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Abstract The aim of this paper is to establish the existence of at least one solution for
a general inequality of quasi-hemivariational type, whose solution is sought in a subset K
of a real Banach space E . First, we prove the existence of solutions in the case of compact
convex subsets and the case of bounded closed and convex subsets. Finally, the case when
K is the whole space is analyzed and necessary and sufficient conditions for the existence of
solutions are stated. Our proofs rely essentially on the Schauder’s fixed point theorem and a
version of the KKM principle due to Ky Fan (Math Ann 266:519–537, 1984).
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1 Introduction and preliminaries

The study of inequality problems captured special attention in the last decades, one of the
most recent and general type of inequalities being the hemivariational inequalities. The notion
of hemivariational inequality was introduced by P.D. Panagiotopoulos at the beginning of
the 1980s (see e.g. [27,28]) as a variational formulation for several classes of mechanical
problems with nonsmooth and nonconvex energy super-potentials. In the case of convex
super-potentials, hemivariational inequalities reduce to variational inequalities which were
studied earlier by many authors (see e.g. Fichera [13] or Hartman and Stampacchia [18]).
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Institute of Mathematics “Simion Stoilow” of the Romanian Academy, 014700 Bucharest, Romania
e-mail: nicusorcostea@yahoo.com
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Having a life of almost thirty years now, the theory of hemivariational inequalities has
produced an abundance of important results both in pure and applied mathematics as well
as in other domains such as mechanics and engineering sciences (see e.g. the monographs
[14,16,17,24–26,29,32,33]) as it allowed mathematical formulations for new classes of
interesting problems (see e.g. [1,6–8,11,12,19–22]).

The aim of this paper is to establish the existence of at least one solution for a general
class of inequalities of quasi-hemivariational type. For the proof of the main results we shall
use Schauder’s fixed point theorem and a version of the well known KKM Principle due to
Ky Fan [10].

For the convenience of the reader we present next some notations and preliminary results
from functional analysis that will be used throughout the paper. For a given Banach space
(X, ‖ · ‖X ) we denote by X∗ its dual space and by 〈·, ·〉X the duality pairing between X∗
and X .

We recall that a functional φ : X → R is called locally Lipschitz if for every u ∈ X there
exists a neighborhood U of u and a constant Lu > 0 such that

|φ(w) − φ(v)| ≤ Lu‖w − v‖X , for all v,w ∈ U.

Definition 1.1 Let φ : X → R be a locally Lipschitz functional. The generalized derivative
of φ at u ∈ X in the direction v ∈ X , denoted φ0(u; v), is defined by

φ0(u; v) = lim sup
w→u
λ↓0

φ(w + λv) − φ(w)

λ
.

Lemma 1.1 Let φ : X → R be locally Lipschitz of rank Lu near the point u ∈ X. Then

(a) The function v 
→ φ0(u; v) is finite, positively homogeneous, subadditive and satisfies

|φ0(u; v)| ≤ Lu‖v‖X ;
(b) φ0(u; v) is upper semicontinuous as a function of (u, v).

The proof can be found in Clarke [5], Proposition 2.1.1.

Definition 1.2 The generalized gradient of a locally Lipschitz functional φ : X → R at a
point u ∈ X , denoted ∂φ(u), is the subset of X∗ defined by

∂φ(u) = {ζ ∈ X∗ : φ0(u; v) ≥ 〈ζ, v〉X , for all v ∈ X}.
We point out the fact that for each u ∈ X we have ∂φ(u) �= ∅. In order to see that it suffices
to apply the Hahn-Banach theorem (see e.g. Brezis [3], p. 1).

The next lemma points out important properties of generalized gradients.

Lemma 1.2 Let φ : X → R be locally Lipschitz of rank Lu near the point u ∈ X. Then

(a) ∂φ(u) is a convex, weak* compact subset of X∗ and

‖ζ‖X∗ ≤ Lu, for all ζ ∈ ∂φ(u);
(b) For each v ∈ X, one has

φ0(u; v) = sup{〈ζ, v〉X : ζ ∈ ∂φ(u)}.
The proof can be found in Clarke [5], Proposition 2.1.2.
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Definition 1.3 A set-valued operator T : X → 2Y (X , Y Hausdorff topological spaces) is
said to be lower semicontinuous (Vietoris lower semicontinuous) at u0 ∈ X (l.s.c. at u0 for
short), if for all V ⊂ Y open such that T (u0) ∩ V �= ∅, we can find U a neighborhood of u0

such that T (u) ∩ V �= ∅ for all u ∈ U .
If this is true at every u0 ∈ X , we say that T is lower semicontinuous (l.s.c. for short).

It is clear from Definition 1.3, that when A is single-valued, the notion of lower semi-
continuity coincides with the usual notion of continuity of a map between two Hausdorff
topological spaces.

The following proposition gives an useful characterization of lower semicontinuity in
terms of generalized sequences (see e.g. Papageorgiou and Kyritsi-Yiallourou [31], p. 457).

Proposition 1.1 Given a set-valued operator T : X → 2Y , the following statements are
equivalent:

(a) T is l.s.c.;
(b) If u ∈ X, {uλ}λ∈J ⊂ X is a net in X such that uλ → u and u∗ ∈ T (u), then for each

λ ∈ J we can find u∗
λ ∈ T (uλ) such that u∗

λ → u∗ in Y .

We close this section with two theorems that will play a key role in the proof of our main
results. The first is the Schauder fixed point iheorem (for the proof see Berger [2], p. 90)
while the second represents a version of the KKM Principle due to Ky Fan [10].

Theorem 1.1 Let X be a Banach space and let K be a nonempty, bounded, closed and con-
vex subset of X. Let S : K → K be a completely continuous operator. Then S has at least
one fixed point in the set K .

Theorem 1.2 Let K be a nonempty subset of a Hausdorff topological vector space X and
let � : K → 2X be a set-valued mapping satisfying the following properties:

• � is a KKM mapping;
• �(u) is closed in X for every u ∈ K ;
• there exists u0 ∈ K such that �(u0) is compact in X.

Then
⋂

u∈K �(u) �= ∅.

We recall that a set-valued mapping � : K → 2X is said to be a KKM mapping if for
any {u1, . . . , un} ⊂ K , co{u1, . . . , un} ⊂ ⋃n

j=1 �(u j ), where co{u1, . . . , un} denotes the
convex hull of {u1, . . . , un}.

2 Formulation of the problem

Let (E, ‖ · ‖E ) be a real Banach space which is continuously embedded in L p(�; R
n), for

some 1 < p < +∞ and n ≥ 1, where � is a bounded domain in R
m , m ≥ 1. Let i be the

canonical injection of E into L p(�; R
n) and denote by i∗ : Lq(�; R

n) → E∗ the adjoint
operator of i (1/p + 1/q = 1).

Throughout this paper A :E → 2E∗
is a nonlinear set-valued mapping, F :E → E∗ is a

nonlinear operator and J :L p(�; R
n) → R is a locally Lipschitz functional. We also assume

that h :E → R is a given nonnegative functional.
The aim of this paper is to study the existence of solutions for the following

quasi-hemivariational inequality:
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(P) Find u ∈ E and u∗ ∈ A(u) such that

〈u∗, v〉E + h(u)J 0(iu; iv) ≥ 〈Fu, v〉E , for all v ∈ E .

The above problem is called a quasi-hemivariational inequality because, in general, we
cannot determine a function G such that ∂G(u) = h(u)∂ J (u).
As we will see next problem (P) can be rewritten equivalently as an inclusion in the
following way:

(P) Find u ∈ E such that

Fu ∈ A(u) + h(u)i∗∂ J (iu).

An element u ∈ E is called a solution of (P) if there exist u∗ ∈ A(u) and ζ ∈ ∂ J (iu)

such that

〈u∗, v〉E + h(u)〈i∗ζ, v〉E = 〈Fu, v〉E , for all v ∈ E . (2.1)

Proposition 2.1 An element u ∈ E is a solution of problem (P) if and only if it solves
problem (P).

Proof

(P) ⇒(P). Let u ∈ E be a solution of (P). Lemma 1.2 implies that there exists ζu ∈ ∂ J (iu)

such that for all w ∈ L p(�; R
n) we have

J 0(iu;w) = 〈ζu, w〉Lq×L p = sup {〈ζ,w〉Lq×L p : ζ ∈ ∂ J (iu)} .

Taking w = iv and using the fact that u is a solution of (P) we obtain that

〈u∗, v〉E + h(u)〈i∗ζu, v〉E ≥ 〈Fu, v〉E , for all v ∈ E .

Taking −v instead of v in the above relation we deduce that (2.1) holds therefore u is
a solution of problem (P).

(P) ⇒(P). Let u ∈ E be a solution of P . Then, there exist u∗ ∈ A(u) and ζ ∈ ∂ J (iu) such
that (2.1) takes place. As ζ ∈ ∂ J (iu) we obtain that

〈ζ,w〉Lq×L p ≤ J 0(iu;w), for all w ∈ L p(�; R
n).

For a fixed v ∈ E we define w = iv and taking into account that h is nonnegative we
get

h(u)〈i∗ζ, v〉E = h(u)〈ζ, iv〉Lq×L p ≤ h(u)J 0(iu; iv) (2.2)

Combining (2.1) and (2.2) we obtain that u solves inequality problem (P).

qed
Sometimes, due to some technical reasons, it is useful to study hemivariational inequali-

ties of the type (P) whose solution is sought in a nonempty, closed and convex subset K of
E . This leads us to the study of the following inequality problem:

(PK) Find u ∈ K and u∗ ∈ A(u) such that

〈u∗, v − u〉E + h(u)J 0(iu; iv − iu) ≥ 〈Fu, v − u〉E , for all v ∈ K .

We point out the fact that, unlike problem (P), the above problem cannot be rewritten as an
inclusion and this is one of the reasons for which we prefer the hemivariational approach.
However, the formulation in terms of hemivariational inequalities has a great advantage: that
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the hemivariational inequalities express a physical principle, the principle of virtual work or
power.

We shall study three cases regarding the set K :

1. K is a nonempty, compact and convex subset of the space E ;
2. K is a nonempty, bounded, closed and convex subset of the space E ;
3. K is an unbounded, closed and convex subset of E (for simplicity we shall consider that

K is the the whole space E ; in this case problems (PK) and (P) are one and the same).

The novelty of our inequality problem consists in the following things:

• the operator A is multi-valued;
• in order to prove the existence of at least one solution in the case of bounded, closed and

convex sets we ask A not to be monotone (as in most papers dealing with hemivariational
inequalities), but to be relaxed α monotone which is rather a weak condition compared
to monotonicity;

• the presence of the nonlinear term in the right-hand side of the inequality which depends
on the unknown variable u;

• it is a general inequality since it contains several particular cases which lead to vari-
ous known inequalities arising in many fields such as mechanics, engineering sciences,
numerical analysis.

In order to highlight the generality of our inequality problem we present below several par-
ticular cases.

Case 1. The operator A is multi-valued.

(1.a) F ≡ 0 and h ≡ 0. In this case problem (PK) becomes Find u ∈ K and
u∗ ∈ A(u) such that

〈u∗, v − u〉E ≥ 0, for all v ∈ K ,

which is called the generalized variational inequality (see e.g. Minty [23]
or Browder [4]);

(1.b) Au = ∂Cφ(u) and h ≡ 0, where φ : E → (−∞,+∞] is a proper, convex
functional and ∂C : E → 2E∗

is the convex subdifferential of φ, i.e.

∂Cφ(u) = {η ∈ E∗ : φ(v) − φ(u) ≥ 〈η, v − u〉E , for all v ∈ E}.
In this case problem (PK) becomes Find u ∈ K such that

〈−Fu, v − u〉E + φ(v) − φ(u) ≥ 0, for all v ∈ K ,

which is called the mixed variational inequality (see e.g. Glowinski, Lions
and Trèmoliéres [15]);

(1.c) Au = ∂W (u) + ∂Cφ(u), where W : E → R is a locally Lipschitz func-
tional and φ : E → (−∞,+∞] is a proper, convex functional. In this case
problem (PK) becomes

W 0(u; v − u) + φ(v) − φ(u) + h(u)J 0(iu; iv − iu)

≥ 〈Fu, v − u〉E , for all v ∈ K ,

which is called general quasi-hemivariational inequality (see Costea [9]);
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Case 2. The operator A is single-valued.

(2.a) h ≡ 0 and F ≡ 0. In this case problem (PK) becomes Find u ∈ K such that

〈Au, v − u〉E ≥ 0, for all v ∈ K ,

which is called the standard variational inequality (see e.g. Hartman and
Stampacchia [18]);

(2.b) h ≡ 1 and F ≡ 0. In this case problem (PK) becomes Find u ∈ K such that

〈Au, v − u〉E + J 0(iu; iv − iu) ≥ 0, for all v ∈ K ,

which is called the Hartman–Stampacchia hemivariational inequality (see
Panagiotopoulos, Fundo and Rădulescu [30]);

(2.c) F ≡ 0. In this case problem (PK) becomes Find u ∈ K such that

〈Au, v − u〉E + h(u)J 0(iu; iv − iu) ≥ 0, for all v ∈ K ,

which is called the standard quasi-hemivariational inequality (see e.g.
Naniewicz and Panagiotopoulos [26]);

In conclusion, we do not deal with a classical hemivariational inequality and consequently
several difficulties occur in determining the existence of solutions since the classical methods
fail to be applied directly.

3 Main results

The first main result of this paper is given by the following theorem.

Theorem 3.1 Let K be a nonempty compact convex subset of the real Banach space E.
Assume that:

• A : E → 2E∗
is l.s.c. with respect to the weak* topology of E∗;

• h : E → R is a continuous nonnegative functional;
• F : E → E∗ is an operator such that lim sup

n→∞
〈Fun, v −un〉E ≥ 〈Fu, v −u〉E , whenever

un → u.

Then the inequality problem (PK) has at least one solution.

Proof Arguing by contradiction, let us assume that problem (PK) has no solution. Then, for
each u ∈ K , there exists v ∈ K such that

sup
u∗∈A(u)

〈u∗, v − u〉E + h(u)J 0(iu; iv − iu) < 〈Fu, v − u〉E . (3.1)

We introduce the set-valued mapping 
 : K → 2K defined by


(v) =
{

u ∈ K : inf
u∗∈A(u)

〈u∗, v − u〉E + h(u)J 0(iu; iv − iu) ≥ 〈Fu, v − u〉E

}

.

Claim 1. The set 
(v) is nonempty and closed for each v ∈ K .
The fact that 
(v) is nonempty is obvious as v ∈ 
(v) for each v ∈ K .
In order to prove the above claim let us fix v ∈ K and consider a sequence
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{un}n≥1 ⊂ 
(v) which converges to some u ∈ K . We shall prove that u ∈ 
(v).
As un ∈ 
(v), for each n ≥ 1 we get that

〈u∗
n, v − un〉E + h(un)J 0(iun; iv − iun)

≥ 〈Fun, v − un〉E , for all u∗
n ∈ A(un). (3.2)

Let u∗ ∈ A(u) be fixed and let ū∗
n ∈ A(un) such that ū∗

n ⇀ u∗ in E∗ (the
existence of such a sequence is ensured by Proposition 1.1 and the fact that A
is l.s.c. with respect to the weak* topology of E∗). On the other hand, using
the continuous embedding of E into L p(�; R

n) we obtain that iun → iu in
L p(�; R

n). Passing to lim sup as n → ∞ in (3.2) we obtain the following
estimates:

〈Fu, v − u〉E ≤ lim sup
n→∞

〈Fun, v − un〉E

≤ lim sup
n→∞

[〈ū∗
n, v − un〉E + h(un)J 0(iun; iv − iun)

]

≤ lim sup
n→∞

〈ū∗
n, v − un〉E

+ lim sup
n→∞

[h(un) − h(u) + h(u)] J 0(iun; iv − iun)

≤ 〈u∗, v − u〉E + lim sup
n→∞

[h(un) − h(u)] J 0(iun; iv − iun)

+ lim sup
n→∞

h(u)J 0(iun; iv − iun)

≤ 〈u∗, v − u〉E + h(u)J 0(iu; iv − iu).

This shows that u ∈ 
(v) hence 
(v) is a closed set and the proof of the claim
is now complete.

According to (3.1) for each u ∈ K there exists v ∈ K such that u ∈ [
(v)]c = E −
(v).
This means that the family {[
(v)]c}v∈K is an open covering of the compact set K . Therefore
there exists a finite subset {v1, . . . , vN } of K such that {[
(v j )]c}1≤ j≤N is a finite subcover
of K . For each j ∈ {1, . . . , N } let δ j (u) be the distance between u and the set 
(v j ) and
define β j : K → R as follows:

β j (u) = δ j (u)
∑N

k=1 δk(u)
.

Clearly, for each j ∈ {1, . . . , N }, β j is a Lipschitz continuous function that vanishes on

(v j ) and 0 ≤ β j (u) ≤ 1, for all u ∈ K . Moreover,

∑N
j=1 β j (u) = 1. Let us consider next

the operator S : K → K defined by

S(u) =
N∑

j=1

β j (u)v j .
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We shall prove that S is a completely continuous operator. We have

‖Su1 − Su2‖E =
∥
∥
∥
∥
∥
∥

N∑

j=1

(β(u1) − β(u2))v j

∥
∥
∥
∥
∥
∥

E

≤
N∑

j=1

‖v j‖E ‖β(u1) − β(u2)‖E

≤
N∑

j=1

‖v j‖E L j ‖u1 − u2‖E

≤ L ‖u1 − u2‖E ,

which shows that S is Lipschitz continuous hence continuous.
Let M be a bounded subset of K . As S(M) is a closed subset of the compact set K we

conclude that S(M) is relatively compact, hence S maps bounded sets into relatively compact
sets which shows that S is a compact map. Thus, by Schauder’s fixed point theorem, there
exists u0 ∈ K such that S(u0) = u0.

Let us define next the functional g : K → R

g(u) = inf
u∗∈A(u)

〈u∗, S(u) − u〉E + h(u)J 0(iu, i S(u) − iu) − 〈Fu, S(u) − u〉E .

Taking into account Lemma 1.1 and the way the operator S was constructed, for each u ∈ K ,
we have:

g(u) = inf
u∗∈A(u)

〈

u∗,
N∑

j=1

β j (u)(v j − u)

〉

E

+ h(u)J 0

⎛

⎝iu,

N∑

j=1

β j (u)(iv j − iu)

⎞

⎠

−
〈

Fu,

N∑

j=1

β j (u)(v j − u)

〉

E

≤
N∑

j=1

β j (u)

[

inf
u∗∈A(u)

〈u∗, v j − u〉E + h(u)J 0(iu, iv j − iu) − 〈Fu, v j − u〉E

]

.

Let u ∈ K be arbitrary fixed. For each index j ∈ {1, . . . , N } we distinguish the following
possibilities:

• u ∈ [

(v j )

]c. In this case we have

β j (u) > 0

and

inf
u∗∈A(u)

〈u∗, v j − u〉E + h(u)J 0(iu, iv j − iu) − 〈Fu, v j − u〉E < 0.

• u ∈ 
(v j ). In this case we have

β j (u) = 0

and

inf
u∗∈A(u)

〈u∗, v j − u〉E + h(u)J 0(iu, iv j − iu) − 〈Fu, v j − u〉E ≥ 0.
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Taking into account that K ⊆ ∪N
j=1

[

(v j )

]c we deduce that there exists at least one index

j0 ∈ {1, . . . , N } such that u ∈ [

(v j0)

]c. This shows that g(u) < 0 for all u ∈ K .
On the other hand, g(u0) = 0 and thus we have obtained a contradiction that completes

the proof. ��

We point out the fact that in the above case when K is a compact convex subset of E we
do not impose any monotonicity conditions on A, nor we assume E to be a reflexive space.
However, in applications, most problems lead to an inequality whose solution is sought in a
closed and convex subset of the space E . Weakening the hypotheses on K by assuming that
K is only bounded, closed and convex, we need to impose certain monotonicity properties on
A and assume in addition that E is reflexive. We shall use a kind of generalized monotonicity,
so called relaxed α monotonicity. We recall the following definition.

Definition 3.1 A set-valued mapping T : E → 2E∗
is said to be relaxed α monotone if there

exists a functional α : E → R such that for all u, v ∈ E we have

〈v∗ − u∗, v − u〉E ≥ α(v − u), for all v∗ ∈ T (v) and all u∗ ∈ T (u). (3.3)

Special cases.

• If α(u) = m‖u‖2
E , with m > 0 constant, then (3.3) becomes

〈v∗ − u∗, v − u〉E ≥ m‖v − u‖2
E , for all v∗ ∈ T (v) and all u∗ ∈ T (u),

and T is said to be strongly monotone;
• If α(u) ≡ m, with m > 0 constant, then (3.3) becomes

〈v∗ − u∗, v − u〉E ≥ m > 0, for all u �= v, v∗ ∈ T (v), u∗ ∈ T (u),

and T is said to be strictly monotone;
• If α(u) ≡ 0, then (3.3) becomes

〈v∗ − u∗, v − u〉E ≥ 0, for all v∗ ∈ T (v) and all u∗ ∈ T (u),

and T is said to be monotone;
• If α(u) = −m‖u‖2

E , with m > 0 constant, then (3.3) becomes

〈v∗ − u∗, v − u〉E ≥ −m‖v − u‖2
E , for all v∗ ∈ T (v) and all u∗ ∈ T (u),

and T is said to be relaxed monotone.

From the above definitions, we have the following implications (and the inverse of every
implication is not true):

strongly monotone ⇒ strictly monotone ⇒ monotone ⇒ relaxed monotone ⇒ relaxed α monotone

We are now able to formulate another main result concerning the existence of solutions
on bounded, closed and convex subsets.

Theorem 3.2 Let K be a nonempty, bounded, closed and convex subset of the real reflexive
Banach space E which is compactly embedded in L p(�; R

n). Assume that:
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• A : E → 2E∗
is l.s.c. with respect to the weak topology of E∗ and relaxed α monotone;

• α : E → R is a functional such that lim sup
n→∞

α(un) ≥ α(u) whenever un ⇀ u and

lim
t↓0

α(tu)
t = 0;

• h : E → R is a nonnegative sequentially weakly continuous functional;
• F : E → E∗ is an operator such that the application u 
→ 〈Fu, v −u〉E is weakly lower

semicontinuous.

Then the inequality problem (PK) has at least one solution in K .

Proof Let us define the set-valued mapping � : K → 2K

�(v) =
{

u∈K : inf
v∗∈A(v)

〈v∗, v − u〉E + h(u)J 0(iu; iv − iu) − 〈Fu, v − u〉E ≥ α(v − u)

}

.

Claim 2. The set �(v) is weakly closed for each v ∈ K .
In order to prove the above claim let us fix v ∈ K and consider a sequence
{un}n≥1 ⊂ �(v) such that un ⇀ u in E . We must prove that u ∈ �(v). First
we observe that the compactness of the embedding operator i implies that the
sequence {iun}n≥1 converges strongly to iu in L p(�, R

n).
For each v∗ ∈ A(v) we have

α(v − u) ≤ lim sup
n→∞

α(v − un)

≤ lim sup
n→∞

[〈v∗, v − un〉E + h(un)J 0(iun; iv − iun)−〈Fun, v − un〉E
]

≤ 〈v∗, v − u〉E + h(u)J 0(iu, iv − iu) − 〈Fu, v − u〉E ,

which shows that u ∈ �(v) and thus the proof of the claim is complete.

Claim 3. � is a KKM mapping.
Arguing by contradiction let us assume that � is not a KKM mapping. According
to the definition of a KKM mapping there exists a finite subset {v1, . . . , vN } ⊂ K
and u0 = ∑N

j=1 λ jv j , with λ j ∈ [0, 1] and
∑N

j=1 λ j = 1 such that u0 �∈
⋃N

j=1 �(v j ). This is equivalent to

inf
v∗

j ∈A(v j )
〈v∗

j , v j − u0〉E + h(u0)J 0(iu0; iv j − iu0)

− 〈Fu0, v j − u0〉E < α(v j − u0), (3.4)

for all j ∈ {1, . . . , N }.
On the other hand, A is a relaxed α monotone operator and thus, for each
j ∈ {1, . . . , N } we have

〈u∗
0 − v∗

j , v j − u0〉E ≤ −α(v j − u0),

for all u∗
0 ∈ A(u0) and all v∗

j ∈ A(v j ).

(3.5)

Combining (3.4) and (3.5) we are led to

〈u∗
0, v j − u0〉E + h(u0)J 0(iu0; iv j − iu0)

− 〈Fu0, v j − u0〉E < 0, for all u∗
0 ∈ A(u0). (3.6)
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Using (3.6) and the fact that J 0(iu0; ·) is subadditive (see Lemma 1.1), for a fixed
u∗

0 ∈ A(u0) we have

0 = 〈u∗
0, u0 − u0〉E + h(u0)J 0(iu0; iu0 − iu0) − 〈Fu0, u0 − u0〉E

=
〈

u∗
0,

N∑

j=1

λ j (v j − u0)

〉

E

+ h(u0)J 0

⎛

⎝iu0;
N∑

j=1

λ j (iv j − iu0)

⎞

⎠

−
〈

Fu0,

N∑

j=1

λ j (v j − u0)

〉

E

≤
N∑

j=1

λ j
[〈u∗

0, v j − u0〉E

+ h(u0)J 0(iu0; iv j − iu0) − 〈Fu0, v j − u0〉E
]

< 0,

which obviously is a contradiction and thus the proof of the claim is complete.

We already know from Claim 2 that �(v) is a weakly closed subset of K , for each v ∈ K .
On the other hand, K is a weakly compact set as it is a bounded, closed and convex subset
of the real reflexive Banach space E . Therefore �(v) it is weakly compact for each v ∈ K .
Thus we can apply the KKM Principle to conclude that

⋂
v∈K �(v) �= ∅.

Let u0 ∈ ⋂
v∈K �(v). This implies that for each w ∈ K we have

inf
w∗∈A(w)

〈w∗, w − u0〉E + h(u0)J 0(iu0; iw − iu0) − 〈Fu0, w − u0〉E ≥ α(w − u0).

Let v ∈ K be fixed and define wλ = u0 + λ(v − u0), λ ∈ (0, 1). Using the fact that
wλ ∈ K and taking into account the above relation and Lemma 1.1 we deduce that

〈w∗
λ, v − u0〉E + h(u0)J 0(iu0, iv − iu0) − 〈Fu0, v − u0〉E

≥ α(λ(v − u0))

λ
, for all w∗

λ ∈ A(wλ).

Letting λ → 0 and using the l.s.c. of A we obtain that u0 solves problem (PK). �

As we have seen above the boundedness of the set K played a key role in proving that
problem (PK) admits at least one solution. In the case when K is the whole space E , assum-
ing that the same hypotheses as in Theorem 3.2 hold, we shall need an extra condition to
overcome the lack of boundedness. For each real number R > 0 taking K = B̄(0; R) =
{u ∈ E : ‖u‖E ≤ R} we know from Theorem 3.2 that problem

(PR) Find u R ∈ B̄(0; R) and u∗
R ∈ A(u R) such that

〈u∗
R, v − u R〉E + h(u R)J 0(iu R; iv − iu R) ≥ 〈Fu R, v − u R〉E , for all v ∈ B̄(0; R),

admits at least one solution.

Theorem 3.3 Assume that the same hypotheses as in Theorem 3.2 hold in the case K = E.
Then problem (P) admits at least one solution if and only if the following condition holds
true:

• There exists R > 0 such that at least one solution u R of problem (PR) satisfies u R ∈
int B̄(0; R).

Proof The necessity is obvious.
In order to prove the sufficiency let us fix v ∈ E . We shall prove that u R is a solution of

(P). First we define

λ =
{

1 if u R = v
R−‖u R‖E‖v−u R‖E

otherwise .

123



754 J Glob Optim (2012) 52:743–756

Since u R ∈ int B(0; R) we conclude that λ > 0 and that wλ = u R + λ(v − u R) ∈ B̄(0; R).
Using that u R solves problem (PR) we find

〈Fu R, λ(v − u R)〉E = 〈Fu R, wλ − u R〉E

≤ 〈u∗
R, wλ − u R)〉E + h(u R)J 0(iu R; iwλ − iu R)

= 〈u∗
R, λ(v − u R)〉E + h(u R)J 0(iu R; λ(iv − iu R))

= λ
[〈u∗

R, v − u R〉E + h(u R)J 0(iu R; iv − iu R)
]
.

Dividing by λ > 0 we conclude that u R solves problem (P). �

Corollary 3.1 Let us assume that the same hypotheses as in Theorem 3.2 hold in the case
K = E. Then a sufficient condition for problem (P) to admit a solution is:

• There exists R0 > 0 such that for each u ∈ E \ B̄(0; R0) there exists v ∈ int B̄(0; R0)

with the property that

sup
u∗∈A(u)

〈u∗, v − u〉E + h(u)J 0(iu; iv − iu) < 〈Fu, v − u〉E .

Proof Let us fix R > R0. According to Theorem 3.2 there exists u R ∈ B̄(0, R) and ū∗
R∈ A(u R) such that

〈ū∗
R, v − u R〉E + h(u R)J 0(iu R; iv − iu R) ≥ 〈Fu R, v − u R〉E , for all v ∈ B̄(0; R).

(3.7)

Case 1. u R ∈ int B̄(0; R).
In this case we have nothing to prove, Theorem 3.3 showing that u R is a solution
of problem (P).

Case 2. u R ∈ ∂ B̄(0; R).
In this case ‖u R‖E = R > R0 and thus u R ∈ E \ B̄(0; R0). According to our
hypothesis there exists v̄ ∈ int B̄(0; R0) such that

sup
u∗

R∈A(u R)

〈u∗
R, v̄ − u R〉E + h(u R)J 0(iu R; i v̄ − iu R) < 〈Fu R, v̄ − u R〉E .

(3.8)

Let us fix v ∈ E . Defining

λ =
{

1 ifv = v̄
R−R0‖v−v̄‖E

otherwise,

we observe that wλ = v̄ + λ(v − v̄) ∈ B̄(0; R). On the other hand we observe that

wλ − u R = v̄ − u R + λ(v − v̄) + λu R − λu R

= λ(v − u R) + (1 − λ)(v̄ − u R).

Taking wλ instead of v in (3.7) and using (3.8) we are led to the following estimates

〈Fu R, λ(v − u R) + (1 − λ)(v̄ − u R)〉E = 〈Fu R, wλ − u R〉E

≤ 〈ū∗
R, wλ − u R〉E + h(u R)J 0(iu R; iwλ − iu R)

≤ λ
[〈ū∗

R, v − u R〉E + h(u R)J 0(iu R; iv − iu R)
]

+(1 − λ)
[〈ū∗

R, v̄ − u R〉E + h(u R)J 0(iu R; i v̄ − iu R)
]

≤ λ
[〈ū∗

R, v − u R〉E + h(u R)J 0(iu R; iv − iu R)
]

+(1 − λ)〈Fu R, v̄ − u R〉E .

123



J Glob Optim (2012) 52:743–756 755

This shows that

〈ū∗
R, v − u R〉E + h(u R)J 0(iu R; iv − iu R) ≥ 〈Fu R; v − u R〉E , for all v ∈ E,

which means that u R solves problem (P) and thus the proof is complete.

�

Corollary 3.2 Let us assume that the same hypotheses as in Theorem 3.2 hold in the case
K = E. Assume in addition that:

• A is coercive, i.e. there exists a function c : R+ → R+ with the property that lim
r→∞ c(r) =

+∞ such that

inf
u∗∈A(u)

〈u∗, u〉E ≥ c(‖u‖E )‖u‖E ;

• there exists a constant k > 0 such that h(v)J 0(iv;−iv) ≤ k‖v‖E for all v ∈ E;
• there exists a constant m > 0 such that ‖Fu‖E∗ ≤ m for all u ∈ E;

Then the inequality problem (P) has at least one solution.

Proof For each R > 0 Theorem 3.2 guarantees that there exist u R ∈ E and u∗
R ∈ A(u R)

such that

〈u∗
R, v − u R〉E + h(u R)J 0(iu; iv − iu R) ≥ 〈Fu R, v − u R〉E , for all v ∈ B̄(0; R).

(3.9)

We shall prove that there exists R0 > 0 such that u R0 ∈ int B̄(0; R0). According to Theo-
rem 3.3, this is equivalent to the fact that u R is a solution of problem (P).

Arguing by contradiction let us assume that u R ∈ ∂ B̄(0; R) for all R > 0. Taking v = 0
in (3.9) we have

c(R)R = c(‖u R‖)‖u R‖E

≤ 〈u∗
R, u R〉E

≤ 〈Fu R, u R〉E + h(u R)J 0(iu R;−iu R)

≤ ‖Fu R‖E∗‖u R‖E + k ‖u R‖E

= (m + k)R.

Dividing by R > 0 we obtain that c : R+ → R+ is bounded from above which contradicts
the fact that limR→∞ c(R) = +∞. �
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