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Abstract. We study a class of nonlinear elliptic equations with subcritical
growth and Dirichlet boundary condition. Our purpose in the present paper

is threefold: (i) to establish the effect of a small perturbation in a nonlinear

coercive problem; (ii) to study a Dirichlet elliptic problem with lack of coer-
civity; and (iii) to consider the case of a monotone nonlinear term with sub-

critical growth. This last feature enables us to use a dual variational method

introduced by Clarke and Ekeland in the framework of Hamiltonian systems
associated with a convex Hamiltonian and applied by Brezis to the qualitative

analysis of large classes of nonlinear partial differential equations. Connections

with the mountain pass theorem are also made in the present paper.

1. Introduction. Let Ω ⊂ RN be a bounded domain with smooth boundary. Let
2∗ denote the critical Sobolev exponent, that is, 2∗ = 2N/(N − 2) if N ≥ 3 and
2∗ = +∞ if N ∈ {1, 2}. Throughout this paper we denote by λ1 the first eigenvalue
of the Laplace operator (−∆) in H1

0 (Ω).
In this paper we are concerned with the nonlinear elliptic problem{

−∆u− λu = f(u) in Ω
u = 0 on ∂Ω,

(1)

where λ is a real parameter. The function f ∈ C1(R,R) is assumed to satisfy the
following hypotheses:

f(0) = f ′(0) = 0; (2)

|f(u)| ≤ C(1 + |u|p) for all u ∈ R, where 1 < p < 2∗ − 1; (3)

and there exists µ > 2 such that for all u > 0 large enough,

0 < µF (u) ≤ uf(u), where F (u) :=
∫ u

0
f(t)dt. (4)

Under these assumptions, Ambrosetti and Rabinowitz [1] proved that problem
(1) has at least one positive solution, provided that λ < λ1. We are looking for
weak solutions of (1), that is, u ∈ H1

0 (Ω) with u > 0 a.e. in Ω and such that for all
ξ ∈ H1

0 (Ω), ∫
Ω

(∇u · ∇ξ − λuξ)dx =

∫
Ω

f(u)ξdx .
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A standard bootstrap argument (see Gilbarg and Trudinger [12]) that combines
Schauder and Hölder regularity shows that if u is a weak solution then u is a
classical solution of problem (1). We refer to Rădulescu [22, pp. 4-5] for complete
details of such a regularity argument.

Returning to problem (1), we point out that a solution of this problem exists
provided that the linear operator −∆−λI is coercive in H1

0 (Ω), that is, there exists
c > 0 such that for all ξ ∈ H1

0 (Ω),∫
Ω

(|∇ξ|2 − λξ2)dx ≥ c ‖ξ‖2H1
0
.

The hypothesis λ < λ1 corresponds to the existence of a mountain pass geometry
near the origin for the energy functional associated to problem (1).

The same argument based on the mountain pass theorem can be extended to
the case where f has an almost critical growth, more precisely if assumption (3) is
replaced with

lim
u→+∞

f(u)

u(N+2)/(N−2)
= 0,

provided that N ≥ 3.
We observe that the technical assumption (4) implies a super-linear behaviour

of the nonlinear term. Indeed, a straightforward computation shows that, by (4),
there are C1, C2 > 0 such that

f(u) ≥ C1u
µ−1 − C2, for all u ≥ 0. (5)

To the best of our knowledge, it is not known whether the above existence result
for problem (1) still remains true if assumption (4) is replaced under the weaker
hypothesis (5).

In the limiting case p = 1 in hypothesis (3) that corresponds to a linear growth
of f , we have provided in [23] a sufficient condition for the existence of a nontrivial
solution to problem (1). This corresponds to a weak slope of f near the origin,
combined with a faster (linear) growth of f in a neighbourhood of +∞.

We refer to the seminal paper by Brezis and Nirenberg [5] for several related
existence and nonexistence results.

2. The main results. In the present paper we have two objectives. We are first
interested in the effect of a certain perturbation in problem (1). More precisely, we
consider the problem −∆u− λu = f(u) + h(x) in Ω

u > 0 in Ω
u = 0 on ∂Ω,

(6)

where h ∈ L∞(Ω). We observe that if the perturbation h is big with respect to a
suitable topology, then problem (6) does not have any solution. Indeed, let φ1 be a
positive eigenfunction of (−∆) corresponding to λ1. By multiplication in (6) with
φ1 and integration by parts we obtain∫

Ω

hφ1dx =

∫
Ω

[(λ1 − λ)u− f(u)]φ1dx.

Thus, by (5),∫
Ω

hφ1dx ≤
∫

Ω

[
(λ1 − λ)u− C1u

µ−1 + C2

]
φ1dx ≤M

∫
Ω

φ1dx, (7)
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where
M := max{(λ1 − λ)t− C1t

µ−1 + C2; t ∈ [0,∞)}.
Since µ > 2 and λ < λ1, it follows that M ∈ (0,∞). Returning to relation (7), we
conclude that problem (6) cannot have any solution if h is nonnegative and ‖h‖L∞

is large enough. We refer to Zheng [25] for a related nonexistence result in the case
where h is negative and ‖h‖L∞ is sufficiently large.

In contrast, our first main result establishes that if the perturbation is small with
respect to the L∞–topology, then problem (6) admits solution.

Theorem 2.1. Assume λ < λ1 and hypotheses (2)–(4) are fulfilled. Then there
exists δ > 0 such that for all h ∈ L∞(Ω) with ‖h‖L∞ < δ, problem (6) has at least
one solution.

The proof of Theorem 2.1 combines the mountain pass theorem with an argu-
ment by contradiction. For a somewhat related result we refer to Rădulescu [22,
Theorem 5.8].

The second objective in this paper concerns the existence of solutions to problem
(1) in the case where λ ≥ λ1, that is, provided that the operator −∆ − λI is no
longer coercive in H1

0 (Ω).
By multiplication with φ1 in (1) we obtain

(λ1 − λ)

∫
Ω

uφ1dx =

∫
Ω

f(u)φ1dx.

This shows that problem (1) cannot have positive solutions if λ ≥ λ1 and f > 0 on
(0,∞). That is why we impose the following additional hypothesis:

f : R→ R is strictly increasing and onto. (8)

Under assumptions (2)–(4) and (8), problem (1) cannot have a positive solution.
Indeed, by multiplication with φ1 in (1), we obtain

(λ1 − λ)

∫
Ω

uφ1dx =

∫
Ω

f(u)φ1dx ,

which is not possible if u > 0 in Ω. This shows that a natural question is to
see if, under the same assumptions, problem (1) admits a nontrivial sign-changing
solution. The answer is positive, as shown by the next result.

Theorem 2.2. Assume λ ≥ λ1 and hypotheses (2)–(4) and (8) are fulfilled. Then
problem (1) has at least one nontrivial solution.

The proof of this result uses a dual variational method of Clarke and Ekeland
[7, 8, 9], which was initially introduced in the framework of Hamiltonian systems
associated with a convex Hamiltonian. Toland [24] had introduced a related method
for the study of variational problems involving the difference of two convex functions.
We also refer to Brezis [4] for several applications of the dual variational principle
to the qualitative analysis of nonlinear partial differential equations.

In the proofs of Theorems 2.1 and 2.2 we apply some methods developed in Brezis
[4] and Brezis and Nirenberg [5]

3. Proof of Theorem 2.1. Arguing by contradiction, there is a sequence (hm)m≥1

in L∞(Ω) with ‖hm‖L∞ → 0 such that for all m ≥ 1, the problem −∆um − λum = f(um) + h(um) in Ω
um > 0 in Ω
um = 0 on ∂Ω

(9)
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does not have any solution.

Set F (t) :=
∫ t

0
f(s)ds. The energy functional associated to problem (9) is

Em(u) =
1

2

∫
Ω

(|∇u|2 − λu2)dx−
∫

Ω

F (u+)dx−
∫

Ω

hmudx for all u ∈ H1
0 (Ω),

where u+ := max{u, 0}.
We use in the proof the mountain pass theorem of Ambrosetti and Rabinowitz

[1] in the following form.

Mountain Pass Theorem. Assume Ψ is a C1 function on a Banach space E and
satisfies the Palais-Smale condition, that is,{

whenever a sequence (vm) in E satisfies |Ψ(vm)| ≤ C and Ψ′(vm)→ 0 in E∗,
there exists a subsequence of (vm) that converges in E.

Assume also the following geometric hypotheses are fulfilled:{
there are constants δ > 0 and c0 > 0 such that Ψ(v) ≥ c0
for every v ∈ E with ‖v‖ = δ

(10)

and
Ψ(0) < c0 and Ψ(v0) < c0 for some v0 ∈ E with ‖v0‖ > δ. (11)

Then there is a critical point v of Ψ such that Ψ(v) ≥ c0.

We check that Em fulfills the geometric assumptions of the mountain pass theo-
rem. We first observe that for all u ∈ H1

0 (Ω),

Em(u) ≥ λ1 − λ
2λ1

‖u‖2 −
∫

Ω

F (u+)dx− ‖hm‖L∞

∫
Ω

|u|dx.

Fix ε > 0. Thus, by (2) and (3), there exists C(ε) > 0 such that for all t ∈ R,

|f(t)| ≤ ε |t|+ C(ε) |t|p,
hence

|F (t)| ≤ ε

2
t2 +

C(ε)

p+ 1
|t|p+1.

It follows that

Em(u) ≥ λ1 − λ
2λ1

‖u‖2 − ε

2

∫
Ω

(u+)2dx− C(ε)

p+ 1

∫
Ω

(u+)p+1dx− ‖hm‖L∞

∫
Ω

|u|dx

≥ C1 ‖u‖2 − C2ε ‖u‖2 − C3(ε) ‖u‖p+1
Lp+1 − C4 ‖hm‖L∞ ‖u‖ .

Thus, if ‖u‖ = δ > 0 is small enough, then

Em(u) ≥ c0 > 0.

In the above argument we have also used Sobolev embeddings and the assumption
‖hm‖L∞ → 0 as m→∞.

Next, for all m ≥ 1,

Em(tφ1) =
(λ1 − λ)t2

2

∫
Ω

φ2
1dx−

∫
Ω

F (tφ1)dx− t
∫

Ω

hmφ1dx

≤ C1t
2 −

∫
Ω

(C2t
µφµ1 − C3)dx− t

∫
Ω

hmφ1dx

= −C2t
µ

∫
Ω

φµ1dx+ C1t
2 + C3 |Ω| −O(t) ≤ 0,

if t > 0 is large enough.
The verification of the Palais-Smale condition is standard for Em and follows

from the assumption p < 2∗ − 1.
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We now deduce from the mountain pass theorem that there exists um ∈ H1
0 (Ω) \

{0} such that E ′m(um) = 0. The corresponding critical value is Em(um) = cm ≥
c0. Next, by multiplication with um in (9) and using the assumption λ < λ1

we deduce that supm ‖um‖ < +∞. Standard elliptic regularity arguments imply
that (um) is bounded in L∞(Ω), hence in Lp(Ω) for all 1 < p < ∞. Schauder
estimates (see Brezis [3]) imply that (um) is bounded in W 2,p(Ω) for all p <∞. By
Sobolev embeddings, (um) is bounded in C1,α(Ω) for all α ∈ (0, 1). Thus, up to a
subsequence, um → u in C1,α(Ω). Taking m→∞ we obtain{

−∆u− λu = f(u+) in Ω
u = 0 on ∂Ω.

(12)

Moreover, the corresponding critical level is positive, that is,

1

2

∫
Ω

(|∇u|2 − λu2)dx−
∫

Ω

F (u+)dx ≥ c0 > 0.

This shows that u 6≡ 0. Applying now the maximum principle in (12), we deduce
that u > 0 in Ω. Since um → u in C1,α(Ω), we obtain that um > 0 in Ω provided
that m is large enough. Consequently, um is a solution of problem (9) corresponding
to h = hm. This contradicts our assumption that problem (9) does not have any
solution. The proof of Theorem 2.1 is now complete.

4. Proof of Theorem 2.2. The basic assumption λ ≥ λ1 implies that the geo-
metric assumption (10) in the statement of the mountain pass theorem is no longer
fulfilled. That is why we use an idea found in the proof of Theorem 4 in Brezis [4],
which relies on the assumption that the nonlinear term f is one-to-one and onto.
We introduce a new unknown v = f(u) and we prove that the energy functional
associated to v fulfills the hypotheses of the mountain pass theorem.

The solutions of problem (1) correspond to the critical points of the energy
functional

E(u) :=
1

2

∫
Ω

(|∇u|2 − λu2)dx−
∫

Ω

F (u)dx, u ∈ H1
0 (Ω).

We first consider the case where the linear operator (−∆−λI) is invertible, hence
λ is not an eigenvalue of the Laplace operator. Thus, problem (1) can be written,
equivalently,

u = (−∆− λI)−1f(u).

Set T = (−∆ − λI)−1 and denote f(u) = v, hence u = g(v) with g = f−1.
Conditions (3) and (5) imply that g ∈ Lr(Ω), with (N − 2)/(N + 2) < r < 1 if
N ≥ 3 and 0 < r < 1 if N ∈ {1, 2}. Thus, T is a compact operator from Lr+1(Ω)

into L(r+1)′(Ω). This follows from the fact that T maps Lr+1(Ω) into W 2,r+1(Ω)

combined with the compact embedding W 2,r+1(Ω) ⊂ L(r+1)′(Ω).
Using the dual formulation we have to find a nontrivial critical point for the

functional

J (v) :=

∫
Ω

G(v)dx− 1

2

∫
Ω

vTvdx, G(y) :=

∫ y

0

g(t)dt .

The above remarks show that J is well-defined and of class C1 on the space Lr+1(Ω).
Moreover, for all v, ξ ∈ Lr+1(Ω),

J ′(v)(ξ) =

∫
Ω

g(v)ξdx−
∫

Ω

ξTvdx.
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We prove in what follows that J satisfies the hypotheses of the mountain pass
theorem. We first observe that

J (v) ≥ C1 ‖v‖r+1
Lr+1 − C2 ‖v‖2L1 ≥ C1 ‖v‖r+1

Lr+1 − C3 ‖v‖2Lr+1 .

Since r+ 1 < 2, this estimate shows that there are positive constants R and ρ such
that J (v) ≥ ρ for all v ∈ Lr+1(Ω) with ‖v‖Lr+1 = R. This shows that condition
(10) is fulfilled.

Let λk > λ be an eigenvalue of (−∆) and let ϕ be a corresponding eigenfunction.
Choose v0 = tϕ, with t > 0. Thus, since r + 1 < 2,

J (v0) ≤ C1 t
r+1

∫
Ω

|ϕ|r+1dx+ C2 − t2(λk − λ)

∫
Ω

|Tϕ|2dx < 0,

provided that t > 0 is large enough. This implies that condition (11) is fulfilled.
We prove in what follows that J satisfies the Palais–Smale compactness con-

dition. Let (vn) ⊂ Lr+1(Ω) be an arbitrary Palais–Smale sequence for J . Since

J ′(vn)→ 0 in L(r+1)′(Ω) we have

g(vn)− Tvn = wn → 0 in L(r+1)′(Ω).

Therefore

1

2

∫
Ω

g(vn)vndx−
1

2

∫
Ω

vn Tvndx =
1

2

∫
Ω

vnwndx = o(1) as n→∞. (13)

On the other hand, since supn |J (vn)| < +∞ we have∫
Ω

G(vn)dx− 1

2

∫
Ω

vn Tvndx = O(1) as n→∞. (14)

Since G(y) = yg(y)− F (g(y)), relations (13) and (14) yield∫
Ω

[g(vn)vn − 2F (g(vn))] dx = O(1) as n→∞.

Using now assumption (4) we deduce that∫
Ω

g(vn)vn = O(1) as n→∞.

This implies that the sequence (vn) is bounded in Lr+1(Ω). Thus, up to a sub-
sequence, (vn) converges weakly to v in Lr+1(Ω). Using now the compactness of

the operator T we obtain Tvn → Tv in L(r+1)′(Ω), hence vn → v in Lr+1(Ω). We
conclude that J satisfies the Palais–Smale condition.

We now deduce from the mountain pass theorem that there exists v ∈ Lr+1(Ω),
v 6= 0, such that J ′(v) = 0. Then u = g(v) is a nontrivial solution of problem (1).
A standard bootstrap argument implies that u ∈ H1

0 (Ω).

It remains to treat the case where the operator (−∆−λI) is not invertible. This
corresponds to a resonant problem, according to Landesman and Lazer [14]. We
reduce this framework to the previous one and we try to put into evidence the same
operator T in a suitable function space.

Since (−∆−λI) is not invertible, then λ is an eigenvalue of the Laplace operator.
Let E be the finite dimensional space of eigenfunctions corresponding to λ. Then
H1

0 (Ω) = E ⊕ E⊥, where

E⊥ :=

{
w ∈ H1

0 (Ω);

∫
Ω

wξdx = 0 for all ξ ∈ E
}
.
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We first observe that if u is a solution of (1) then for all ξ ∈ E,∫
Ω

[(−∆u)ξ − λuξ]dx =

∫
Ω

f(u)ξdx.

Since ξ ∈ E then −∆ξ = λξ in Ω. Thus, by Green’s formula,
∫

Ω
f(u)ξdx = 0, hence

v = f(u) ∈ E⊥. We now consider T = (−∆−λI)−1 as a linear continuous operator
from E⊥ into itself. This operator is well–defined and our problem (1) becomes{

v ∈ E⊥
Tv − g(v) ∈ E. (15)

Conversely, we observe that if v solves problem (15) then u = g(v) is a solution
of (1). This means that we can repeat the argument developed in the first part of
the proof for the energy functional J but defined this time on E⊥. This completes
the proof of Theorem 2.2.

Open problem. We do not know if the result established in Theorem 2.2 still
remains true if assumption (8) is removed.

Further comments. The original proof of Ambrosetti and Rabinowitz [1] of the
mountain pass theorem relies on some deep deformation techniques developed by
Palais and Smale [16, 17], who put the main ideas of the Morse theory into the
framework of differential topology on infinite dimensional manifolds. Brezis and
Nirenberg provided in [5] a simpler proof which combines two major tools: Ekeland’s
variational principle and the pseudo-gradient lemma. Ekeland’s variational principle
is the nonlinear version of the Bishop–Phelps theorem and it may be also viewed
as a generalization of Fermat’s theorem. Relevant extensions of the mountain pass
theorem are due to Pucci and Serrin [19, 20, 21] and Ghoussoub and Preiss [11]. For
applications of the mountain pass theorem to nonlinear partial differential equations
we refer to Bonanno and Marano [2], Carl and Motreanu [6], Filippucci, Pucci and
Robert [10], Kristály, Rădulescu and Varga [13], and Marano and Motreanu [15].
We also point the recent paper by Pucci and Rădulescu [18] for a survey on the
mountain pass theorem.
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