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Abstract: In order to construct the border solutions for nonsupersingular elliptic curve
equations, some common used models need to be adapted from linear treated cases for use
in particular nonlinear cases. There are some approaches that conclude with these solutions.
Optimization in this area means finding the majority of points on the elliptic curve and
minimizing the time to compute the solution in contrast with the necessary time to compute
the inverse solution. We can compute the positive solution of PDE (partial differential
equation) like oscillations of f(s)/s around the principal eigenvalue λ1 of −∆ in H1

0 (Ω).
Translating mathematics into cryptographic applications will be relevant in everyday life,
wherein there are situations in which two parts that communicate need a third part to confirm
this process. For example, if two persons want to agree on something they need an impartial
person to confirm this agreement, like a notary. This third part does not influence in any
way the communication process. It is just a witness to the agreement. We present a system
where the communicating parties do not authenticate one another. Each party authenticates
itself to a third part who also sends the keys for the encryption/decryption process. Another
advantage of such a system is that if someone (sender) wants to transmit messages to more
than one person (receivers), he needs only one authentication, unlike the classic systems
where he would need to authenticate himself to each receiver. We propose an authentication
method based on zero-knowledge and elliptic curves.
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1. Introduction

The system we propose has three components: two parties that communicate and one party that
authenticates them and provides the keys for the cryptosystem used. The most common authentication
is based on passwords, which help to verify the identity of a user. This method is not secure enough
because the passwords are generated from small dictionaries or they are chosen directly by the users
who usually make poor selections. In addition, users frequently forget passwords. In such cases, an
authentication system needs two authentication modes. The first mode is the primary one, and the
second is the emergency one (it is used only when the primary is not available). The most popular
emergency mode used on the Internet when a password is forgotten is the e-mail. The password or
the instructions to reset it are sent by e-mail. The first password authentication protocol used on a
network proven secure was presented by Halevi and Krawczyk [1]. Their protocol prevents leakage of
information and the server’s private key can be verified by the user. If the server’s key cannot be verified
it is recommended to use strong password authentication protocols. Such protocols were proposed by
Bellovin and Merritt [2,3], Jablon [4] and Wu [5], among others.

We propose a zero-knowledge authentication using elliptic curves. A zero-knowledge proof is a proof
of some statement that reveals nothing else but the veracity of the statement. In order to give a formal
definition for a zero-knowledge proof, we will first define the interactive proof system.

Definition 1. An interactive proof system for a set A is a process between a verifier which executes
a probabilistic polynomial-time strategy and a prover, which executes a computationally unbounded
strategy satisfying:

• Completeness: For any a ∈ A, the verifier always accepts the common input a (after interacting
with the prover).

• Soundness: For some polynomial p, for any x /∈ A and any potential strategy S, the verifier
rejects the common input a with a probability of at least 1

p(|a|) (after interacting with S).

Therefore, a proof is complete if an honest verifier is always convinced of the veracity of a statement
from an honest prover, and it is sound if a cheating prover can convince an honest verifier with a very
small probability that a false statement is true.

Definition 2. A strategy S is zero-knowledge on the set A if for any feasible strategy B exists a feasible
computation C so that the following are computationally indistinguishable:

• the output of B after interacting with S on common input a ∈ A

• the output of C on input a ∈ A

From this definition, any information obtained by interacting with S on some input a, can also be
obtained from a without interacting with S [6]. In our method, the verifier knows the right answer
before communicating with the prover. Therefore, he cannot possibly obtain any new information. This
method is called “no-leak” authentication. A formal definition can be obtained from the zero-knowledge
definition given above by eliminating “probabilistic polynomial time”. This means that whatever
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the verifier can compute after communicating with the prover, he could already compute before the
communicating process. Like the verifier, a passive adversary cannot obtain new information from
the prover.

2. State of Art

2.1. Mathematical Preliminaries

To understand the foundation of the cryptosystem functionality, we have to understand how the secret
can be hidden and how it can be revealed ([7] and [8]). This is pure mathematics, and is based on some
function operation intractability.

Definition 3. The Waierstrass mathematical model is the basement:

E : y2 + a1xy + a3y = x3 + a2x
2 + a4x+ a6 (1)

where ai ∈ K and K represents the field over which the curve is defined. From this point we have the
discriminant:

∆ = d2
2d8 − 8d3

4 − 27d2
6 + 9d2d4d6

with:

d2 = a1 + 4a2

d4 = 2a4 + a1a3

d6 = a2
3 + 4a6

d8 = a2
1a6 + 4a2a6 − a1a3a4 + a2a

2
3 − a2

4

and ∆ 6= 0.

If we have K = Fp where p > 3 is a prime, Equation (1) can be simplified to:

E : y2 = x3 + ax+ b

and the discriminant: ∆ = −16(4a3 + 27b2). In case of K = F2m we have:

E : y2 = x3 + ax+ b

and the discriminant: ∆ = b. If the curve E is defined over a prime field Fp and we have a point
P (x, y) ∈ E then the inverse of it will be −P (x,−y). If we want to compute R(x3, y3) = P +Q where
P (x1, y1) ∈ E and Q(x2, y2) ∈ E we have:

x3 = λ2 − x1 − x2

y3 = λ(x1 − x3)− y1

where λ is given by:

λ =
y1 − y2

x1 − x2
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For doubling a point 2P (x3, y3) we use the formulas:

x3 = λ2 − 2x1

y3 = λ(x1 − x3)− y1

where λ is given by:

λ =
3x2

1 + a

2y1

For the affine coordinates we replace x with x/z and y with y/z, where z 6= 0 obtaining the equation:

y2z = x3 + axz2 + bz3

To compute P (x1, y1, z1) +Q(x2, y2, z2) = R(x3, y3, z3) we have:

λ1 = x1z
2
2

λ2 = x2z
2
1

λ3 = λ1 − λ2

λ4 = y1z
3
2

λ5 = y2z
3
1

λ6 = λ4 − λ5

λ7 = λ1 + λ2

λ8 = λ4 + λ5

z3 = z1z2λ3

x3 = λ2
6 − λ7λ

2
3

λ9 = λ7λ
2
3 − 2x3

y3 = (λ9λ6 − λ8λ
3
3)/2

For doubling a point 2P (x3, y3, z3) we use:

λ1 = 3x2
1 + az4

1

z3 = 2y1z1

λ2 = 4x1y
2
1

x3 = λ2
1 − 2λ2

y3 = λ1(λ2 − x3)− 8y4
1
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If the curve E is defined over a binary field F2m for a point P (x, y) the inverse will be −P (x, x+ y).
Addition and doubling are defined in the same way as on the prime curves.

To obtain the projective coordinates we proceed as above. The inverse of a point P (x, y, z)

is −P (x, x+ y, z). To compute P +Q = R we have:

λ1 = x1z
2
2

λ2 = x2z
2
1

λ3 = λ1 + λ2

λ4 = y1z
3
2

λ5 = y2z
3
1

λ6 = λ4 + λ5

λ7 = z1λ3

λ8 = λ6x2 + λ7y2

z3 = z2λ7

λ9 = λ6 + z3

x3 = az2
3 + λ6λ9 + λ2

3

y3 = λ9x3 + λ8λ
2
7

And for doubling a point 2P we have:

z3 = x1z
2
1

x3 = x4
1 + bz8

1

λ = z3 + x2
1 + y1z1

y3 = x4
1z3 + λx3

2.1.1. Frontier Points on Elliptic Curves

According with [9], from all points which define an elliptic curve, only a part can be used on
applications (cryptography), we can found the special points with properties in this way, called
frontier points:

(1) |E(Fp)| = c · l where l > 2160 a prime and c a positive integer. |E(Fp)| denotes the cardinal of the
set of points on E over Fp.

(2) l 6= p.

(3) the order of the prime p in the multiplicative group F×l of Fl is at least d2000/ log2 pe.
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These three conditions provide a high level of security. There were developed as algorithms for
resolving discrete logarithms with running time equal with the square root of the largest prime factor
of the group order [10]. These algorithms cannot be applied to a cryprosystem, which respects the first
condition. [11] describes the anomalous curve attack. This attack consists in resolving the elliptic curve
discrete logarithm problem for curves with the group order equal to the order of the finite field. The
method uses Hensel’s lemma and has low complexity. The second condition presented above makes this
kind of attack impossible. In [12] the authors presented an attack which reduces the discrete logarithm
problem in E(Fp) to one in a finite extension field Fp. The third condition depends on the assumption
that the DLP in a finite field which has a cardinal 2000-bit long is intractable.

The efficiency of an elliptic curve cryptosystem is based on the arithmetic in Fp. So the efficiency
is directly proportional with p. This means that |E(Fp)| must be as small as possible. From the first
condition we have |E(Fp)| = c · l where l > 2160. So the efficiency depends on the co-factor c. The first
condition becomes:

• |E(Fp)| = c · l where l > 2160 a prime and c ≤ 4 a positive integer. |E(Fp)| denotes the cardinal
of the set of points on E over Fp.

2.1.2. Nonliniarities on Elliptic Curves

For every elliptic curve cryptosystem we have to declare the domain parameters. We will work
with a nonsupersingular elliptic curve E defined over a prime field. The domain parameters will be
(F, p, aE, bE, G, n, h) where Fp is the prime field, aE, bE define the curve E : y2 = x3 + aEx + bE ,
G ∈ E is a point of order n (this means that n is the smallest positive number for which nG = O),
h = |E(Fp)|/n is the co-factor. To meet the above conditions it is recommended for |E(Fp)| to be prime
or |E(Fp)| = h · n where n is a large prime and h ∈ {1, 2, 3, 4} [13].

As is described in [14], starting from an oscillation θ(t)\t around the principal eigenvalue λ1 of −∆

in H1
0 (Ω) in one dimensional case will generate infinitely many solutions if θ(t) > 0 in R and

lim
t→∞

inf
2ψ(t)

t2
< λ1 < lim

t→+∞
sup

2ψ(t)

t2
,

where ψ(t) =
∫ t

0
θ(ξ)dξ.

These conditions, as is proved in [15] can not be replaced by:

lim
t→+∞

inf
θ(t)

t
< λ1 < lim

t→+∞
sup

θ(t)

t

nor by

lim
t→+∞

inf
θ(t)

t
= 0 and lim

t→+∞
sup

θ(t)

t
= +∞

The results of these conclude in [16]{
−∆u = θ(x, u) in Ω

u = 0 on ∂Ω,

where θ : Ω : R→ R is a continuous function. In [14] it is stated

ψ(x, t) =

∫ x

0

θ(x, ξ)dξ
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and it is defined the functional Φ : H1
0 (Ω) ∩ L∞(Ω)→ R with Φ(u) = 1

2

∫
Ω
|Λu|2dx−

∫
Ω
ψ(x, u)dx as

generator of infinitely solutions. From these, the space of chosen criteria for cryptographic points is big
enough such that can be considered as space of strong points in cryptography.

2.1.3. Counting the Elliptic Curve’s Frontier Points

To know the amount of points belonging to the elliptic curve we have to compute |E(Fp)|. In
1985 [17] Schoof presented an algorithm for counting the points on an elliptic curve over a large field
Fp. Schoof’s algorithm had a polynomial running time and used Hasse’s theorem on elliptic curves.

Theorem 1. Hasse’s Theorem If E is an elliptic curve over the finite field Fp then:

|p+ 1− |E(Fp)|| ≤ 2
√
p

If we define t = p+ 1− |E(Fp)| we have to compute t mod N where N > 4
√
p. Schoof’s algorithm

computes this using small primes li where
∏
li = N . After computing t mod li we can find t using the

Chinese Remainder Theorem. Knowing t we can then compute |E(Fp)| = p+1− t. To compute t mod l
Schoof used the Frobenius endomorphism φ and division polynomials.

Theorem 2. Frobenius endomorphism The Frobenius endomorphism φ satisfies the following:

φ2 − tφ+ p = 0 where t = p+ 1 + |E(Fp)|

According to the Theorem 2 we have the equation:

φ2P + plP = tlφP where P (x, y) ∈ E(Fp)

Here pl = p mod l and tl = t mod l. If we restrict to nontrivial l-torsion points (a tortion subgroup
consists of all the elements of an abelian group that have finite order) we obtain:

(xp
2

, yp
2

) + p(x, y) = t(xp, yp) (2)

where x is an unique integer such that x = x mod l. The above equation is valid because in a l-tortion
subgroup the scalar multiplication has the property pG = pG. Starting from Equation (2) and applying
division polynomials, Schoof’s algorithm computes the value of |E(Fp)|. The reader can study the
algorithm and its improvements made over time in [18].

Another algorithm based on Hasse’s theorem was developed by D.Shanks [19]. The algorithm is
named Baby Steps-Giant Steps and computes a number m ∈ (p + 1 − 2

√
p, p + 1 + 2

√
p) such

that mG = O where G is a random point from the curve E : y2 = x3 + ax + b. The algorithm is
described below:

(1) Compute s ≈ 4
√
p

(2) Compute G, 2G . . . sG

(3) Compute Q = (2s+ 1)P and R = (p+ 1)P

(4) Compute R,R±Q,R± 2Q, . . . R± tQ where t =
[

2
√
p

2s+1

]
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The first three steps are known as baby steps while computing R,R±Q . . . , R± tQ is the giant step.
From Hasse’s theorem we know that R + iQ i = 0,±1,±2, . . . ,±t is equal with one from the points
computed in second step. For this i we have:

R + iQ = jG j ∈ {0,±1,±2, . . . ,±t}

The number m will be m = p + 1 + (2s + 1)i − j which represents the cardinal of the elliptic
curve points set. Variations, improvements and enhancements on this algorithm can be studied
in [20]. A very important zero-knowledge protocol, which represents the basis for the most popular
zero-knowledge protocols, is the Fiat-Shamir Identification Protocol. Important protocols derived from
it are Feige-Fiat-Shamir [21] and Guillou-Quisquater. We chose it because it is the simplest protocol
which illustrates the most important properties of the modern sophisticated schemes. This protocol is
used in cryptography for authenticating a certain person. Suppose Alice has a secret Se known only by
her. She will prove her identity to Bob by proving that she possesses Se, of course, without revealing
the secret. Because the secret is not revealed to the verifier, no adversary can find it from the prover
response. A trusted part is needed for this protocol which generates two secret prime numbers p and q,
and computes the public value n = pq. The steps that follow this operation are repeated t times, each
time using independent random numbers. If the verifier has repeated the steps t times then he accepts.

The algorithm is described below (see Algorithm 1) and the repeating steps begin with the fifth one.
The first two steps are executed by the third trusted part, while the steps three and four are executed by
the prover only one time each. The number t is chosen by the verifier, if the verifier is easy to convince,
t can be smaller. A detailed explanation on this algorithm can be found in [22].

Algorithm 1 Fiat-Shamir Identification Protocol.
1: p and q are generated
2: n = pq is made public
3: the prover selects Se co-prime to n such that 1 ≤ Se ≤ n− 1

4: the prover computes v = Se2 mod n which is his public key
5: the prover chooses r such that 1 ≤ r ≤ n− 1

6: the prover computes x = r2 mod n and sends it to the verifier
7: the verifier chooses a bit e ∈ {0, 1} and sends it to the prover
8: if e=0 then
9: the prover computes y = r

10: else
11: the prover computes y = rs mod n

12: end if
13: the prover sends y to the verifier
14: the verifier rejects if y = 0 or y2 6= x ∗ ve (mod n)

For example p = 5 and q = 11 then n = 55 is made public. Suppose Alice (prover) chooses her
secret Se = 14 and computes v = 142 mod 55 = 31. Bob is an easy to convince verifier and chose
t = 2.
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(1) Alice chose r = 9

(2) Alice sends x = 92 mod 55 = 26 to Bob

(3) Bob sends e = 0 to Alice

(4) Alice sends y = r = 9 to Bob

(5) Bob verifies y 6= 0 and 92 mod 55 = (26 ∗ 310) mod 55⇔ 19 = 19

(6) Alice chose r = 15

(7) Alice sends x = 152 mod 55 = 5 to Bob

(8) Bob sends e = 1 to Alice

(9) Alice sends y = rs mod 55 = 45 to Bob

(10) Bob verifies y 6= 0 and 452 mod 55 = (5 ∗ 311) mod 55⇔ 45 = 45

The completeness of this protocol is provided by the fact that the prover possessing the secret Se
can also compute y = r or y = rs and send it to the verifier. Therefore, an honest verifier will always
complete all t iterations and accept with the probability 1. To demonstrate the soundness we suppose the
prover does not possess the secret Se. Therefore, on a given round he cannot compute y = r or y = rs.
Thus, the probability of rejection will be 1

2
in each round. The zero-knowledge is provided by the fact

that the only values made public in one round are x and y. A (x, y) pair can be simulated by choosing
a random y and then computing x = y2 or x = y2

v
. We can observe that such pairs are computationally

indistinguishable from the ones computed in the protocol.
A “no-leak” zero-knowledge authentication was presented in [23]. Alice’s (the prover) private key

consists of:

(1) a subset S0 ⊂ S where S is an universal set

(2) an efficient test to verify if an element from S does not belong to S0

(3) a method for distinguishing the subset S0 to some S ′0

while the public key is the pair of sets S ′0, S1 such that S ′0 ∩ S1 = O. The algorithm has three steps:

Algorithm 2 No-leak Authentication Protocol.

1: Bob sends (x′1, x
′
2, . . . x

′
2m) to Alice, where x′i ∀i is a random element from S ′0 or S1, and exactly m

elements belong to S ′0 and m to S1.
2: Alice uses her private test to check whether for element xi corresponding to x′i does not belong to
S0, xi /∈ S0. If the test fails, she supposes that xi ∈ S0 which means that x′i ∈ S ′0. She counts
how many xi /∈ S0. If the number she obtains is not exactly m then the authentication failed. If she
obtains m, she sends to Bob a string with "0" in places corresponding to x′i ∈ S ′0 and 1 for x′i /∈ S ′0.

3: Bob compares Alice’s result with the right value. If they are equal he accepts the authentication.
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To prevent guessing the answer these three steps can be repeated a number of times like in the
Fiat-Shamir scheme. The author emphasized that if m = 20 then the probability of guessing the answer
in a round of three steps is less than 1

106
.

The authors also presented two particularized methods: a subset sum and polynomials. We will
describe only the one based on polynomial equations. In this case Alice’s private key is:

(1) a polynomial h(x1, x2, . . . , xk) over Z

(2) a large prime p

(3) a constant c ∈ Z

while the public key consists of:

(1) a polynomial f(x1, x2, . . . , xk) = (h(x1, x2, . . . , xk))2 − c(mod p)

(2) a random polynomial g(x1, x2, . . . , xk) over Z which has the same monomials as f and the
coefficients with the same magnitude as the ones of f .

We observe that for any (x1, x2, . . . , xk) ∈ Z exists a v ∈ Z such that f(x1, x2, . . . , xk) + c =

u2(mod p). The following algorithm describes the steps for a single element:

Algorithm 3 No-leak Polynomial Authentication Protocol.

1: Bob chose random integers (x1, x2, . . . xk) and plugs them with the same probability into either f or
g. Bob sends the result, noted b(x1, x2, . . . xk) to Alice.

2: Alice computes a = b(x1, x2, . . . xk) + c(mod p). She verifies if a is a square modulo p. If not
she sends "1" to Bob because b(x1, x2, . . . xk) 6= f(x1, x2, . . . xk). If it is a square she sends "0"
assuming that b(x1, x2, . . . xk) = f(x1, x2, . . . xk).

3: Bob compares Alice’s result with the right value. If they are equal he accepts the authentication.

For this particular method the authors also present some suggestions for the parameters and the keys:

(1) 3 ≤ k ≤ 5

(2) p = 2t where t is a security parameter

(3) 2 ≤ degree(h) ≤ 3

(4) the magnitude of f ’s coefficients at least p/2

(5) the integers x1, x2, . . . , xk are generated uniformly randomly from the interval [1, 2t/k]



Entropy 2014, 16 5154

3. Our Method

We propose a zero-knowledge authentication based on elliptic curves and on the algorithms described
in the previous section. For the use of elliptic curves we have to declare the domain parameters.
For a nonsupersingular elliptic curve E defined over a prime field the domain parameters will be
(F, p, aE, bE, G, n, h) where Fp is the prime field, aE, bE define the curve E : y2 = x3 + aEx + bE ,
G ∈ E is a point of order n (this means that n is the smallest positive number for which nG = O),
h = |E(Fp)|/n is the co-factor. To meet the above conditions it is recommended for |E(Fp)| to be prime
or |E(Fp)| = h · n where n is a large prime and h ∈ {1, 2, 3, 4} [13]. Not all these parameters are used
in a zero-knowledge authentication but they are all used in an elliptic curve cryptosystem. Therefore,
defining these parameters provides one less step in the encryption/decryption process which the two
communicating parties will use after authentication.

The generalized method uses an universal set S of elliptic curves’ points. S0 represents the points
from a specific elliptic curve E. S ′0 are elements corresponding to the points from S0, while S1 is a set of
points which do not belong to the elliptic curve E. The private key and the public one remain the same
with the above specifications. The Algorithm 2 becomes:

Algorithm 4 No-leak Elliptic Curve Authentication Protocol.

1: Bob sends (X ′1, X
′
2, . . . X

′
2m) to Alice, where X ′i ∀i is a random element from S ′0 or S1, and exactly

m elements belong to S ′0 and m to S1.
2: Alice uses her private test to check whether for point Xi corresponding to X ′i does not belong to S0,
Xi /∈ S0. If the test fails, she supposes that Xi ∈ S0 which means that X ′i ∈ S ′0. She counts how
many Xi /∈ S0. If the number she obtains is not exactly m then the authentication failed. If she
obtains m, she sends to Bob a string with "0" in places corresponding to X ′i ∈ S ′0 and 1 for X ′i /∈ S ′0.

3: Bob compares Alice’s result with the right value. If they are equal he accepts the authentication.

This algorithm represents the generalized method for elliptic curves. We also present a particularized
method which replaces the polynomials from the Algorithm 3 with elliptic curve points. Here Alice’s
keys change:

• the private key contains:

(1) a tuple (x1P, x2P, . . . xkP ) where P ∈ E and xi are random scalars

(2) a random point Q (replacing the constant c)

• the public key contains:

(1) a tuple (x1M,x2M, . . . xkM) = 2(x1P, x2P . . . xkP )−Q where M ∈ E

(2) a random tuple (x1N, x2N, . . . , xkN) where N ∈ E

Using these keys the algorithm becomes:
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Algorithm 5 No-leak Elliptic Curve Authentication Protocol.

1: Bob chose random integers (x1, x2, . . . xk) and plugs them with the same probability into either
(x1M,x2M, . . . xkM) or (x1N, x2N, . . . , xkN). Bob sends the result, noted (x1R, x2R, . . . xkR) to
Alice.

2: Alice computes A = (x1R, x2R, . . . xkR) +Q. She verifies if A is a doubled point. If not she sends
"1" to Bob because (x1R, x2R, . . . xkR) 6= (x1M,x2M, . . . xkM). If it is a doubled point she sends
"0" assuming that (x1R, x2R, . . . xkR) = (x1M,x2M, . . . xkM).

3: Bob compares Alice’s result with the right value. If they are equal he accepts the authentication.

The scalar multiplication for elliptic curve points can be done with various methods. To improve
the efficiency of such an algorithm, we have to improve the scalar multiplication which represents the
most complex operation applied to an elliptic curve point. One of the most popular methods for scalar
multiplication was introduced by P. Montgomery in [24]. The main idea is to generate q such that c+ qp

is a multiple of r. The values c, p and r are given, r being a power of 2. Another performance scalar
multiplication method for prime fields was presented in [25] and uses the Frobenius endomorphism.
Clavier and Jove presented in [26] a new idea to ease the computation of kP . They propose to define k
as k1 + k2 where k1 = k − r and k2 = r, r being a random integer. Therefore, kP becomes k1P + k2P .
This idea is very usefully because the values of k1P and k2P can be computed simultaneously. This can
be applied to almost all the algorithms for computing scalar multiplication. An improvement to this idea
was given by Ciet in [27].

4. Conclusions

Our communication system is made up of two parts: the authentication and the process of
communication itself. The communication part implies a cryptosystem for encrypting and decrypting the
messages. These two parts can contain only classical methods, elliptic curve methods or a combination
of the two. Using the same type of methods for both parts is more efficient mainly because some of the
generated values of the authentication are also used in the second part. On the other hand, using different
kind of methods implies generating different values for each part. The optimal situation occurs when
there is no need to generate additional values in the second part. For the second part, the elliptic curve
methods have proved to be the most adequate for encrypting and decrypting messages because they need
shorter keys in order to provide the same performance and security level than the classical ones. For the
authentication we recommend our method because it is less complicated and it needs less resources than
using a classical method for the first part and an elliptic curve one for the second. The authentication
process is accomplished by using a third trusted part. This third part has a very important double role: it
is an impartial witness to the communication and it also provides the authentication and the keys needed
in the second part for the cryptosystem used. All in all, authentication is the first step to an efficient and
secure communication system, which can be accomplished by using our elliptic curve method.
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