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We study a nonlocal Neumann problem driven by a nonhomogeneous elliptic differential
operator. The reaction term is a nonlinearity function that exhibits p-superlinear growth
but need not satisfy the Ambrosetti–Rabinowitz condition. By using an abstract linking
theorem for smooth functionals, we prove a multiplicity result on the existence of weak
solutions for such problems. An explicit example illustrates the main abstract result of
this paper.
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1. Introduction

Let X be a real Banach space with a direct decomposition

X = Y ⊕ V,

for certain linear subspaces Y and V .
The condition of local linking was introduced in [20]. We say that ϕ ∈ C1(X, R)

has a local linking if

dimY < ∞ (1)
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and there are α, ρ > 0 such that

ϕ(u) ≥ α ∀u ∈ V, ‖u‖ = ρ. (2)

Under these assumptions, Li and Liu [20] established the existence of nontrivial
critical points for functionals in the following classes:

(a) bounded from below;
(b) super-quadratic;
(c) asymptotically quadratic.

The weaker notion of local linking at the origin is due to Li and Willem [21]. We
say that the functional ϕ ∈ C1(X, R) has a local linking at the origin if there exists
a positive constant ρ such that

ϕ(u) ≤ 0 ∀u ∈ Y, ‖u‖ ≤ ρ (3)

and

ϕ(u) ≥ 0 ∀u ∈ V, ‖u‖ ≤ ρ. (4)

The concept of local linking generalizes the notions of local minimum and local
maximum. When 0X is a nondegenerate critical point of a functional ϕ of class C2

defined on a Hilbert space and ϕ(0X) = 0, then ϕ has a local linking at zero.
Successively, Brezis and Nirenberg, in their quoted paper [10], proved the exis-

tence of a nontrivial critical point in case (a), assuming only (1), (3), (4), and the
Palais-Smale condition.

2. Statement of the Problem

Let Ω be a bounded domain in (RN , |·|) with smooth boundary ∂Ω. Assume that
p > 1 is a real number. Let ∆pu := div(|∇u|p−2∇u) denote the p-Laplace operator
and let ∂u/∂ν be the outer unit normal derivative.

In this paper, we are interested in the existence of weak solutions to the following
nonlocal Neumann problem:

(Np
M,f)


−
[
M

(∫
Ω

|∇u(x)|pdx

)]p−1

∆pu = f(x, u) in Ω,

∂u

∂ν
= 0 on ∂Ω.

In the sequel we will assume that f : Ω × R → R is a Carathéodory function
and M : [0, +∞) → [0, +∞) is continuous such that

(C1
M ) 0 < m0 ≤ M(t), for every t ∈ [0, +∞).

Further, we require that

(C2
M )

∫ t

0

[M(s)]p−1ds ≥ t[M(t)]p−1, for every t ∈ [0, +∞).
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Problem (Np
M,f ) is called nonlocal because of the presence of the term

M(
∫
Ω
|∇u(x)|pdx), which implies that the quasilinear partial differential equation

in (Np
M,f ) is no longer a pointwise identity. This phenomenon creates several math-

ematical difficulties in the qualitative analysis of such equations.
Problem (Np

M,f ) is related to the stationary analogue of the hyperbolic equation

utt −
(

a + b

∫
Ω

|∇u(x)|2dx

)
∆u = f(x, u) in Ω, (5)

where ∆ is the usual Laplace operator. Equation (5) is a general version of the
Kirchhoff equation

ρutt −
(

P0

h
+

E

2L

∫ L

0

u2
xdx

)
uxx = 0, (6)

presented by Kirchhoff [18].
This relation is as an extension of the classical d’Alembert’s wave equation by

considering the effects of changes in the length of the strings during the vibrations.
The parameters in Eq. (6) have the following meanings: E is the Young modulus
of the material, ρ is the mass density, L is the length of the string, h is the area of
cross-section, and P0 is the initial tension.

The Kirchhoff’s model takes into account the length changes of the string pro-
duced by transverse vibrations. The early classical studies dedicated to Kirch-
hoff equations were given by Bernstein [8] and Pohozaev [27]. However, Eq. (5)
received much attention only after the paper by Lions [22], where an abstract
framework to the problem was proposed. Some related results can be found, for
example, in [4, 12, 13]. We also point out that Arosio and Panizzi [4] studied the
Cauchy–Dirichlet problem related to (5) in the Hadamard sense as a special case
of an abstract second-order Cauchy problem in a Hilbert space. D’Ancona and
Spagnolo [13] considered Kirchhoff’s equation as a quasi-linear hyperbolic Cauchy
problem that describes the transverse oscillations of a stretched string. Perera and
Zhang [26] obtained a nontrivial solution for nonlocal equations via Yang index and
critical groups. Chipot and Lovat [11] pointed out that this kind of problems mod-
els several physical and biological systems, where u describes a process depending
on the average of itself (for example, population density). Nonlocal problems have
been studied in these last years by variational arguments; see the papers [3, 29, 30]
and references therein. For completeness we refer the reader to some recent inter-
esting results obtained by Autuori and Pucci in [5–7] studying Kirchhoff equations
by using different approaches.

Recently, there have been results for nonlinear Neumann problems driven by the
p-Laplacian differential operator. See, for instance, the works [1, 2, 14, 15, 24, 28, 31].
With the exceptions of [1, 24], in all the cited works, it is assumed that p > N (low-
dimensional problems) and the authors exploit the fact that in this setting, the
Sobolev space W 1,p(Ω) is compactly embedded in C0(Ω̄). Further, in [15, 24], the
Euler energy functional is assumed to be coercive in W 1,p(Ω).
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In this paper, motivated by this large interest on nonlocal Neumann equations
and exploiting a slight variant of a result of Li and Willem [21] for functionals
having a local linking at zero, we prove the existence of at least one nontrivial weak
solution for problem (Np

M,f ). In contrast with the above cited papers, in our case
the Euler functional is indefinite.

More precisely, we prove an existence theorem (see Theorem 4.3) for prob-
lem (Np

M,f ) when the right-hand side nonlinearity f is p-superlinear. In the context
of the Dirichlet problems, this setting was investigated by Liu [23], who employed
the Ambrosetti–Rabinowitz (simply (AR)) condition. His approach uses Morse the-
ory. In particular, the (AR) condition was crucial in the computation of the critical
groups of the Euler functional at infinity. In Theorem 4.3, we do not assume the
(AR) condition on f and so the approach of [23] cannot be adopted.

In this paper, we use some ideas developed in [17], where the authors consider
nonlinear Neumann problems driven by p-Laplacian type operators which are not
necessarily homogeneous.

The plan of the paper is as follows. Section 3 is devoted to our abstract frame-
work, while Sec. 4 is dedicated to the main results. A concrete example illustrates
the main abstract result of this paper (see Example 4.8). We refer to Brezis [9] for
basic analytic preliminaries in relationship with partial differential equations. We
also cite the monographs [16, 19] as general references on the variational setting
adopted in this paper.

3. Abstract Framework

Let W 1,p(Ω) be the usual Sobolev space, equipped with the norm

‖u‖ :=
(∫

Ω

(|∇u(x)|p + |u(x)|p)dx

)1/p

.

Let 〈·, ·〉 denote the duality pairing between (W 1,p(Ω))∗ and W 1,p(Ω). We denote
by p∗ the critical exponent of the Sobolev embedding W 1,p(Ω) ↪→ Lq(Ω). Recall
that if p < N then p∗ = Np/(N − p) and for every q ∈ [1, p∗] there exists a positive
constant cq such that

‖u‖Lq(Ω) ≤ cq‖u‖, ∀u ∈ W 1,p(Ω). (7)

Moreover, when p ≥ N , this inequality holds for all q ∈ [1, +∞[, since p∗ = +∞.
We also recall the classical Poincaré–Wirtinger inequality (see [9, Chap. 9]):

there exists η > 0 such that∫
Ω

|u(x)|pdx ≤ η

∫
Ω

|∇u(x)|pdx, ∀u ∈ W 1,p(Ω) s.t.
∫

Ω

u(x)dx = 0. (8)

For the sake of completeness, we recall that a C1-functional ϕ : X → R satisfies
the Cerami condition at level µ ∈ R, (briefly (C)µ) if
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(C)µ Every sequence {un} in X such that

ϕ(un) → µ and (1 + ‖un‖)‖ϕ′(un)‖X∗ → 0,

as n → ∞, possesses a convergent subsequence.

We say that ϕ satisfies the Cerami condition (in short (C)) if (C)µ holds for every
µ ∈ R.

A basic tool in this paper is the following abstract local linking theorem due
to Li and Willem [21]. We reformulate this result in the special case given in [17,
Theorem 2.1].

Theorem 3.1. Let X be a Banach space such that X = Y ⊕V with dimY < +∞.
Assume that ϕ ∈ C1(X) satisfies the following conditions:

(i) ϕ has a local linking at zero;
(ii) ϕ satisfies the (C) condition;
(iii) ϕ maps bounded sets into bounded sets;
(iv) for every finite-dimensional subspace E ⊆ V, we have

ϕ(u) → −∞ as ‖u‖ → +∞ and u ∈ Y ⊕ E.

Then ϕ admits at least one nontrivial critical point.

4. Main Result

Let Φ : W 1,p(Ω) → R be the smooth functional defined by

Φ(u) :=
1
p
M̂

(∫
Ω

|∇u(x)|pdx

)
, (9)

where

M̂(t) :=
∫ t

0

[M(s)]p−1ds, ∀ t ∈ [0,∞).

Then the Fréchet derivative of Φ is Φ′ : W 1,p(Ω) → (W 1,p(Ω))∗ defined by

〈Φ′(u), v〉 =
[
M

(∫
Ω

|∇u(x)|pdx

)]p−1 ∫
Ω

|∇u(x)|p−2∇u(x) · ∇v(x)dx,

for all u, v ∈ W 1,p(Ω).
Moreover, it is well-known that the operator A : W 1,p(Ω) → (W 1,p(Ω))∗ given

by

〈A(u), v〉 =
∫

Ω

|∇u(x)|p−2∇u(x) · ∇v(x)dx,

satisfies the (S+) property.
This means that for every sequence {un} ⊂ W 1,p(Ω) such that un ⇀ u (weakly)

in W 1,p(Ω) and

lim sup
n→∞

〈A(un), un − u〉 ≤ 0, (10)

it follows that un → u (strongly) in W 1,p(Ω).
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4.1. Remarks on our assumptions

The validity of the next lemma will be crucial in the sequel.

Lemma 4.1. Suppose that conditions (C1
M ) and (C2

M ) are fulfilled. Then there are
positive constants m1 and m2 such that

M̂(t) ≤ m1t + m2, (11)

for every t ∈ [0, +∞).

Proof. Let t1 > 0. By our assumptions we have

[M(t)]p−1

M̂(t)
≤ 1

t
,

for every t ∈ ]t1, +∞). Integrating this inequality we obtain∫ t

t1

[M(s)]p−1

M̂(s)
ds = log

M̂(t)

M̂(t1)
≤ log

t

t1
,

for every t ∈ ]t1, +∞). Therefore,

M̂(t) ≤ M̂(t1)
t1

t,

for every t ∈ ]t1, +∞). Hence the growth condition (11) holds taking, for instance,

m1 :=
cM(t1)

t1
and m2 := maxt∈[0,t1] M̂(t).

Owing to conditions (C1
M ) and (C2

M ), by Lemma 4.1 we deduce the following
inequalities:

(ĈM )
mp−1

0

p

∫
Ω

|∇u(x)|pdx ≤ Φ(u) ≤ m1

p
‖u‖p +

m2

p
,

for every u ∈ W 1,p(Ω).
Moreover, from now on, we assume that the nonlinearity f : Ω×R → R satisfies

the following hypotheses H(f):

(h1) for every t ∈ R, the function x �→ f(x, t) is measurable;
(h2) for every x ∈ Ω, the function t �→ f(x, t) is continuous;
(h3) there exist a1 ∈ L∞(Ω)+, a2 > 0 and r ∈ (p, p∗), such that for almost every

x ∈ Ω and t ∈ R, we have

|f(x, t)| ≤ a1(x) + a2|t|r−1;

(h4) if F (x, ξ) :=
∫ ξ

0 f(x, t)dt (for all ξ ∈ R) then

lim
|ξ|→∞

F (x, ξ)
|ξ|p = +∞,

uniformly with respect to a.e. x ∈ Ω;

1450001-6



December 8, 2014 14:33 WSPC/S0219-1997 152-CCM 1450001

Nonlocal Neumann problems versus local linking

(h5) there exists

µ ∈
(

(r − p)max
{

1,
N

p

}
, r

]
such that

lim inf
|ζ|→∞

f(x, ζ)ξ − pF (x, ζ)
|ζ|µ > 0,

uniformly for almost every x ∈ Ω;
(h6) we have

lim
t→0

f(x, t)
|t|p−2t

= 0,

uniformly for almost every x ∈ Ω;
(h7) there exists δ > 0 such that F (x, ξ) ≥ 0 for almost every x ∈ Ω and |ξ| ≤ δ.

Remark 4.2. A typical example when the above conditions hold is given by the
real function

f(t) := |t|p−2t log(1 + t2) +
2t|t|p

p(1 + t2)
, ∀ t ∈ R.

A direct computation ensures that the (AR) condition fails in this special case.

For the sake of completeness we recall that a weak solution of problem (Np
M,f )

is a function u ∈ W 1,p(Ω) such that

〈Φ′(u), v〉 =
∫

Ω

f(x, u(x))v(x)dx, ∀ v ∈ W 1,p(Ω).

The main result in this paper is the following.

Theorem 4.3. Assume that hypotheses H(f) are fulfilled. Then problem (Np
M,f )

has at least one nontrivial weak solution.

4.2. Auxiliary properties

We first establish the boundedness of Cerami sequences for a related energy
functional.

Lemma 4.4. Suppose that conditions H(f) are fulfilled. Then every Cerami
sequence for the functional

ϕ(u) := Φ(u) −
∫

Ω

F (x, u(x))dx, ∀u ∈ W 1,p(Ω)

is bounded in W 1,p(Ω).
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Proof. Let {un} ⊂ W 1,p(Ω) be a Cerami sequence, i.e.:

|ϕ(un)| ≤ M1, ∀n ∈ N, (12)

for some positive constant M1 and

(1 + ‖un‖)‖ϕ′(un)‖(W 1,p(Ω))∗ → 0, (13)

as n → ∞.
We proceed arguing by contradiction. So, suppose that the conclusion is not

true. Passing to a subsequence if necessary, we may assume that

‖un‖ → +∞ as n → ∞.

By relations (12) and (13), we have

|〈ϕ′(un), v〉| =
∣∣∣∣〈Φ′(un), v〉 −

∫
Ω

f(x, un(x))v(x)dx

∣∣∣∣ ≤ εn‖v‖
1 + ‖un‖ , (14)

for every u ∈ W 1,p(Ω), with εn↘0+.
Choosing as test function v := un in (14), we easily obtain

−〈Φ′(un), un〉 +
∫

Ω

f(x, un(x))un(x)dx ≤ εn, ∀n ∈ N. (15)

Inequality (12) yields

M̂

(∫
Ω

|∇un(x)|pdx

)
− p

∫
Ω

F (x, un(x))dx ≤ pM1, ∀n ∈ N. (16)

Adding (15) and (16) we also have that

M̂

(∫
Ω

|∇un(x)|pdx

)
− 〈Φ′(un), un〉

+
∫

Ω

[f(x, un(x))un(x) − pF (x, un(x))]dx

≤ M2, ∀n ∈ N, (17)

for some M2 > 0.
Next, we observe that, by condition (C2

M ), we have

M̂

(∫
Ω

|∇un(x)|pdx

)
[
M

(∫
Ω

|∇un(x)|pdx

)]p−1 ≥
∫

Ω

|∇un(x)|pdx,

1450001-8
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for every n ∈ N. Therefore,

M̂

(∫
Ω

|∇un(x)|pdx

)
− 〈Φ′(un), un〉 ≥ 0, ∀n ∈ N. (18)

From now on, arguing as in [17], by virtue of hypothesis (h5), we find two
positive constants, denoted by β and M3,β, such that

0 < β|ζ|µ ≤ f(x, ζ)ζ − pF (x, ζ), (19)

for almost every x ∈ Ω and every |ζ| ≥ M3,β. Further, condition (h3) implies that
there exists a positive constant M4 such that

|f(x, ζ)ζ − pF (x, ζ)| ≤ M4, (20)

for almost every x ∈ Ω and every |ζ| ≥ M3,β . Hence, through (19) and (20), we
obtain

β|ζ|µ − (M4 + βMβ
3,β) ≤ f(x, ζ)ζ − pF (x, ζ), (21)

for almost every x ∈ Ω and every ζ ∈ R. Exploiting relation (17), by using (18) and
(21), we have ∫

Ω

|un(x)|µdx ≤ M5, ∀n ∈ N,

for some M5 > 0. Thus, it follows that the sequence {un} is bounded in Lµ(Ω).
Now, since µ ≤ r < p∗, let σ ∈ [0, 1) be such that

1
r

=
1 − σ

µ
+

t

p∗
.

Thus, we have

‖un‖Lr(Ω) ≤ ‖un‖1−σ
Lµ(Ω)‖un‖σ

Lp∗(Ω),

for every n ∈ N; see, for completeness [16, p. 905].
Then

‖un‖Lr(Ω) ≤ M6‖un‖σr
Lp∗(Ω), (22)

for every n ∈ N and for some M6 > 0.
From (14), with v = un, we have∣∣∣∣〈Φ′(un), un〉 −

∫
Ω

f(x, un(x))un(x)dx

∣∣∣∣ ≤ εn, (23)

for every n ∈ N.
Hypotheses (h3) and (h6) imply that for a given ε > 0, we can find cε > 0 such

that

|f(x, t)t| ≤ ε|t|p + cε|t|r, (24)
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for almost every x ∈ Ω and every t ∈ R. Using (24) and (23), we obtain

〈Φ′(un), un〉 ≤ εn + ε‖un‖p
Lp(Ω) + cε‖un‖r

Lr(Ω),

for every n ∈ N. Hence

mp−1
0

∫
Ω

|∇un(x)|pdx ≤ εn + ε‖un‖p
Lp(Ω) + cεM6‖un‖σr

Lp∗(Ω), (25)

for every n ∈ N.
Let us denote yn := un

‖un‖ . Then ‖yn‖ = 1 and so we may assume that

yn ⇀ y in W 1,p(Ω), (26)

and

yn → y in Lp(Ω). (27)

Moreover, by (27), we also have

yn(x) → y(x) a.e. in Ω, (28)

and there exists h ∈ Lp(Ω) such that

|yn(x)| ≤ h(x), (29)

for almost all x ∈ Ω.
Dividing by ‖un‖p relation (25) we obtain

mp−1
0

∫
Ω

|∇yn(x)|pdx ≤ εn

‖un‖p
+ ε‖yn‖p

Lp(Ω) +
cεM6

‖un‖p−σr
‖yn‖σr

Lp∗(Ω), (30)

for every n ∈ N.
Now, we observe that condition

µ > (r − p)max
{

1,
N

p

}
is equivalent to σr < p.

Passing to the limit as n → +∞ in (30) and using (26), we have

mp−1
0

∫
Ω

|∇y(x)|pdx ≤ ε‖y‖p
Lp(Ω) ≤ ε‖y‖p ≤ ε. (31)

But

‖y‖ ≤ lim inf
n→∞ ‖yn‖ = 1.

Now, since ε > 0 is arbitrary, we deduce that y = κ ∈ R. If y = 0, we have ∇yn → 0
in Lp(Ω; RN ) and so yn → 0 in W 1,p(Ω). This fact is a contradiction since ‖yn‖ = 1,
for all n ∈ N. Consequently we obtain y �= 0. This implies that

|un(x)| → +∞, for every x ∈ Ω.

1450001-10
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By (12) we have ∣∣∣∣Φ(un)
‖un‖p

−
∫

Ω

F (x, un(x))
‖un‖p

dx

∣∣∣∣ ≤ M1

‖un‖p
, (32)

for every n ∈ N. Therefore, the right-hand side of condition (ĈM ) implies that

Φ(un)
‖un‖p

≤ m1

p
+

m2

p‖un‖p
, (33)

for every n ∈ N. Hence, by (32) and (33) we can write∫
Ω

F (x, un(x))
‖un‖p

dx ≤ M1

‖un‖p
+

m1

p
+

m2

p‖un‖p
, (34)

for every n ∈ N.
On the other hand, condition (h4) shows that for a given η > 0, there exists

M7,η > 0 such that

F (x, ξ)
|ξ|p ≥ η > 0, (35)

for almost every x ∈ Ω and every |ξ| ≥ M7,η. Set

M+
7,η := {x ∈ Ω : |un(x)| ≥ M7,η}, M−

7,η := {x ∈ Ω : |un(x)| < M7,η}.
By using (35) and (h3) we can write∫

Ω

F (x, un(x))
‖un‖p

dx =
∫

M+
7,η

F (x, un(x))
|un(x)|p |yn(x)|pdx

+
∫

M−
7,η

F (x, un(x))
‖un‖p

dx

≥
∫

M+
7,η

η|yn(x)|pdx

+
∫

M−
7,η

F (x, un(x))
‖un‖p

dx

≥ η

∫
M+

7,η

|yn(x)|pdx − M8

‖un‖p
, (36)

for some M8 > 0 and for every n ∈ N. On the other hand, observing that |un(x)| →
+∞ for almost every x ∈ Ω and bearing in mind (28), we have

χM+
7,η

(x)yn(x) → χΩ(x)κ,

for almost every x ∈ Ω. Moreover, by (29),

χM+
7,η

(x)|yn(x)|p ∈ L1(Ω).
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Thus, as n → ∞,∫
M+

7,η

|yn(x)|pdx =
∫

Ω

χM+
7,η

(x)|yn(x)|pdx → |κ|p meas(Ω). (37)

So, passing to the limit as n → ∞ and using (37), we obtain

lim inf
n→∞

∫
Ω

F (x, un(x))
‖un‖p

dx ≥ η|κ|p meas(Ω).

Since η > 0 is arbitrary and κ �= 0, it follows that

lim inf
n→∞

∫
Ω

F (x, un(x))
‖un‖p

dx = +∞. (38)

Comparing relations (38) and (34) we obtain a contradiction. The proof of
Lemma 4.4 is now complete.

The next result shows that the functional ϕ defined in Lemma 4.4 satisfies the
Cerami condition.

Lemma 4.5. Assume that conditions H(f) hold. Then ϕ satisfies the compactness
condition (C).

Proof. Let {un} ⊂ W 1,p(Ω) be a Cerami sequence. Thus, by Lemma 4.4, the
sequence {un} is bounded in W 1,p(Ω). Since W 1,p(Ω) is reflexive, we can suppose
that, up to a subsequence, un ⇀ u in W 1,p(Ω). We prove that, in fact, {un} strongly
converges to u ∈ W 1,p(Ω). We first observe that

〈Φ′(un), un − u〉 = 〈ϕ′(un), un − u〉 +
∫

Ω

f(x, un(x))(un − u)(x)dx.

Since ‖ϕ′(un)‖(W 1,p(Ω))∗ → 0 and the sequence {un − u} is bounded in W 1,p(Ω),
we obtain

〈ϕ′(un), un − u〉 → 0,

as n → ∞.
Next, by (h3) and taking into account that un → u in Lr(Ω) for all r < p∗, we

deduce that ∫
Ω

|f(x, un(x))||un(x) − u(x)|dx → 0,

as n → ∞. Therefore, by (C1
M ), we obtain

〈A(un), un − u〉 → 0,

as n → ∞.
Since A has the (S+) property, we conclude that un → u strongly in W 1,p(Ω).

The proof of Lemma 4.5 is now complete.

The next result establishes that ϕ has a local linking behavior.
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Proposition 4.6. Assume that hypotheses H(f) hold. Then ϕ has a local linking
at the origin.

Proof. Let δ > 0 as in condition (h7). Fix γ ∈ R such that |γ| ≤ δ. Then

‖γ‖ = δ meas (Ω)1/p.

Set ρ1 := δ meas(Ω)1/p. Using (h7), since Φ(0W 1,p(Ω)) = 0, we deduce that

ϕ(u) ≤ 0, ∀u ∈ W 1,p(Ω), ‖γ‖ ≤ ρ1. (39)

Next, combining the mean value theorem with (24) we obtain that

|F (x, ξ)| ≤ ε|ξ|p + cε|ξ|r, (40)

for almost every x ∈ Ω and every ξ ∈ R. Let us consider

V :=
{

u ∈ W 1,p(Ω) :
∫

Ω

u(x)dx = 0
}

.

Then, by (40) and the Poincaré–Wirtinger inequality (8), we have

ϕ(u) = Φ(u) −
∫

Ω

F (x, u(x))dx

≥ mp−1
0

p

∫
Ω

|∇u(x)|pdx − ε‖u‖p
Lp(Ω) − cε‖u‖r

Lr(Ω)

≥
(

mp−1
0

p
− εη

)∫
Ω

|∇u(x)|pdx − cε‖u‖r
Lr(Ω). (41)

Fix

ε ∈
(

0,
mp−1

0

ηp

)
.

Since p < r < p∗, the space W 1,p(Ω) is continuously embedded in Lr(Ω). Thus,
by (7) and (8), it follows that

‖u‖Lr(Ω) ≤ cr(1 + ηp)1/p

(∫
Ω

|∇u(x)|pdx

)1/p

, ∀u ∈ V. (42)

Set

M9 := cε

(
cr(1 + ηp)1/p

)r

. (43)

By (41), relations (42) and (43) yield

ϕ(u) ≥
(

mp−1
0

p
− εη

)∫
Ω

|∇u(x)|pdx − M9

(∫
Ω

|∇u(x)|pdx

)r/p

,

for every u ∈ V .
Bearing in mind the choice of ε and taking into account that p < r, the above

inequality implies that there is ρ2 > 0 sufficiently small such that for all u ∈ V
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with ‖u‖ ≤ ρ2,

ϕ(u) ≥ 0. (44)

In conclusion, if ρ ≤ min{ρ1, ρ2}, relations (44) and (39) imply that the energy
functional ϕ has a local linking at the origin.

Proposition 4.7. Assume that hypotheses H(f) hold and E ⊆ V is a finite-
dimensional linear subspace. Then

ϕ(u) → −∞ as ‖u‖ → +∞, u ∈ R ⊕ E.

Proof. We will prove that the restriction of the functional ϕ to R⊕E is anticoer-
cive. For our goal, exploiting hypothesis (h4), for a given θ > 0, we find a positive
constant M10,θ such that

F (x, ξ) ≥ θ|ξ|p, (45)

for almost every x ∈ Ω and every |ξ| ≥ M10,θ. Moreover, owing to (h3), there exists
M11 > 0 such that

|F (x, ξ)| ≤ M11, (46)

for almost every x ∈ Ω and every |ξ| < M11. Thus, thanks to (46) and (45), there
exists M12 > 0 such that

F (x, ξ) ≥ θ|ξ|p − M12, (47)

for almost every x ∈ Ω and every ξ ∈ R.
By using the right-hand side of (ĈM ) and (47), we have for every u ∈ R ⊕ E

ϕ(u) = Φ(u) −
∫

Ω

F (x, u(x))dx ≤ m1

p
‖u‖p − θ‖u‖p

Lp(Ω) + M13, (48)

for some M13 > 0. Now, since the space R ⊕ E is finite-dimensional, all the norms
are equivalent and we have

ϕ(u) ≤
(

m1

p
− θM14

)
‖u‖p + M13, (49)

for some M14 > 0. By relation (49) and bearing in mind that θ was arbitrary, we
conclude that ϕ(u) → −∞ as ‖u‖ → +∞, u ∈ R ⊕ E.

4.3. Proof of Theorem 4.3 concluded

We apply Theorem 3.1 for Y := R,

V :=
{

u ∈ W 1,p(Ω) :
∫

Ω

u(x)dx = 0
}

,
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and

ϕ(u) :=
1
p
M̂

(∫
Ω

|∇u(x)|pdx

)
−
∫

Ω

(∫ u(x)

0

f(x, t)dt

)
dx, ∀u ∈ W 1,p(Ω).

The definition of ϕ shows that it maps bounded sets into bounded sets. Moreover,
Lemma 4.5 and Propositions 4.6 and 4.7 allow the application of Theorem 3.1.
Thus, we can find a weak solution u ∈ W 1,p(Ω)\ {0} of problem (Np

M,f ). The proof
is now complete.

4.4. Example

We conclude this paper with an illustration of Theorem 4.3 for an elliptic nonlocal
Neumann problem involving the Laplace operator. We first remark that for p = 2,
the function

M(t) := 1 +
cos t

1 + t2

satisfies conditions (C1
M ) and (C2

M ).

Example 4.8. Consider the nonlinear problem
−M

(∫
Ω

|∇u(x)|2dx

)
∆u = f(u) in Ω,

∂u

∂ν
= 0 on ∂Ω,

where f is given in Remark 4.2 and

M

(∫
Ω

|∇u(x)|2dx

)
:= 1 +

cos
(∫

Ω

|∇u(x)|2dx

)
1 +

(∫
Ω

|∇u(x)|2dx

)2 .

Thus, by Theorem 4.3, the above problem admits at least one nontrivial weak
solution.

Remark 4.9. We notice that there are several multiplicity results for nonlinear
Neumann problems driven by p-Laplacian type operators. For instance, Motreanu
and Papageorgiou [25] studied a nonlinear Neumann problem driven by a nonho-
mogeneous quasilinear degenerate elliptic differential operator. In [25], the reaction
term is a Carathéodory function that exhibits subcritical growth in the second vari-
able. The authors, using variational methods based on the mountain pass and defor-
mation theorems, together with truncation and minimization techniques, showed
that the problem has three nontrivial smooth solutions, two of which have constant
sign (one positive, the other negative).
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[15] M. Filippakis, L. Gasiński and N. S. Papageorgiou, Multiplicity result for nonlinear
Neumann problems, Canad. J. Math. 58 (2006) 64–92.
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