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Abstract

The purpose of this paper is to investigate the existence of weak solutions for a perturbed nonlinear 
elliptic equation driven by the fractional p-Laplacian operator as follows:

(−�)spu + V (x)|u|p−2u = λa(x)|u|r−2u − b(x)|u|q−2u in R
N,

where λ is a real parameter, (−�)sp is the fractional p-Laplacian operator with 0 < s < 1 < p < ∞, p <

r < min{q, p∗
s } and V, a, b : RN → (0, ∞) are three positive weights. Using variational methods, we obtain 

nonexistence and multiplicity results for the above-mentioned equations depending on λ and according to 
the integrability properties of the ratio aq−p/br−p . Our results extend the previous work of Autuori and 
Pucci (2013) [5] to the fractional p-Laplacian setting. Furthermore, we weaken one of the conditions used 
in their paper. Hence the results of this paper are new even in the fractional Laplacian case.
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1. Introduction

In this paper we deal with the following one-parameter elliptic equations:

(−�)spu + V (x)|u|p−2u = λa(x)|u|r−2u − b(x)|u|q−2u in R
N, (1.1)

where N > ps with s ∈ (0, 1) and (−�)sp is the fractional p-Laplace operator which, up to 
normalization factors, may be defined as

(−�)spu(x) = 2 lim
ε↘0

∫
RN\Bε(x)

|u(x) − u(y)|p−2(u(x) − u(y))

|x − y|N+ps
dy

for x ∈ R
N , where Bε(x) := {y ∈ R

N : |x − y| < ε}. As for some recent results on the fractional 
p-Laplacian, we refer to for example [18,19,22] and the references therein.

Notice that when p = 2, problem (1.1) reduces to the following fractional Laplacian equa-
tions:

(−�)su + V (x)u = λa(x)|u|r−2u − b(x)|u|q−2u in R
N, (1.2)

which can been seen as the fractional form of the following classical stationary Schrödinger 
equations:

−�u + V (x)u = λa(x)|u|r−2u − b(x)|u|q−2u in R
N. (1.3)

For standing wave solutions of fractional Schrödinger equations in RN , we refer to [11,14,16,
20,21,26] and the references therein. Especially, models governed by unbounded potentials in-
volving fractional Schrödinger equations have been investigated in the last years, see for instance 
[13,32].

However, all these papers deal with problems which are not directly comparable to problem 
(1.1). In fact, the present paper is inspired by the following works: Alama and Tarantello in [2]
studied the following Dirichlet problem with indefinite weights:

−�u − λu = ω(x)uq−1 − h(x)ur−1 in �,

where λ ∈ R, � ⊂ R
N (N ≥ 3) is a bounded domain with smooth boundary, the coefficients ω, 

h ∈ L1(�) are nonnegative and 2 < q < r . They first showed that the existence, nonexistence 
and multiplicity results depend on λ and the integrability of the ratio wr−1/hq−1. In [28], Pucci
and Rădulescu first considered the following related problem in the whole space:

−div(|∇u|p−2∇u) + up−1 = λuq−1 − h(x)ur−1 in R
N, (1.4)

where h > 0 satisfies

0 <

∫
N

h(x)q/(q−r)dx < ∞,
R
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λ > 0 is a parameter and 2 ≤ p < q < min{r, p∗}, with p∗ = Np/(N −p) if N > p and p∗ = ∞
if N ≤ p. They obtained that the nonexistence and multiplicity of nontrivial solutions are corre-
sponding to the smallness and the largeness of λ respectively. In [6], Autuori and Pucci extended 
the above result by studying the quasilinear elliptic equation:

−div(|∇u|p−2∇u) + a(x)up−2u = λω(x)uq−2u − h(x)ur−2u in R
N, (1.5)

where max{2, p} < q < min{r, p∗}, the coefficients ω and h are related by integrability condition

∫
RN

[
ωr(x)

hq(x)

]1/(r−q)

dx ∈R
+. (1.6)

Moreover, they proposed two open questions: the relaxation of max{2, p} < q and the replace-
ment of (1.6) by the assumption that ω (ω/h)(q−p)/(r−q) is in LN/p(RN). Note that thanks to 
q < p∗, this latter request is weaker than (1.6) which already appeared in [2]. After that, Autuori
and Pucci in [5] turned to study the following elliptic equation involving fractional Laplacian:

(−�)su + a(x)u = λω(x)|u|p−2u − h(x)|u|r−2u in R
N, (1.7)

where λ ∈R, 0 < s < 1, 2s < N , 2 < q < min{r, 2∗
s }, 2∗

s := 2N/(N −2s). The coefficients ω and 
h are related by condition (1.6). By using variational methods, the authors obtained the existence 
and multiplicity of entire solutions of (1.7). Similarly, two open problems mentioned above in [6]
can be applied to the fractional setting. Recently, Pucci and Zhang [29] solved the above open 
problems for a class of quasilinear elliptic equations in the setting of variable exponents. More 
recently, Pucci et al. in [31] also gave a positive answer to these open problems in the context of 
Kirchhoff problems involving the fractional p-Laplacian. In this article, we would like to take a 
quite different approach to conquer these problems in the setting of the fractional p-Laplacian.

To this end, we suppose that the nonlinear terms in (1.1) are related to the main elliptic part 
by the request that

(H1) p < r < min{q, p∗
s }, where p∗

s = Np/(N −ps) is the fractional Sobolev critical exponent;
(H2) V :RN →R

+ is a positive weight and there exists a constant V0 > 0 such that V (x) ≥ V0
for all x ∈R

N ;

(H3) a :RN →R
+ is a positive weight satisfying a ∈ L

p∗
s

p∗
s −r (RN) 

⋂
L1

loc(R
N);

(H4) b :RN → R
+ is of class L1

loc(R
N), a(x) and b(x) are related by the condition

0 <

∫
RN

[
a(x)(q−p)/(q−r)

b(x)(r−p)/(q−r)

] N
ps

dx < ∞,

i.e.,

a (a/b)(r−p)/(q−r) ∈ LN/ps(RN).

We first give the definition of weak solutions for problem (1.1).
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Definition 1.1. We say that u ∈ W is a weak solution of problem (1.1), if

∫∫
R2N

|u(x) − u(y)|p−2(u(x) − u(y))(ϕ(x) − ϕ(y))

|x − y|N+ps
dxdy +

∫
RN

V (x)|u(x)|p−2u(x)ϕ(x)dx

= λ

∫
RN

a(x)|u(x)|r−2u(x)ϕ(x)dx −
∫
RN

b(x)|u(x)|q−2u(x)ϕ(x)dx,

for any ϕ ∈ W , where space W will be introduced in Section 2.

Now we are in a position to state the main result of this paper as follows.

Theorem 1.1. Suppose that the assumptions (H1)–(H4) are satisfied. Then there exist constants 
λ0 and λ∗ with λ∗ ≥ λ0 > 0 such that problem (1.1) has

(i) only the trivial weak solution if λ < λ0;
(ii) two nontrivial weak solutions if λ > λ∗.

Remark 1.1. (a) For the related results about concave–convex problems, we refer to the seminal 
paper [3] for the semilinear case in bounded domains. We also refer to [38] for the fractional 
Laplacian case in bounded domains and to [37] for the fractional p-Laplacian case in RN .

(b) Under the conditions (H1) and (H3), the condition (H4) is more general than that in [5, 
(1.4)] for fractional Laplacian problems, see [2] for further details. Consequently, we obtain the 
corresponding results by replacing condition [5, (1.4)] with (H4). Hence, in this sense our main 
result is new even in the case of the fractional Laplacian. Of course, from Theorem 1.1 we know 
that it still remains an open problem to verify whether λ0 = λ∗ in the non-local setting.

Finally, we would like to point out that in recent years, a great attention has been focused on 
the study of fractional and non-local operators of elliptic type. This type of operators arises in a 
quite natural way in many different applications, such as, continuum mechanics, phase transition 
phenomena, population dynamics and game theory, as they are the typical outcome of stochasti-
cally stabilization of Lévy processes, see [4,9,20,23]. The literature on fractional and non-local 
operators of elliptic and their applications is quite large, for example, we refer the reader to [7,
10,12,17,25,27,33–35] and the references therein. For the basic properties of fractional Sobolev 
spaces with applications to partially differential equations, we refer the reader to [15,24] and the 
references therein.

This article is organized as follows. In Section 2, we will introduce the working space W and 
give some necessary definitions and properties, which will be used in the sequel. In Section 3, 
using critical point theory, we will prove the main result.

2. The functional framework

In this section, we first give some basic results of fractional Sobolev space that will be used 
in the next section. Let 0 < s < 1 < p < ∞ be real numbers. The fractional Sobolev space 
Ws,p(RN) is defined as follows:
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Ws,p(RN) =

⎧⎪⎨⎪⎩u ∈ Lp(RN) :
∫∫
R2N

|u(x) − u(y)|p
|x − y|N+ps

dxdy < ∞

⎫⎪⎬⎪⎭ ,

equipped with the norm

‖u‖Ws,p(RN) =
⎛⎜⎝‖u‖p

Lp(RN)
+

∫∫
R2N

|u(x) − u(y)|p
|x − y|N+ps

dxdy

⎞⎟⎠
1
p

.

Then it is easy to see that (Ws,p(RN), ‖u‖Ws,p(RN)) is a uniformly convex Banach space and the 
embedding Ws,p(RN) ↪→ Lν(RN) is continuous for any ν ∈ [p, p∗

s ] by Theorem 6.7 of [15], 
that is, there exists a positive constant C∗ such that

‖u‖Lν(RN) ≤ C∗‖u‖Ws,p(RN) for all u ∈ Ws,p(RN). (2.1)

The space E denotes the completion of C∞
0 (RN) with respect to the norm

‖u‖E =
⎛⎜⎝∫∫

R2N

|u(x) − u(y)|p
|x − y|N+ps

dxdy +
∫
RN

V (x)|u(x)|pdx

⎞⎟⎠
1
p

.

Then (E.‖ · ‖E) is a uniformly convex Banach space, see [30, Lemma 10].

Lemma 2.1. (See [30, Lemma 1].) Let (H2) hold. Then the embeddings E ↪→ Ws,p(RN) ↪→
Lν(RN) are continuous with

min{1,V0}‖u‖p

Ws,p(RN)
≤ ‖u‖p

E, (2.2)

for all u ∈ W and ν ∈ [p, p∗
s ]. Moreover, for any R > 0 and ν ∈ [1, p∗

s ) the embedding E ↪→
Lν(BR(0)) is compact.

Lr(RN, a) is defined by a linear space of Lebesgue measurable functions from RN to R such 
that for any function u in Lr(RN, a)∫

RN

a(x)|u(x)|rdx < ∞,

equipped with the norm

‖u‖Lr(RN ,a) =
⎛⎜⎝ ∫

N

a(x)|u(x)|rdx

⎞⎟⎠
1
r

,

R
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then Lr(RN, a) is a uniformly convex Banach space by Proposition A.6 of [6]. The space 
Lq(RN, b) is defined in a similar way. We shall work on the space W defined as follows: W is 
the completion of C∞

0 (RN) with respect to the norm

‖u‖W = ‖u‖E + ‖u‖Lq(RN ,b).

Lemma 2.2. (W, ‖ · ‖W) is a reflexive Banach space.

Proof. We only need to verify that (W, ‖ · ‖W) is reflexive. For this, we define a product space 
X = E × Lq(RN, b), endowed with the norm

‖u‖X = ‖u‖E + ‖u‖Lq(RN ,b).

Then (X, ‖ · ‖X) is a reflexive Banach space by Theorem 1.23 (ii) of [1], since E and Lq(RN, b)

are two uniformly convex Banach spaces. We define an operator 
 : (W, ‖ · ‖W) → (X, ‖ · ‖X)

satisfying 
(u) = (u, u) for all u ∈ W . Then 
 is well defined, linear and isometric. Therefore, 

(W) is a closed subspace of X, and so 
(W) is reflexive by Theorem 1.22 (ii) of [1]. Conse-
quently, (W, ‖ · ‖W) is reflexive. �

From now on, BR(0) will denote the ball in RN of center zero and radius R > 0.

Theorem 2.1. Suppose that (H2) and (H3) are fulfilled, b : RN → R
+ is a positive weight. If {vj }

is a bounded sequence in W , then there exists v ∈ W
⋂

Lr(RN, a) such that up to a subsequence,

vj → v strongly in Lr(RN,a)

as j → ∞, for any r ∈ (p, p∗
s ).

Proof. The proof is similar to that of [31, Lemma 2.3] and that of [29, Lemma 2.6], here we 
would like to give a detailed treatment for the reader’s convenience. Since {vj}j is bounded 
in W , by Lemma 2.1 we have {vj }j is bounded in Lp∗

s (RN). Then by the reflexivity of W , up to 
a subsequence, we get that vj ⇀ v weakly in W

⋂
Lp∗

s (RN) as j → ∞. Next we prove that

vj → v strongly in Lr(RN,a).

Now for any ε > 0, there exists R1 > 0 such that

∫
RN\BR(0)

|a(x)|
p∗
s

p∗
s −r dx < ε for all R ≥ R1, (2.3)

since a ∈ Lp∗
s /(p∗

s −r)(RN) by assumption (H3). Fix R1 > 0, we have

vj ⇀ v weakly in Ws,p(BR (0))
⋂

Lp∗
s (BR(0)),
1
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by Theorem 6.7 of [15]. Since p < r < p∗
s , by Corollary 7.2 of [15], we obtain vj → v

strongly in Lr(BR1(0)). Without loss of generality, we assume that un → u a.e. in BR1(0). Thus, 
a(x)|vj − v|r → 0 a.e. in BR1(0). For each measurable subset U ⊂ BR1(0), we have∫

U

a(x)|vj (x) − v(x)|rdx ≤ ‖a‖
L

p∗
s

p∗
s −r (U)

‖vj − v‖r

Lp∗
s (U)

≤ C‖a‖
L

p∗
s

p∗
s −r (U)

.

Since a ∈ Lp∗
s /(p∗

s −r)(RN), we obtain that {a(x)|vj (x) − v(x)|r }j is equi-integrable and uni-
formly bounded in BR1(0). Then the Vitali convergence theorem implies

lim
j→∞

∫
BR1(0)

a(x)|vj (x) − v(x)|rdx = 0.

Hence, for above ε > 0, there exists N1 > 0 such that∫
BR1(0)

a(x)|vj (x) − v(x)|rdx < ε, for all j ≥ N1. (2.4)

Combining (2.3) and (2.4), for all j ≥ N1 we have∫
RN

a(x)|vj (x) − v(x)|rdx

=
∫

BR1(0)

a(x)|vj (x) − v(x)|rdx +
∫

RN\BR1(0)

a(x)|vj (x) − v(x)|rdx

< ε +

⎛⎜⎜⎝ ∫
RN\BR1(0)

|a(x)|
p∗
s

p∗
s −r

⎞⎟⎟⎠
r/q ⎛⎜⎜⎝ ∫

RN\BR1(0)

|vj (x) − v(x)|p∗
s dx

⎞⎟⎟⎠
r/p∗

s

≤ Cε,

where C denotes various positive constants. Therefore, vj → v strongly in Lr(RN, a). �
3. Proof of Theorem 1.1

For u ∈ W , we define

J (u) = 1

p

∫∫
R2N

|u(x) − u(y)|p
|x − y|N+ps

dxdy + 1

p

∫
RN

V (x)|u(x)|pdx + 1

q

∫
RN

b(x)|u(x)|qdx,

H(u) = λ

r

∫
RN

a(x)|u(x)|rdx,

and
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I (u) = J (u) − H(u).

Obviously, the energy functional I : W → R associated with problem (1.1) is well defined.

Lemma 3.1. Under the conditions (H1)–(H4), the functional I is coercive in W .

Proof. For any k1, k2 > 0 and 0 < α < β

k1t
α − k2t

β ≤ k1 (k1/k2)
α/(β−α) for all t ≥ 0. (3.1)

Indeed, since the function t ∈ [0, ∞) → tθ is increasing for any θ > 0, it follows that

k1 − k2t
β−α < 0, ∀t > (k1/k2)

1/(β−α)

and

k1t
α − k2t

β ≤ k1t
α ≤ k1 (k1/k2)

α/(β−α) , ∀t ∈
[
0, (k1/k2)

1/(β−α)
]
.

The above two inequalities imply that (3.1) holds.
Taking k1 = λa(x)/r, k2 = b(x)/q, α = r − p, β = q − p and t = |u(x)| in (3.1), for all 

x ∈ R
N , we get

λa(x)

r
|u(x)|r−p − b(x)

2q
|u(x)|q−p

≤ (λ/r)(q−p)/(q−r)(2q)(r−p)/(q−r)

(
a(x)q−p

b(x)r−p

)1/(q−r)

. (3.2)

Since 
(
aq−p/br−p

)1/(q−r) ∈ LN/(ps)(RN), for any ε > 0 there exists R > 0 such that

(λ/r)(q−p)/(q−r)(2q)(r−p)/(q−r)

⎛⎜⎝ ∫
RN \BR(0)

(
a(x)q−p

b(x)r−p

)N/(ps(q−r))

dx

⎞⎟⎠
ps/N

<
min{1,V0}

2C
p∗

ε, where C∗ denotes the embedding constant of Ws,p(RN) ↪→ Lp(RN). (3.3)

So, by (3.2) and (3.3) we obtain

I (u) = 1

p

∫∫
R2N

|u(x) − u(y)|p
|x − y|N+ps

dxdy + 1

p

∫
RN

V (x)|u(x)|pdx

+ 1

q

∫
RN

b(x)|u(x)|qdx − λ

r

∫
RN

a(x)|u(x)|rdx

≥ 1

p

∫∫
2N

|u(x) − u(y)|p
|x − y|N+ps

dxdy + 1

p

∫
N

V (x)|u(x)|pdx + 1

2q

∫
N

b(x)|u(x)|qdx
R R R
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− (λ/r)(q−p)/(q−r)(2q)(r−p)/(q−r)

∫
RN\BR(0)

(
a(x)q−p

b(x)r−p

)1/(q−r)

|u(x)|pdx

+
∫

BR(0)

b(x)

2q
|u(x)|q − λa(x)

r
|u(x)|rdx. (3.4)

For fixed R > 0 and for any δ > 0 and M > 0, decompose BR(0) = X
⋃

Y
⋃

Z with X, Y , Z
measurable sets defined as follows:⎧⎪⎨⎪⎩

X = {x ∈ BR(0) : a(x) < M and b(x) > δ},
Y = {x ∈ BR(0) : a(x) < M and b(x) ≤ δ},
Z = {x ∈ BR(0) : a(x) ≥ M}.

(3.5)

We apply (3.1) to derive∫
X

λa(x)

r
|u(x)|r − b(x)

2q
|u(x)|qdx

≤ (λ/r)q/(q−r) (2q)r/(q−r)

∫
X

a(x)q/(q−r)

b(x)r/(q−r)
dx ≤ C1, (3.6)

and∫
Y
⋃

Z

λa(x)

r
|u(x)|r − b(x)

2q
|u(x)|qdx

≤ (λ/r)(q−p)/(q−r)(2q)(r−p)/(q−r)

∫
Y
⋃

Z

a(x)(q−p)/(q−r)

b(x)(r−p)/(q−r)
|u(x)|pdx (3.7)

≤ (λ/r)(q−p)/(q−r)(2q)(r−p)/(q−r)

⎛⎜⎝ ∫
Y
⋃

Z

[
a(x)(q−p)/(q−r)

b(x)(r−p)/(q−r)

]N/ps

dx

⎞⎟⎠
ps/N

‖u‖p

Lp∗
s (BR(0))

,

where C1 = C1(M, δ, R) is a constant. Since a, b ∈ L1
loc(R

N), we have |Z| → 0 as M → ∞
and for fixed M , |Y | → 0 as δ → 0. Thus, we can choose M sufficiently large and then δ > 0
sufficiently small such that

(λ/r)(q−p)/(q−r)(2q)(r−p)/(q−r)

⎛⎜⎝ ∫
Y
⋃

Z

[
a(x)(q−p)/(q−r)

b(x)(r−p)/(q−r)

]N/(ps)

dx

⎞⎟⎠
ps/N

<
min{1,V0}

p ε. (3.8)

2C∗
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Combining (3.6), (3.7) and (3.8), we conclude∫
BR(0)

λa(x)

r
|u(x)|r − b(x)

2q
|u(x)|qdx ≤ C1 + ε

2
‖u‖p

E (3.9)

By (3.4) and (3.9), we obtain

I (u) ≥ 1

p

∫∫
R2N

|u(x) − u(y)|p
|x − y|N+ps

dxdy + 1

p

∫
RN

V (x)|u(x)|pdx + 1

2q

∫
RN

b(x)|u(x)|qdx

− ε‖u‖p
E − C1

Taking ε = 1/(2p) and using the following inequality:

ξ l ≥ ξ − 1 for all ξ ≥ 0 and l ≥ 1,

we get

I (u) ≥ 1

2p

∫∫
R2N

|u(x) − u(y)|p
|x − y|N+ps

dxdy + 1

2p

∫
RN

V (x)|u(x)|pdx + 1

2q

∫
RN

b(x)|u(x)|qdx − C1

≥ min

{
1

2p
,

1

2q

}
‖u‖W − 1

2p
− 1

2q
− C1.

Hence, I is coercive in W . �
Lemma 3.2. The functional J : W → R is convex and of class C1 and

〈J ′(u), v〉 =
∫∫
R2N

|u(x) − u(y)|p−2(u(x) − u(y))(v(x) − v(y))

|x − y|N+ps
dxdy

+
∫
RN

V (x)|u(x)|p−2u(x)v(x)dx +
∫
RN

b(x)|u(x)|q−2u(x)v(x)dx,

for all u, v ∈ W . Moreover, J is weakly lower semi-continuous in W .

Proof. It is easy to see that J is Gâteaux-differentiable in W and for all u, v ∈ W

〈J ′(u), v〉 =
∫∫
R2N

|u(x) − u(y)|p−2(u(x) − u(y))(v(x) − v(y))

|x − y|N+ps
dxdy

+
∫
N

V (x)|u(x)|p−2u(x)v(x)dx +
∫
N

b(x)|u(x)|q−2u(x)v(x)dx.
R R
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Now, let {un}n ⊂ W, u ∈ W satisfy un → u strongly in W as n → ∞. Without loss of generality, 
we assume that un → u a.e. in RN . Then the sequence

{ |un(x) − un(y)|p−2(un(x) − un(y))

|x − y|(N+ps)/p′

}
n

is bounded in Lp′
(R2N)

as well as

|un(x) − un(y)|p−2(un(x) − un(y))

|x − y|(N+ps)/p′ −→ |u(x) − u(y)|p−2(u(x) − u(y))

|x − y|(N+ps)/p′ a.e. in R
2N,

as n → ∞. Thus, the Brézis–Lieb lemma (see [8]) implies

lim
n→∞

∫∫
R2N

∣∣∣∣ |un(x) − un(y)|p−2(un(x) − un(y)) − |u(x) − u(y)|p−2(un(x) − un(y))

|x − y|(N+ps)/p′

∣∣∣∣p
′

dxdy

= lim
n→∞

∫
R2N

( |un(x) − un(y)|p
|x − y|N+ps

− |u(x) − u(y)|p
|x − y|N+ps

)
dxdy. (3.10)

Since un → u strongly in W , it is easy to see that

lim
n→∞

∫∫
R2N

( |un(x) − un(y)|p
|x − y|N+ps

− |u(x) − u(y)|p
|x − y|N+ps

)
dxdy = 0.

It follows from (3.10) that

lim
n→∞

∫∫
R2N

∣∣∣∣ |un(x) − un(y)|p−2(un(x) − un(y)) − |u(x) − u(y)|p−2(un(x) − un(y))

|x − y|(N+ps)/p′

∣∣∣∣p
′

dxdy

= 0. (3.11)

Similarly, we obtain

lim
n→∞

∫
RN

V (x)

∣∣∣|un(x)|p−2un(x) − |u(x)|p−2u(x)

∣∣∣p′
dx = 0 (3.12)

and

lim
n→∞

∫
RN

b(x)

∣∣∣|un(x)|q−2un(x) − |u(x)|q−2u(x)

∣∣∣q ′
dx = 0. (3.13)

Combining (3.11)–(3.13) with the Hölder inequality, we have
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‖J ′(un) − J ′(u)‖W ′ = sup
ϕ∈W, ‖ϕ‖W =1

|〈J ′(un) − J ′(u),ϕ〉|

−→ 0, as n → ∞.

Hence, J ∈ C1(W, R). Obviously, J is a convex functional in W . Furthermore, J is weakly lower 
semi-continuous in W by Corollary 3.9 of [6]. �
Lemma 3.3. H ∈ C1(W, R) and for any fixed u ∈ W , we have

〈H ′(u(x)), v(x)〉 = λ

∫
RN

a(x)|u(x)|r−2u(x)v(x)dx,

and H ′(u) ∈ W ′. If vn ⇀ v weakly in W , then 〈H ′(u), vn〉 → 〈H ′(u), v〉. Moreover, under the 
condition (H1), functional H is weakly continuous in W .

Proof. We only need to prove that H is weakly continuous in W and is of class C1. Let 
{un}n ⊂ W , u ∈ W satisfy un ⇀ u weakly in W as n → ∞. By Theorem 2.1, without loss of 
generality, we assume that un → u strongly in Lr(RN, a) for p < r < p∗

s and a.e. in RN . Then a 
similar argument as in Lemma 3.2 gives that

lim
n→∞

∫
RN

a(x)|un(x)|rdx =
∫
RN

a(x)|un(x)|rdx

and

lim
n→∞

∫
RN

a(x)

∣∣∣|un(x)|r−2un(x) − |u(x)|r−2u(x)

∣∣∣r ′
dx = 0.

So it is easy to verify that H is weakly continuous in W and is of class C1. �
Combining Lemma 3.2 and Lemma 3.3, we get that I ∈ C1(W, R) and I is weakly semi-

continuous in W . To solve problem (1.1), we first consider

λ∗ := inf
u∈M

⎛⎜⎝ r

p

∫∫
R2N

|u(x) − u(y)|p
|x − y|N+ps

dxdy + r

p

∫
RN

V (x)|u(x)|pdx + r

q

∫
RN

b(x)|u(x)|qdx

⎞⎟⎠
= inf

u∈M
rJ (u),

where M = {
u ∈ W : ∫

RN a(x)|u(x)|rdx = 1
}
.

Lemma 3.4. inf
u∈M

J (u) is achieved at some u0 ∈ M and λ∗ := r inf
u∈M

J (u) = rJ (u0) > 0. Par-

ticularly, J (|u0|) = J (u0), that is, |u0| is also a global minimizer of inf J (u).

u∈M
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Proof. Let {un} be a minimizing sequence. Then

J (un) → inf
M

J as n → ∞.

Hence {un} is bounded in W . By Theorem 2.1, {un} has a convergent subsequence in Lr(RN, a), 
i.e., up to a subsequence, un → u0 strongly in Lr(RN, a). Then we have

1 =
∫
RN

a(x)|un(x)|rdx →
∫
RN

a(x)|u0(x)|rdx as n → ∞.

Thus, u0 ∈M. Since J is weakly lower semi-continuous, we have

inf
M

J ≤ J (u0) ≤ lim
n→∞J (un) = inf

M
J.

Therefore, J (u0) = inf
M

J . If λ∗ = 0, then

J (un) → 0 as n → ∞.

Thus ∫
RN

a(x)|un(x)|rdx → 0 as n → ∞,

which contradicts with the fact un ∈M. So, λ∗ > 0.
Finally, we show that J (|u0|) = J (u0). For v ∈ W , we have |v| ∈ W . Indeed, we have∫∫

R2N

||v(x)| − |v(y)||p
|x − y|N+ps

dxdy ≤
∫∫
R2N

|v(x) − v(y)|p
|x − y|N+ps

dxdy.

Thus, it is easy to obtain that |v| ∈ W . Further, |u0| ∈ W and J (|u0|) ≤ J (u0). This gives 
J (|u0|) = J (u0), due to the minimality of u0. �
Theorem 3.1. For all λ > λ∗, there exists a global nontrivial minimizer u∗ ∈ W of I with 
I (u∗) < 0.

Proof. For all λ > 0 the functional I is weakly semi-continuous, bounded below and coercive in 
the reflexive Banach space W by Lemma 3.1–Lemma 3.3 and Lemma 2.1. Hence, Theorem 1.2 
of [36] implies that for all λ > 0 there exists a global minimizer u∗ ∈ W of I , that is

I (u∗) = inf
u∈W

I (u).

Obviously, u∗ is a weak solution of (1.1). Next, we show that u∗ �= 0. Since λ > λ∗, by 
Lemma 3.4 there exists a function u0 ∈ W with ‖u0‖Lr(RN ,a) = 1 such that
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λ‖u0‖r
Lr (RN ,a)

= λ > λ∗ = rJ (u0) = r

p

∫∫
R2N

|u0(x) − u0(y)|p
|x − y|N+ps

dxdy

+ r

p

∫
RN

V (x)|u0(x)|pdx + r

q

∫
RN

b(x)|u0(x)|qdx.

This means that

I (u0) = 1

p

∫∫
R2N

|u0(x) − u0(y)|p
|x − y|N+ps

dxdy + 1

p

∫
RN

V (x)|u0(x)|pdx

+ 1

q

∫
RN

b(x)|u0(x)|qdx − λ

r

∫
RN

a(x)|u0|rdx < 0.

Consequently, I (u∗) = inf
u∈W

I (u) ≤ I (u0) < 0. �
Next, we show that if λ > λ∗ problem (1.1) admits a second nontrivial weak solution e �= u

via variational methods. We start by recalling a modification of the mountain pass theorem of 
Ambrosetti and Rabinowitz, see Theorem A.3 of [6].

Theorem 3.2. Let (X, ‖ · ‖X) and (Y, ‖ · ‖Y ) be two Banach spaces such that X can be con-
tinuously embedded into Y . Let � : X → R be a C1 functional with �(0) = 0. Suppose that 
there exist ρ, α > 0 and e ∈ X such that ‖e‖Y > ρ, �(e) < α and �(u) ≥ α for all u ∈ X with 
‖u‖Y = ρ. Then there exists a sequence {un} ⊂ X such that for all n

c ≤ �(un) ≤ c + 1

n
and ‖�′(un)‖X′ ≤ 2

n
,

where

c = inf
γ∈


max
t∈[0,1]

�(γ (t)) and 
 = {γ ∈ C([0,1];X) : γ (0) = 0, γ (1) = e}.

Lemma 3.5. Suppose that assumptions (H1)–(H4) are satisfied. Then for each e ∈ W\{0} and 
λ > 0 there exist ρ ∈ (0, ‖e‖E) and α > 0 such that

I (u) ≥ α > 0,

for all u ∈ W with ‖u‖E = ρ.

Proof. Let u ∈ W . By (2.1), a ∈ L
p∗
s

p∗
s −r (RN) and the Hölder inequality, we obtain∫

RN

a(x)|u(x)|rdx ≤ ‖a‖
L

p∗
s

p∗
s −r (RN)

‖u‖r

Lp∗
s (RN)

≤ Cr∗‖a‖ p∗
s

p∗−r N

‖u‖r
Ws,p(RN)

.

L s (R )
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Then

I (u) ≥ 1

p

∫∫
R2N

|u(x) − u(y)|p
|x − y|N+ps

dxdy + 1

p

∫
RN

V (x)|u(x)|pdx − λCr∗‖a‖
L

p∗
s

p∗
s −r (RN)

‖u‖r
Ws,p(RN)

≥ 1

p
‖u‖p

E − λCr∗‖a‖
L

p∗
s

p∗
s −r (RN)

‖u‖r
Ws,p(RN)

≥ ‖u‖p
E

(
1

p
− λ

(
C

p∗
min{1,V0}

)r/p

‖a‖
L

p∗
s

p∗
s −r (RN)

‖u‖r−p
E

)
.

Now, let ‖u‖Ws,p(RN) = ρ > 0 and 0 < ρ <

⎧⎨⎩‖e‖E,

(
λp

(
C

p∗
min{1,V0}

)r/p ‖a‖
L

p∗
s

p∗
s −r (RN)

)1/(p−r)
⎫⎬⎭, 

so that

I (u) ≥ ρp

(
1

p
− λ

(
C

p∗
min{1,V0}

)r/p

‖a‖
L

p∗
s

p∗
s −r (RN)

ρr−p

)
=: α > 0.

Thus, the lemma is proved. �
Theorem 3.3. Suppose that assumptions (H1)–(H4) are satisfied. Then for all λ > λ∗ prob-
lem (1.1) exists a nontrivial weak solution u ∈ W such that I (u) > 0.

Proof. By Theorem 3.1, for all λ > λ∗ there exists a nontrivial weak solution u∗ ∈ W , which 
is a global minimizer for I in W and I (u∗) < 0. Taking e = u∗ in Lemma 3.5, we know that 
I satisfies the geometrical structure of Theorem 3.2. Thus, for all λ > λ∗ there exists a sequence 
{un} ⊂ W such that

I (un) → c and ‖I ′(un)‖W ′ → 0 as n → ∞,

where

c = inf
γ∈


max
t∈[0,1]

I (γ (t)) and 
 = {γ ∈ C([0,1];W) : γ (0) = 0, γ (1) = u∗}.

Since I is coercive in W by Lemma 3.1, the sequence {un} is bounded in W . By the reflex-
ivity of W , up to a subsequence, still denoted by {un} such that un ⇀ u weakly in W . Then 
〈I ′(un), un − u〉 → 0. Thus, we obtain

〈I ′(un), un − u〉

=
∫∫
R2N

|un(x) − un(y)|p−2(un(x) − un(y))(un(x) − u(x) − un(y) + u(y))

|x − y|N+ps
dxdy

+
∫
N

V (x)|un(x)|p−2un(x)(un(x) − u(x))dx +
∫
N

b(x)|un(x)|q−2un(x)(un(x) − u(x))dx
R R
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− λ

∫
RN

a(x)|un(x)|r−2un(x)(un(x) − u(x))dx → 0, (3.14)

as n → ∞. By Theorem 2.1, up to a subsequence,

un → u strongly in Lr(RN,a) and a.e. in R
N,

as n → ∞. Thus, 
∫
RN a(x)|un(x)|r−2un(x)(un(x) − u(x))dx → 0 as n → ∞. Furthermore, 

(3.14) and the weak convergence of un in W imply that

∫∫
R2N

|un(x) − un(y)|p−2(un(x) − un(y))(un(x) − u(x) − un(y) + u(y))

|x − y|N+ps
dxdy

−
∫∫
R2N

|u(x) − u(y)|p−2(u(x) − u(y))(un(x) − u(x) − un(y) + u(y))

|x − y|N+ps
dxdy

−→ 0, (3.15)

as n → ∞ and∫
RN

V (x)
[
|un(x)|p−2un(x) − |u(x)|p−2u(x)

]
(un(x) − u(x))dx

+
∫
RN

b(x)
[
|un(x)|q−2un(x) − |u(x)|q−2u(x)

]
(un(x) − u(x))dx → 0, (3.16)

as n → ∞. Note that there are the well-known vector inequalities:(
|ξ |p−2ξ − |η|p−2η

)
(ξ − η) ≥ Cp|ξ − η|p, p ≥ 2;(

|ξ |p−2ξ − |η|p−2η
)

(ξ − η) ≥ C̃p

|ξ − η|2
(|ξ | + |η|)2−p

, 1 < p < 2, (3.17)

for all ξ, η ∈ R
N , where Cp , C̃p are positive constants depending only on p. By (3.17) and 

(3.15), we obtain for p ≥ 2∫∫
R2N

|un(x) − un(y) − u(x) + u(y))|p|x − y|−(N+ps)dxdy

≤ C−1
p

∫∫
R2N

[
|un(x) − un(y)|p−2(un(x) − un(y)) − |u(x) − u(y)|p−2(u(x) − u(y))

]
× (un(x) − u(x) − un(y) + u(y)) |x − y|−(N+ps)dxdy

−→ 0, (3.18)
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as n → ∞ and for 1 < p < 2∫∫
R2N

|un(x) − un(y) − u(x) + u(y))|p|x − y|−(N+ps)dxdy

≤ C̃
−p/2
p

{∫∫
R2N

[
|un(x) − un(y)|p−2(un(x) − un(y)) − |u(x) − u(y)|p−2(u(x) − u(y))

]

× (un(x) − u(x) − un(y) + u(y)) |x − y|−(N+ps)dxdy

}p/2

×

⎧⎪⎨⎪⎩
∫∫
R2N

(|un(x) − un(y)| + |u(x) − u(y)|)p|x − y|−(N+ps)dxdy

⎫⎪⎬⎪⎭
(2−p)/2

≤ C

{∫∫
R2N

[
|un(x) − un(y)|p−2(un(x) − un(y)) − |u(x) − u(y)|p−2(u(x) − u(y))

]

× (un(x) − u(x) − un(y) + u(y)) |x − y|−(N+ps)dxdy

}p/2

−→ 0, (3.19)

as n → ∞, where C > 0 is a constant. Similarly, using (3.16), we can deduce

lim
n→∞

∫
RN

V (x)|un(x) − u(x)|pdx = lim
n→∞

∫
RN

b(x)|un(x) − u(x)|qdx = 0. (3.20)

Combining (3.18), (3.19) with (3.20), we get that un → u strongly in W as n → ∞.
With a similar discussion as in Lemma 3.2, we have

lim
n→∞

∫∫
R2N

∣∣∣∣ |un(x) − un(y)|p−2(un(x) − un(y)) − |u(x) − u(y)|p−2(un(x) − un(y))

|x − y|(N+ps)/p′

∣∣∣∣p
′

dxdy

= 0, (3.21)

lim
n→∞

∫
RN

V (x)

∣∣∣|un(x)|p−2un(x) − |u(x)|p−2u(x)

∣∣∣p′
dx = 0, (3.22)

and

lim
n→∞

∫
RN

b(x)

∣∣∣|un(x)|q−2un(x) − |u(x)|q−2u(x)

∣∣∣q ′
dx = 0. (3.23)

Clearly, for any ϕ ∈ W
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〈I ′(un),ϕ〉 =
∫∫
R2N

|un(x) − un(y)|p−2(un(x) − un(y))(ϕ(x) − ϕ(y))

|x − y|N+ps
dxdy

+
∫
RN

V (x)|un(x)|p−2un(x)ϕ(x)dx +
∫
RN

b(x)|un(x)|q−2un(x)ϕ(x)dx

− λ

∫
RN

a(x)|un(x)|r−2un(x)ϕ(x)dx

−→ 0,

as n → ∞. By (3.21)–(3.23), we get

〈I ′(u),ϕ〉 = 0

for all ϕ ∈ W , that is, u is a critical point of I in W . Moreover, by the continuity of I and strong 
convergence of un → u in W , we obtain

I (u) = lim
n→∞ I (un) = c > 0.

This completes the proof. �
Proof of Theorem 1.1. (i) We only need to verify that if u ∈ W \ {0} is a weak solution for 
problem (1.1), then there exists λ0 > 0 such that λ ≥ λ0. For this, taking ϕ = u, we obtain∫∫

R2N

|u(x) − u(y)|p
|x − y|N+ps

dxdy +
∫
RN

V (x)|u(x)|pdx +
∫
RN

b(x)|u(x)|qdx

= λ

∫
RN

a(x)|u(x)|rdx. (3.24)

Then 0 < min{1, V0}‖u‖p

Ws,p(RN)
≤ λ‖u‖r

Lr (RN ,a)
by (3.24). So that λ > 0. By applying the in-

equality (3.1), we have

λa(x)|u|r−p − b(x)|u|q−p ≤ λ(q−p)/(q−r)

[
a(x)q−p

b(x)r−p

]1/(q−r)

for all x ∈ R
N. (3.25)

It follows from (3.24), (3.25) and (2.1) that

min{1,V0}‖u‖p

Ws,p(RN)

≤ λ(q−p)/(q−r)

∫
RN

[
a(x)q−p

b(x)r−p

]1/(q−r)

|u|pdx

≤ C
p∗ λ(q−p)/(q−r)

∥∥∥∥∥
[
a(x)q−p

b(x)r−p

]1/(q−r)
∥∥∥∥∥ N

ps N

‖u‖p

Ws,p(RN)
.

L (R )
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Thus, ⎛⎝min{1,V0} − C
p∗ λ(q−p)/(q−r)

∥∥∥∥∥
[

a(x)q−p

b(x)r−p

]1/(q−r)
∥∥∥∥∥

L
N
ps (RN)

⎞⎠‖u‖p

Ws,p(RN)
≤ 0,

which implies that

λ ≥

⎛⎜⎜⎜⎝ min{1,V0}
C

p∗
∥∥∥∥[ a(x)q−p

b(x)r−p

]1/(q−r)
∥∥∥∥

L
N
ps (RN)

⎞⎟⎟⎟⎠
(q−r)/(q−p)

:= λ0.

Therefore, if u is a nontrivial weak solution of problem (1.1), then λ ≥ λ0.
(ii) Theorem 3.1 and Theorem 3.3 assure that for all λ > λ∗ problem (1.1) admits two nontriv-

ial weak solutions in W in which one has negative energy and another has positive energy. �
Corollary 3.4. Suppose that all the assumptions of Theorem 1.1 are satisfied. Then problem (1.1)
has at least two nontrivial nonnegative weak solutions in W in which one has negative energy 
and another has positive energy.

Proof. First, for v ∈ W , we have v+ ∈ W , where v+ = max{v, 0} = (|v| +v)/2. Indeed, we have∫∫
R2N

|v+(x) − v+(y)|p
|x − y|N+ps

dxdy

=
∫∫
R2N

∣∣∣∣ |v(x)| − |v(y)| + v(x) − v(y)

2

∣∣∣∣p |x − y|−N−psdxdy

≤
∫∫
R2N

|v(x) − v(y)|p
|x − y|N+ps

dxdy.

So, v+ ∈ W . Similarly, v− = max{−v, 0} is also in W . Now, we define

I+(u) = J (u) − H(u+),

where H(u+) = (λ/r) 
∫
RN a(x)|u+(x)|rdx. Then, I+ is well defined on W and of class C1 and

〈(I+(u))′, ϕ〉

=
∫∫
R2N

|u(x) − u(y)|p−2(u(x) − u(y))(ϕ(x) − ϕ(y))

|x − y|N+ps
dxdy

+
∫
N

V (x)|u(x)|p−2u(x)ϕ(x)dx +
∫
N

b(x)|u(x)|q−2u(x)ϕ(x)dx
R R
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− λ

∫
RN

a(x)|u+(x)|r−2u+(x)ϕ(x)dx. (3.26)

Moreover, I+ is coercive, weakly lower semi-continuous in W and I+(0) = 0. Notice that all 
critical points of I+ are nonnegative. Indeed, if u is a critical point of I+, then by (3.26) we have

〈(I+(u))′, u−〉

=
∫∫
R2N

|u(x) − u(y)|p−2(u(x) − u(y))(u−(x) − u−(y))

|x − y|N+ps
dxdy

+
∫
RN

V (x)|u(x)|p−2u(x)u+(x)dx +
∫
RN

b(x)|u(x)|q−2u(x)u−(x)dx

− λ

∫
RN

a(x)|u+(x)|r−2u+(x)u−(x)dx = 0. (3.27)

It follows from (3.27) that u− = 0 a.e. in RN . Thus, u ≥ 0 a.e. in RN .
Similar to Theorem 3.1, there exists 0 ≤ u∗∗ ∈ W such that

I+(u∗∗) = inf
u∈W

I+(u).

It is easy to see that u∗∗ �= 0 and I+(u∗∗) < 0. Hence, we get a nontrivial nonnegative weak 
solution u∗∗ of (1.1) with negative energy.

Next, we prove that (1.1) admits a nontrivial nonnegative weak solution in W with positive 
energy. Clearly, I+ satisfies Lemma 3.5. We know that I+ satisfies the geometrical structure 
of Theorem 3.2 by taking e = u∗∗. Similar to Theorem 3.3, we get that I+ has a critical point 
0 ≤ u+ in W satisfying I+(u+) > 0. Therefore, this corollary is proved. �
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[26] G. Molica Bisci, V. Rădulescu, Ground state solutions of scalar field fractional for Schrödinger equations, Calc. Var. 

Partial Differential Equations (2015), http://dx.doi.org/10.1007/s00526-015-0891-5.
[27] G. Molica Bisci, D. Repovs, Higher nonlocal problems with bounded potential, J. Math. Anal. Appl. 420 (2014) 

591–601.
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