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1 Introduction and main results

This paper is concerned with the study of the existence of solutions for the discrete boundary value
problem 



−∆(|∆u(k − 1)|p(k−1)−2∆u(k − 1)) = λ|u(k)|q(k)−2u(k), k ∈ Z[1, T ],

u(0) = u(T + 1) = 0 ,
(1)

where T ≥ 2 is a positive integer and ∆u(k) = u(k + 1)− u(k) is the forward difference operator. Here
and hereafter, we denote by Z[a, b] the discrete interval {a, a + 1, ..., b} where a and b are integers and
a < b. Moreover, in this paper we assume that functions p : Z[0, T ] → [2,∞) and q : Z[1, T ] → [2,∞)
are bounded while λ is a positive constant.

∗Correspondence address: Vicenţiu Rădulescu, Department of Mathematics, University of Craiova, 200585 Craiova,
Romania. E-mail: vicentiu.radulescu@math.cnrs.fr
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The study of discrete boundary value problems has captured special attention in the last years. We
just refer to the recent results of Agarwal et al. [2], Yu and Guo [22], Cai and Yu [4], Zhang and Liu [23]
and the references therein. The studies regarding such type of problems can be placed at the interface
of certain mathematical fields such as nonlinear partial differential equations and numerical analysis.
On the other hand, they are strongly motivated by their applicability in mathematical physics. We
note that the problem (1) is the discrete variant of the variable exponent anisotropic problem





−
N∑

i=1

∂

∂xi

(∣∣∣∣
∂u

∂xi

∣∣∣∣
pi(x)−2 ∂u

∂xi

)
= λ|u|q(x)−2u, for x ∈ Ω

u = 0, for x ∈ ∂Ω ,

(2)

where Ω ⊂ RN (N ≥ 3) is a bounded domain with smooth boundary, λ > 0 is a real number, and pi(x),
q(x) are continuous on Ω such that N > pi(x) ≥ 2 and q(x) > 1 for any x ∈ Ω and all i ∈ Z[1, N ].
Problem (2) was recently analyzed by Mihăilescu-Pucci-Rădulescu in [10, 11] (see also the studies in
[8, 16, 17, 20, 21] for the case when pi(x) are constant functions). Problems like (2) have been intensively
studied in the last decades since they can model various phenomena arising from the study of elastic
mechanics (see, Zhikov [24]), electrorheological fluids (see, Acerbi and Mingione [1], Diening [6], Halsey
[9], Ruzicka [18], Mihăilescu and Rădulescu [12, 13, 14, 15]) or image restoration (see, Chen, Levine
and Rao [5]).

In this paper our goal is to use the critical point theory in order to establish the existence of a
continuous spectrum of eigenvalues for problems of type (1). Our idea is to transfer the problem of the
existence of solutions for problem (1) into the problem of existence of critical points for some associated
energy functional. On the other hand, we point out that, to our best knowledge, discrete problems
like (1), involving anisotropic exponents, have not yet been discussed. Thus, the present paper can be
regarded as a contribution in this direction.

We are interested in finding week solutions for problems of type (1). For this purpose we define the
function space

H = {u : Z[0, T + 1] → R; such that u(0) = u(T + 1) = 0}.
Clearly, H is a T -dimensional Hilbert space (see [2]) with the inner product

(u, v) =
T+1∑

k=1

∆u(k − 1)∆v(k − 1), ∀ u, v ∈ H .

This associated norm is defined by

‖u‖ =

(
T+1∑

k=1

|∆u(k − 1)|2
)1/2

.

By a weak solution for problem (1) we understand a function u ∈ H such that

T+1∑

k=1

|∆u(k − 1)|p(k−1)−2∆u(k − 1)∆v(k − 1)− λ

T∑

k=1

|u(k)|q(k)−2u(k)v(k) = 0 ,
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for any v ∈ H.
Denote for short maxk∈Z[a,b] p(k) by maxZ[a,b] p and mink∈Z[a,b] p(k) by minZ[a,b] p.
The main results of this paper are the following.

Theorem 1. Assume that functions p and q verify the hypothesis

max
Z[0,T ]

p < min
Z[1,T ]

q . (3)

Then for any λ > 0 problem (1) has a nontrivial weak solution.

Theorem 2. Assume that functions p and q verify the hypothesis

max
Z[1,T ]

q < min
Z[0,T ]

p . (4)

Then there exists λ?? > 0 such that for any λ > λ?? problem (1) has a nontrivial weak solution.

Theorem 3. Assume that functions p and q verify the hypothesis

min
Z[1,T ]

q < min
Z[0,T ]

p . (5)

Then there exists λ? > 0 such that for any λ ∈ (0, λ?) problem (1) has a nontrivial weak solution.

Remark 1. We point out that if relation (5) is verified then relation (4) is fulfilled, too. Consequently,
the result of Theorem 2 can be completed with the conclusion of Theorem 3. More exactly, we deduce
the following corollary.

Corollary 1. Assume that functions p and q verify the hypothesis

min
Z[1,T ]

q < min
Z[0,T ]

p .

Then there exist λ? > 0 and λ?? > 0 such that for any λ ∈ (0, λ?) ∪ (λ??,∞) problem (1) possesses a
nontrivial weak solution.

Remark 2. On the other hand, we point out that the result of Theorem 3 holds true in situations
that extend relation (4) since in relation (5) we could have

min
Z[1,T ]

q < min
Z[0,T ]

p < max
Z[1,T ]

q .

2 Auxiliary results

From now on we will use the following notations:

p− = min
Z[0,T ]

p, p+ = max
Z[0,T ]

p, q− = min
Z[1,T ]

q, q+ = max
Z[1,T ]

q .
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On the other hand, it is useful to introduce other norms on H, namely

|u|m =

(
T∑

k=1

|u(k)|m
)1/m

, ∀ u ∈ H and m ≥ 2 .

It can be verified (see [4]) that

T (2−m)/(2m) · |u|2 ≤ |u|m ≤ T 1/m · |u|2, ∀ u ∈ H and m ≥ 2 . (6)

We start with the following auxiliary result.

Lemma 1. a) There exist two positive constants C1 and C2 such that

T+1∑

k=1

|∆u(k − 1)|p(k−1) ≥ C1 · ‖u‖p− − C2, ∀ u ∈ H with ‖u‖ > 1 .

b) There exists a positive constant C3 such that

T+1∑

k=1

|∆u(k − 1)|p(k−1) ≥ C3 · ‖u‖p+
, ∀ u ∈ H with ‖u‖ < 1 .

c) For any m ≥ 2 there exists a positive constant cm such that

T∑

k=1

|u(k)|m ≤ cm ·
T+1∑

k=1

|∆u(k − 1)|m, ∀ u ∈ H .

Proof. a) Fix u ∈ H with ‖u‖ > 1. We define

αk =





p+, if |∆u(k)| < 1

p−, if |∆u(k)| > 1 ,

for each k ∈ Z[0, T ].
We deduce that

T+1∑

k=1

|∆u(k − 1)|p(k−1) ≥
T+1∑

k=1

|∆u(k − 1)|αk−1

≥
T+1∑

k=1

|∆u(k − 1)|p− −
∑

{k∈Z[0,T ]; αk−1=p+}
(|∆u(k − 1)|p− − |∆u(k − 1)|p+

)

≥
T+1∑

k=1

|∆u(k − 1)|p− − T .
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The above inequality and relation (6) imply

T+1∑

k=1

|∆u(k − 1)|p(k−1) ≥ T (2−p−)/2 · ‖u‖p− − T, ∀ u ∈ H with ‖u‖ > 1 .

Thus, we proved that a) holds true.
b) Assume u ∈ H with ‖u‖ < 1. It follows that |∆u(k)| < 1 for each k ∈ Z[0, T ]. So, by (6) we

deduce that

T+1∑

k=1

|∆u(k − 1)|p(k−1) ≥
T+1∑

k=1

|∆u(k − 1)|p+

≥ 1/T (2−p+)/2 · ‖u‖p+
.

Thus, we proved that b) holds true.
c) Since

|u(k)| ≤
k−1∑

i=0

|∆u(i)|, ∀ u ∈ H and k ∈ Z[0, T ] ,

we deduce that for any positive real number m ≥ 2 there exists a positive constant cm,k such that

|u(k)|m ≤ cm,k ·
k−1∑

i=0

|∆u(i)|m, ∀ u ∈ H and k ∈ Z[0, T ] .

The above information implies that there exists a positive constant cm such that

T∑

k=1

|u(k)|m ≤ cm ·
T+1∑

k=1

|∆u(k − 1)|m, ∀ u ∈ H . (7)

The proof of Lemma 1 is complete. ¤

3 Proof of the main results

For any λ > 0 the energy functional corresponding to problem (1) is defined as Jλ : H → R,

Jλ(u) =
T+1∑

k=1

1
p(k − 1)

|∆u(k − 1)|p(k−1) − λ ·
T∑

k=1

1
q(k)

|u(k)|q(k) .

Standard arguments assure that Jλ ∈ C1(H,R) and

〈J ′λ(u), v〉 =
T+1∑

k=1

|∆u(k − 1)|p(k−1)−2∆u(k − 1)∆v(k − 1)− λ
T∑

k=1

|u(k)|q(k)−2u(k)v(k) ,

for all u, v ∈ H. Thus the weak solutions of (1) coincide with the critical points of Jλ.
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3.1 Proof of Theorem 1

In order to prove that Jλ has a nontrivial critical point our idea is to show that actually Jλ possesses
a mountain-pass geometry. With that end in view we start by proving two auxiliary results.

Lemma 2. There exist η > 0 and α > 0 such that Jλ(u) ≥ α > 0 for any u ∈ H with ‖u‖ = η.

Proof. First, we point out that

|u(k)|q− + |u(k)|q+ ≥ |u(k)|q(k), ∀ k ∈ Z[1, T ] and u ∈ H . (8)

Using the above inequality we find

Jλ(u) ≥ 1
p+

T+1∑

k=1

1
p(k − 1)

|∆u(k − 1)|p(k−1) − λ

q−
(|u|q−

q− + |u|q+

q+), ∀ u ∈ H . (9)

Next, we focus on the case when u ∈ H with ‖u‖ < 1. Thus, |∆u(k)| < 1 for any k ∈ Z[0, T + 1]. Then
using Lemma 1 c) and relation (6) we infer

|u|q−
q− + |u|q+

q+ ≤ cq−

T+1∑

k=1

|∆u(k − 1)|q− + cq+

T+1∑

k=1

|∆u(k − 1)|q+ ≤ cq−T‖u‖q− + cq+T‖u‖q+
. (10)

For u ∈ H with ‖u‖ < 1 the above inequalities combined with relation (9), Lemma 1 b) and relation
(6) imply

Jλ(u) ≥ C3

p+
‖u‖p+ − λ

q−
(cq−T · ‖u‖q− + cq+T · ‖u‖q+

)

= (d1 − d2 · ‖u‖q−−p+ − d3 · ‖u‖q+−p+
) · ‖u‖p+

,

where d1, d2 and d3 are positive constants.
We remark that the function g : [0, 1] → R defined by

g(t) = d1 − d2 · tq+−p+ − d3 · tq−−p+

is positive in a neighborhood of the origin by continuity argument. We conclude that Lemma 2 holds
true. ¤

Lemma 3. There exists e ∈ H with ‖e‖ > η (where η is given in Lemma 2) such that Jλ(e) < 0.

Proof. Consider the function ψ : Z[0, T + 1] → R such that there exists k0 an integer satisfying
0 < k0 < T + 1 for which ψ(k0) = 1 and ψ(k) = 0 for any k ∈ Z[0, T + 1] \ {k0}. Thus, we deduce that
ψ ∈ H. For each t > 1 we have

Jλ(tψ) =
tp(k0)

p(k0)
+

tp(k0−1)

p(k0 − 1)
− λ · tq(k0)

q(k0)
≤ 2 · tp+

p−
− λ · tq

−

q+
.
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Since q− > p+ it is clear that limt→∞ Jλ(tψ) = −∞. Then, for t > 1 large enough we can take e = tψ

such that ‖e‖ > η and Jλ(e) < 0.
The proof of Lemma 3 is complete. ¤

Proof of Theorem 1. By Lemmatas 2 and 3 and the mountain-pass theorem of Ambrosetti and
Rabinowitz [3] we deduce the existence of a sequence {un} ⊂ H such that

Jλ(un) → c > 0 and J
′
λ(un) → 0 as n →∞. (11)

We prove that {un} is bounded in H. Arguing by contradiction, we assume that passing eventually
to a subsequence, still denoted by {un}, we have ‖un‖ → ∞. Thus, we may assume that for n large
enough we have ‖un‖ > 1.

Relation (11) and the above considerations imply that for n large enough we have

1 + c + ‖un‖ ≥ Jλ(un)− 1
q−
〈J ′λ(un), un〉

≥
(

1
p+

− 1
q−

) T+1∑

k=1

|∆un(k − 1)|p(k−1) .

By Lemma 1 a) and the above inequality we deduce that there exist two positive constants D1 and
D2 such that

1 + c + ‖un‖ ≥ D1 · ‖un‖p− −D2 ,

for n large enough. Dividing by ‖un‖p− in the above inequality and passing to the limit as n → ∞
we obtain a contradiction. It follows that {un} is bounded in H. That information combined with the
fact that H is a finite dimensional Hilbert space implies that there exists a subsequence, still denoted
by {un}, and u0 ∈ H such that {un} converges to u0 in H.

Then, by relation (11) we have

Jλ(u0) = c > 0 and J
′
λ(u0) = 0.

We conclude that u0 is a nontrivial weak solution of problem (1). ¤

3.2 Proof of Theorem 2

For any λ > 0 let Jλ be defined as above.
Now we show that Jλ possesses a nontrivial global minimum point in H. With that end in view

we remark that Lemma 1 a) implies that Jλ is coercive on H. On the other hand, it is obvious that it
is also weakly lower semicontinuous on the finite dimensional Hilbert space H. These two facts enable
us to apply Theorem 1.2 in [19] in order to find that there exists uλ ∈ H a global minimizer of Jλ and
thus a weak solution of problem (1).

We show that uλ is not trivial for λ large enough. Indeed, letting t0 > 1 be a fixed real and defining
the function v0 : Z[0, T + 1] → R such that there exists an integer k0 with 0 < k0 < T + 1 for which
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v0(k0) = t0 and v0(k) = 0 for any k ∈ Z[0, T + 1] \ {k0} we deduce that v0 ∈ H and

Jλ(v0) =
t
p(k0−1)
0

p(k0 − 1)
+

t
p(k0)
0

p(k0)
− λ · tq(k0)

0

q(k0)
≤ L1 − L2 · λ ,

where L1 and L2 are two positive constants. Thus, there exists λ?? > 0 such that Jλ(v0) < 0 for any
λ ∈ [λ??,∞). It follows that Jλ(uλ) < 0 for any λ ≥ λ?? and thus uλ is a nontrivial weak solution of
problem (1) for λ large enough. The proof of Theorem 2 is complete. ¤

3.3 Proof of Theorem 3

For any λ > 0 let Jλ be defined as above.
We show that, by using the hypothesis of Theorem 3, the functional Jλ has a nontrivial critical

point by applying Ekeland’s variational principle [7]. In order to do that we first prove two auxiliary
results.

Lemma 4. There exists λ? > 0 such that for any λ ∈ (0, λ?) there exist ρ, a > 0 such that Jλ(u) ≥ a > 0
for any u ∈ H with ‖u‖ = ρ.

Proof. First, let us remark that for any u ∈ H, Lemma 1 c) implies

c2 · ‖u‖ ≥ |u|2 .

Combining that fact and inequality (6) we deduce that

c2 · T 1/q− · ‖u‖ ≥ |u|q− , ∀ u ∈ H . (12)

We fix ρ ∈ (0, 1) such that ρ < min{1, 1/(c2 · T 1/q−)}. Thus, for any u ∈ H with ‖u‖ = ρ we have
|u|q− < 1. It follows that, in this case, |u(k)| < 1 holds for any k ∈ Z[0, T + 1]. Therefore

T∑

k=1

|u(k)|q(k) ≤ |u|q−
q− , ∀ u ∈ H with ‖u‖ = ρ . (13)

By relations (12) and (13) we obtain

T∑

k=1

|u(k)|q(k) ≤ cq−
2 · T · ‖u‖q− , ∀ u ∈ H with ‖u‖ = ρ .

By Lemma 1 b) and the above relation we deduce that for any u ∈ H with ‖u‖ = ρ the following
inequalities hold true

Jλ(u) ≥ C3

p+
· ‖u‖p+ − λ · cq−

2 · T
q−

· ‖u‖q−

= (C4 · ρp+−q− − λ · C5) · ρq− ,
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where C4 and C5 are positive constants. By the above inequality and the fact that q− < p− ≤ p+ we
remark that if we define

λ? =
C4 · ρp+−q−

2 · C5
(14)

then for any λ ∈ (0, λ?) and any u ∈ H with ‖u‖ = ρ there exists a = C4·ρp+

2 such that

Jλ(u) ≥ a > 0.

The proof of Lemma 4 is complete. ¤

Lemma 5. There exists ϕ ∈ H such that ϕ ≥ 0, ϕ 6= 0, and Jλ(tϕ) < 0, for t > 0 small enough.

Proof. Since q− < p− it follows that there exists an integer k0 such that 0 < k0 < T + 1 and
q− = q(k0) < p− ≤ p(k0). We define the function ϕ : Z[0, T +1] → R such that ϕ(k0) = 1 and ϕ(k) = 0
for any k ∈ Z[0, T + 1] \ {k0}. We deduce that ϕ ∈ H and for any t ∈ (0, 1) we have

Jλ(t · ϕ) =
tp(k0−1)

p(k0 − 1)
+

tp(k0)

p(k0)
− λ · tq(k0)

q(k0)
≤ 2 · tp−

p−
− λ · tq−

q+
.

The above inequality implies
Jλ(t · ϕ) < 0

for any t < δ1/(p−−q−) where

0 < δ <
p− · λ
2 · q+

.

The proof of Lemma 5 is complete. ¤

Proof of Theorem 3. Let λ? > 0 be defined as in (14) and λ ∈ (0, λ?). By Lemma 4 it follows
that on the boundary of the ball centered at the origin and of radius ρ in H, denoted by Bρ(0), we have

inf
∂Bρ(0)

Jλ > 0. (15)

On the other hand, by Lemma 5, there exists ϕ ∈ H such that Jλ(tϕ) < 0 for all t > 0 small enough.
Moreover, relation (6) and Lemma 1 b) imply that for any u ∈ Bρ(0) we have

Jλ(u) ≥ C3

p+
‖u‖p+ − λ

q−
(cq−T · ‖u‖q− + cq+T · ‖u‖q+

) .

It follows that
−∞ < c := inf

Bρ(0)
Jλ < 0.

We let now 0 < ε < inf∂Bρ(0) Jλ− infBρ(0) Jλ. Applying Ekeland’s variational principle to the functional
Jλ : Bρ(0) → R, we find uε ∈ Bρ(0) such that

Jλ(uε) < inf
Bρ(0)

Jλ + ε

Jλ(uε) < Jλ(u) + ε · ‖u− uε‖, u 6= uε.
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Since
Jλ(uε) ≤ inf

Bρ(0)
Jλ + ε ≤ inf

Bρ(0)
Jλ + ε < inf

∂Bρ(0)
Jλ ,

we deduce that uε ∈ Bρ(0). Now, we define Iλ : Bρ(0) → R by Iλ(u) = Jλ(u) + ε · ‖u− uε‖. It is clear
that uε is a minimum point of Iλ and thus

Iλ(uε + t · v)− Iλ(uε)
t

≥ 0

for small t > 0 and any v ∈ B1(0). The above relation yields

Jλ(uε + t · v)− Jλ(uε)
t

+ ε · ‖v‖ ≥ 0.

Letting t → 0 it follows that 〈J ′λ(uε), v〉+ ε · ‖v‖ > 0 and we infer that ‖J ′λ(uε)‖ ≤ ε.
We deduce that there exists a sequence {wn} ⊂ Bρ(0) such that

Jλ(wn) → c and J
′
λ(wn) → 0. (16)

Since the sequence {wn} is bounded in H, there exists w ∈ H such that, up to a subsequence, {wn}
converges to w in H. So, by (16),

Jλ(w) = c < 0 and J
′
λ(w) = 0. (17)

We conclude that w is a nontrivial weak solution for problem (1).
The proof of Theorem 3 is complete. ¤
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