϕ(u(t)) + F (t, u(t)) for almost all t ∈ T ,
u(0) = u(b).

}
By Theorem 9, this problem has a solution u ∈ Lp(T ,W 1,p

0 (Ω)) such that

∂u
∂t

∈ Lp
′

(T ,W−1,p′

(Ω)).

In fact, the set of solutions is compact in C(T , L2(Ω)) (see Theorem 10). Moreover, if we assume that

|f0(t, z, x) − f0(t, z, y)| ⩽ l0(t, z)|x − y| for almost all (t, z) ∈ T ×Ω, and all x, y ∈ R,

then by the strong relaxation theorem (see Theorem 15), given any solution u of the convex problem, we can find a solution
ûwhich is generated by a bang–bang control v(t, z) ∈ ext V (t, z) for almost all (t, z) ∈ T ×Ω such that

sup
t∈T

|u(t, ·) − û(t, ·)|L2(Ω) < ϵ, ϵ > 0.

In a similar way, we can also deal with the following control system⎧⎪⎪⎨⎪⎪⎩
∂u
∂t

−∆pu −∆u = f0(t, z, u) + (k(t, z), v(t, z))Rm in (0, b) ×Ω,

0 ∈ β(u(t, z)) for all (t, z) ∈ T × ∂Ω,

u(0, z) = u(b, z) for almost all z ∈ Ω, v(t, z) ∈ K (t, z) almost everywhere in T ×Ω.

⎫⎪⎪⎬⎪⎪⎭
Note that in this case hypothesis H(A) is satisfied.
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