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ARTICLE INFO ABSTRACT

MSC: In this paper we consider a non-linear Robin problem driven by the Orlicz g-Laplacian operator.
35J60 Using variational technique combined with a suitable truncation and Morse theory (critical
35191 groups), we prove two multiplicity theorems with sign information for all the solutions. In the
35530 first theorem, we establish the existence of at least two non-trivial solutions with fixed sign. In
gggg the second, we prove the existence of at least three non-trivial solutions with sign information
Keywords (one positive, one negative, and the other change sign) and order. The result of the nodal

. solution is new for the non-linear g-Laplacian problems with the Robin boundary condition.
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1. Introduction

Let 2 be a bounded open subset of RN (N > 3) with C2-boundary 2. We consider the following Robin problem:

—div(a(|Vu(x))Vu(x)) + a(lu(x))u(x) = Af (x,u(x)), x € Q
du(x)
dv

(P)

a(|Vu(x))) + b(x)|u(x) [P~ 2u(x) = 0, x €080,
where v is the unit exterior vector on 982, 1 > 0, p > 0, and b € C1¢(92) for some 6 € (0, 1), inf, .0 b(x) > 0 and the function a(|¢|)t
is an increasing homeomorphism from R onto R. In the right side of problem (P) there is a Carathéodory function f : xR — R,
that is x — f(x,?) is measurable for all € R and # — f(x,7) continuous for a.e. x € 2.

The main feature of this paper is to deal with the existence of smooth nodal (i.e. sign-changing) solutions for the Robin problem
of type (P) without assuming the well-known Ambrosetti-Rabinowitz ((AR) for short) or monotonicity condition on f. To the best
of our knowledge, this is the first paper proving the existence of sign-changing solutions for problem (P). The tools used are a
combination of cut-off techniques (truncation), together with variational methods based on the critical point and critical groups
theories. More precisely we assume two classes of hypotheses on f. For the first class, we prove the existence of 1, > 0 such that,
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for all 0 < 4 < 4,, problem (P) admits positive and negative solutions. For the second we show that, for all 4 > 0, problem (P) has
at least three non-trivial smooth solutions, all with sign information: positive, negative, and nodal solutions.

The study of variational problems in the classical Sobolev and Orlicz-Sobolev spaces is an interesting topic of research due
to its significant role in many fields of mathematics, such as approximation theory, partial differential equations, calculus of
variations, non-linear potential theory, the theory of quasi-conformal mappings, non-Newtonian fluids, differential geometry,
geometric function theory, probability theory, and image processing (see [1-7]). In particular, when incorporating Robin boundary
conditions in image processing tasks, the context is often related to how the boundary of the image domain interacts with the
processing algorithm. Robin boundary conditions represent a mix of Dirichlet and Neumann conditions and can be particularly
useful in modeling various physical phenomena or constraints at the boundaries of the image domain, see [8].

We point out that if we let a(¢) = 1, problem (P) turns into the well-known Laplace equation. The existence of nodal solutions fro
these kinds of classical problems have been studied by many authors because of their various applications to different disciplines
see [9-15] and references therein. Moreover, there are a lot of papers dealing with the existence of smooth nodal solutions for
problems driven by the p-Laplacian, p(x)-Laplacian or the Orlicz g-Laplacian operator, see [16-23] and references therein. In [16],
using truncation techniques together with critical groups theory, Aizicovici et al. proved the existence of five non-trivial smooth
solutions, two positive, two negative, and one nodal, for the following Neumann equation

—div(|Vu(x) P2 Vu(x)) + plu()|P 2u(x) = f(x,u(x)), x€

du(x) _

0, x €002, 2<p< o,
dv

where 2 C RV is a bounded domain with a C?> boundary 92, § > 0, f(x,?) is a Carathéodory function.
As a generalization of the p-Laplacian operator, Papageorgiou et al. [21], produced three non-trivial smooth solutions with sign
information (one is a nodal solution) for the following non-linear non-homogeneous Robin equation

~div(a(|Vu(x)])) + EC)lu(x) P 2u(x) = f(x,u(x)), x€Q
a(W“l)% + BOO|u(x) P u(x) = 0, x €08,

v
where 2 C RY is a bounded domain with a C? boundary 9%, f(x,?) is a Carathéodory function, &(.) € L®(£2), a is a continuous,
strictly monotone map, f(.) € C'%(982), for some «a € (0, 1), f# > 0 and v is the outward unit normal on 9£.

For the p(x)-Laplacian operator, Gasinski and Papageorgiou [20] established the existence of at least three non-trivial smooth

solutions: two with constant sign (one positive, the other negative) and the third with an unknown sign, for a non-linear Neumann
problems driven by the p(x)-Laplacian operator

—div(|Vu(x) P2 Vu(x)) = f(x,u(x)), x€ R

ou(x)

0, €0,
dv x

where 2 C RV is a bounded domain with a C? boundary 92, f(x,?) is a Carathéodory function and v is the outward unit normal
on 0£2. In [23], using the arguments employed in [16], Papageorgiou and Winkert studied the existence of a nodal solution for the
above problem. Precisely, the authors proved the existence of a sign-changing solution for an anisotropic Robin problem driven by
the p(x)-Laplacian with a little modification in the assumptions on f. In 2013, Zhong and Fang (see [17]) treated the existence of
smooth nodal solutions for the following Dirichlet problem driven by the Orlicz g-Laplacian operator

—div(a(|Vu(x)|)Vu(x)) = f(x,u(x)), x€Q
u(x) =0, X €08,

where 2 € RV is a bounded domain with smooth boundary 9, a(|t|)t € C(R) and f(x,f) € C(2 X R). In order to prove the
existence of nodal solutions, the authors gave some new regularity results which are crucial in the application of the truncation and
sub-supersolution methods.

In [18], by using the nodal Nehari manifold method, Figueiredo and Santos established the existence of a sign-changing solution
for Kirchhoff equations driven by the Orlicz operator. Here, we would like to mention that the last cited paper about the Orlicz
problem considered only the equations with Dirichlet boundary value condition.

To the best of our knowledge, there are no results concerning the existence of sign-changing solutions for the Orlicz equations
with Robin boundary value condition. Hence, a natural question is whether or not there exist nodal solutions of problem (P).

The main aim of our work is the study of the existence of smooth nodal solutions for non-linear problems driven by the Orlicz
g-Laplacian operator of type (P). Such problems, present challenging mathematical difficulties (non-homogeneity of the g-Laplacian
operator). To overcome these difficulties, we produce new technical lemmas.

Specifically, we consider two classes of assumptions on the non-linear term f.

« The first class:

(f1) f(x,0) =0 and there exist an odd increasing homomorphism 4 € C!(R,R), and a positive function a(f) € L®(£2) such that

|fx, 0] < @)1+ h(t]), VIER, Vxe€Q
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and
G << H << G,,
1<gh<h ::infM <hnt ::supM gg—*,
>0 H(r) 0 H@®) ~ g~
! !
L<h =1 o= inf PO pe o qup B
>0 h(f) >0 h()
where

t
H(t) :=/ h(s) ds
0

is an N-function.

(fy) lim,_ ., f <|§;’> = +oo, uniformly in x € Q, where F(x,1) = [ f(x,s)ds.
- t

(f3) f(x. 0 =o(t|¥ "1 as || - 0 uniformly in x € Q.
(fs) F(x,t)= g%f(x, 1)t — F(x,t) > 0, for |¢| large and there exist constants ¢ > gﬁ_, é¢>0and ry > 0, such that

|G, nl” < Elt|® V7 F(x,0), ¥ (x,0) € QXR, || 2 rp.
» The second class: We suppose that f satisfies (f;) — (f,) and the following conditions
( f3’) There exist an odd increasing homomorphism ¢ € C!(R,R), and a positive constants ¢, > 0, § > 0 such that

coqg®t < f(x, 1)t < g7 F(x,1), for almost all x € 2 and for all 0 < |7| < §

and
0 <<G,
N ()L R gt -
1< =inf —— < =sup——<p<g,
= %on =1 TR o =7
!
P<g—1=inf LD ¢ g g oo qup L0
>0 g(1) >0 q(1)
where

t
o0 = / q(s)ds
0

is an N-function.
(f}) There exist n_ <0 and #, > 0 such that

fle,n) <0< f(x,n_), foraa. xeQ.

Remark 1.1. (i) In the first class of assumptions, condition (f,) will be important in the proof of the boundedness of the Cerami
sequence (see Proposition 3.2). To the best of our knowledge, a similar condition to (f,) was firstly introduced in [24] for some
scalar Schrodinger equation. Moreover, the assumption (f,) weaker then the well-known Ambrosetti-Rabinowitz condition.

(ii) The following function satisfies (f;) — (f,) and it does not satisfies the (AR) condition (see [25, p. 1277])

o fx,0) = 1| 2tIn(1 + |7]), f€ 2N and 2 < f < N < f + 1, while a(r) = |1|*2, g(t) = |¢|*?t and g~ = g+ = . (iii) For the second
class of assumptions on f, the following function satisfies hypotheses (/) —(f,) and ( f3’) —(f i), but fails to fulfill the (AR) condition.

[1]%72¢ = 2¢|P7%¢ if 7] <1

JCen { 1118 2 In(e]) = |12 if 1< 1],

where0<a+l<p<gand2<g <gt<N<g +1.

(iv)The above assumptions related to the Robin boundary condition (on 0€2, b, and p) are intricately connected to the regularity
results obtained in [26]. These results will be instrumental in establishing the main results.

Next, we give the assumption on the Young function g. So, let

o a(Jt))t, ift #0,
=
& 0, if t =0,

be an odd increasing homeomorphism from R onto itself. Let

t t
G@t) = / g(s)ds and G(1) := / g \(s)ds.
0 0

In order to construct an Orlicz-Sobolev space setting for problem (P), we impose the following condition on G, a and g:
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(g)) : at) € C(0,+c0), a(?) > 0 and a(?) is an increasing function for ¢ > 0.
- . I .
(g) :1<p<g .=1nf,>0§;(—8) <gt:= sup,>0‘§;(—8; <N
!
(g3) :0<g —1=a :=infy0 &£ < gt —1=g" 1= sup,y( £ o

g(n g "
(g4) : 1~ G(y/1) is convex on [0, +c0), /l+°° GN+(1’) dt = o0 and /01 GN+(1’) dt < 0.
t t N

Remark 1.2. Here are some examples of N-functions:
« For the non-linear elasticity: G(r) = (1 + %)% — 1
« For the plasticity: G(t) = t*(log(1 + 1)), a > 1, > 0.

Now, we can set our results. The aim of this paper is summarized in these theorems.

Theorem 1.3. Assume that f, g and G satisfy (f,) — (f4) and (g,) — (g4)- Then, there exists A, > 0 such that for all 0 < A < A,, problem
(P) admits a positive smooth solution u, € W6(Q) nint(C'(£2),) and a negative smooth solution v, € W19(2) n (=int(C'(2),)) in the
sense of Definition 2.13.

Theorem 1.4. Assume that f, g and G satisfy (f}) — (f2), ( f3’) —(f i) and (g;) — (g4)- Then, for all A > 0, problem (P) admits a positive
smooth solution u, € W6 (Q)nint(C'(Q),) and a negative smooth solution vy € W 6(Q)n (=int(C'(£2),)) in the sense of Definition 2.13.

Theorem 1.5. Assume that f, g and G satisfy (f|) — (f2), (f;) - (fzi) and (g,) — (g4). Then, for all A > 0, problem (P) admits a nodal
solution.

Our plan for the proof of the existence of the nodal solution is divided into four steps. In step one, we prove that the sets of
positive and negative solutions are non-empty. In the next step, we show that the set of positive solutions has a smallest element
u, and the set of negative solutions has a greatest element v,. In the third step, we prove the existence of another solution y, for
the problem (P) lies between u, and v,. Evidently, y, = 0 or y, is a nodal solution for our problem. In the final step, we compute
the critical groups at the origin and at y, to prove that y, cannot be zero.

The paper is organized as follows. In Section 2, we recall the basic properties of the Orlicz Sobolev spaces and the Orlicz Laplacian
operator. Moreover, we mention some tools/definitions we need later (Cerami-condition, critical groups). In Section 3, for each class
of assumptions on f, we prove the existence of at least positive and negative solutions (Theorems 1.3 and 1.4). Finally, we establish
the existence of a nodal solution to our problem which lies between the extremal constant sign solutions (Theorem 1.5).

2. Preliminaries
In this section, we provide the mathematical background and framework for our problem (P).
2.1. Mathematical background: Orlicz and Orlicz-Sobolev spaces, critical groups

In this subsection, we recall some general properties about Orlicz spaces, Orlicz-Sobolev spaces, critical groups and some
tools\definitions needed in the sequel (see [27-29]).

We start by recalling the definition of the well-known N-functions. Let g be a real-valued function defined on R and having the
following properties:

(g9) (1) g(0)=0, g(r) > 0if >0 and lim,_, , g(t) = +c0.
(2) g is non-decreasing and odd function.
(3) g is right continuous.

The real-valued function G defined on R by

'
G(t):/ g(s) ds
0

is called an N-function. G is even, positive, continuous and convex function, Moreover G(0) =
G0 L 0ast—0and &2 - +oo as t — +oo.
The complementary N-function of G is defined by

t
G = / &(s) ds,
0
where g : R - R is given by g(¢) = sup{s : g(s) <t}. If g is continuous on R, then g(t) = g~'(¢) for all + € R. Moreover, we have

st < G(s) + G(1), 2.1)

which is known as the Young inequality. Equality in (2.1) holds if and only if either 1 = g(s) or s = g(?).
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We say that G satisfies the A,-condition, if there exists C > 0, such that
G(2t) < CG(1), for all t > 0. (2.2)

An equivalent condition to (2.2) is: there exist g~ and g* such that

~ :=inf st <gt :=sup 0 < +co. 2.3)

1
<& Ten S b G()

If A and B are two N-functions, we say that A grow essentially more slowly than B (A << B in symbols), if and only if for every
positive constant k, we have

A(kt) _

2.4
t—:};—neo B(1) ( )
Another important function related to function G, is the Sobolev conjugate function G, defined by
t -1
G
G;'(t):/ % ds, 1>0.
s N
If G satisfies the A,-condition, then G, satisfies the A,-condition. Namely, there exist g, = AIIV f,; and g} = 1\1}\/ f}; such that
(Dt Nt
gt <g :=inf 8.0t <gti=su &0 < +o0. (2.5)

= N R e YERT)

Let G be an N-function satisfies the A,-condition. Then we can define the Orlicz space LY(£2) as the vectorial space of measurable
functions u : 2 — R such that

pu) = /QG(IM(X)I) dx < .
LY(®) is a Banach space under the Luxemburg norm
llull g, = inf {,1 >0 : p(%) < 1} .
For Orlicz spaces, the Holder inequality reads as follows
/Q wodx < |lullgyllvll gy for allu e LE(Q) and u € LE(Q).

Next, we introduce the Orlicz-Sobolev space. We denote by W !-¢(Q) the Orlicz-Sobolev space defined by

we(Q) = {ue LYQ) : a%” e LOQ), i= 1,...,N}.

i
w16 (Q) is a Banach space with respect to the norm
[lullg = llullG, + 1VullG)-
Another equivalent norm is
llull :inf{/1>o : IC(%)S 1},
where

Kw) = / G(|Vu(x))dx + / G(|lu(x)]) dx. (2.6)
Q 0

In the sequel, we give a general results related to the N-function and the Orlicz, Orlicz-Sobolev spaces.

Lemma 2.1 (see [30]). Let G be an N-function satisfying (2.3) such that G(t) = fot g(s)ds and we denote by G its complementary function.
Then

G(s) < (8" + 1)G() and G (@) <G,

for all t > 0, where g* is defined in (2.3).

Lemma 2.2 (see [27,29]).. Let G be an N-function and G its complementary N-function. If G and G satisfy (2.3), then, LE(Q), W6 (Q)
are separable and reflexive Banach spaces.

Lemma 2.3 (see [28]). Let G be an N-function satisfying (2.3) such that G(t) = /ot g(s)ds. Then

(1) if0 <1< 1, then G2 < G(1z) < G2t , for z € R;
(2) if 1 <1, then G(z)t*” < G(tz) < G(2)tt", for z € R;
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(3) if0<t<1, then g(2)18" 1 < g(tz) < g(2)18 7!, for z € R;
(4) if 1 <1, then g(z2)1¥ ! < g(tz) < g(2)8 !, for z e R;
+

(5) if llullg) < 1, then llall) < pla) < lull?, ;

) - +
(6) if |lull g = 1, then ||u||fG) < p(w) < ”"”fGy'
(7) if lull < 1, then |[ull¥" < K@) < |[ull®;

®) if lull = 1, then [lull” < K(w) < [lull¢”.

Theorem 2.4 (see [27,29]).. Let G and H be N-functions, such that H grow essentially more slowly than G, (where G, is the Sobolev
conjugate function of G).

(D If fl+°° G;,L(l')dt = oo and fol Gﬁ)dt < oo, then the embedding W'-¢(Q) & LY (Q) is compact and the embedding W'¢(Q) <

t N

t N
LC+(Q) is continuous.

2 If fl+°° C,;V:rll(') < co, then the embedding W'-9(Q) < LH(Q) is compact and the embedding W'-¥(Q) & L®(Q) is continuous.
t N dt

Theorem 2.5 (see [26, Theorem 2.7, p. 5]). Let G be an N-function satisfies (2.3). Then, the Orlicz-Sobolev space W-¢(Q) is continuously
and compactly embedded in the classical Lebesgue spaces L"(2) and L"(08) for all 1 < r < g, where g_ is defined in (2.5).

Another mathematical tool that we will use in the sequel is the Morse theory and in particular critical groups. So, let us recall
some basic definitions from the theory.

Let X be a Banach space and Y, C Y| € X. For every integer k > 0 we denote by H,(Y;,Y,) the kth relative singular homology
group for the pair (Y},Y,) with integer coefficient. We recall that H,(Y;,Y,) = 0 for all integer k < 0.

Given J € C'(X) and ¢ € R, we introduce the following sets:

Jo={xeX, Jx)<c}, and K;={x€eX, J'(x)=0}.
The critical groups of J at an isolated critical point x, € X with ¢ = J(x) are defined by
Co(J,x0) = Hy(JnU,(JSnUN\{x,}) for all k>0,

where U is a neighborhood of x,, such that K; nJ*nU = {x,}. The excision property of singular homology theory implies that the
above definition of critical groups is independent of the choice of the neighborhood U.

Given u € W9(Q), we set u* = max{+u,0} being the positive and negative part of u, respectively. We know that u = u* —u~,
lul = ut +u~ and = € W9(Q). If u,v : 2 — R are measurable functions and u(x) < v(x) for a. a. x € £, then we introduce the
following order interval in W16 (Q)

[u,v] = {y € W'O(Q) : u(x) < y(x) < v(x) fora.a. x € R}.

Moreover, we need the Banach space C!(Q). This is an ordered Banach space with positive order cone
cl@), = {u € C'(@), u(x)> 0 for all x 5} .

This cone has a nonempty interior given by

int(C!(Q),) = {u € Cl(@),. u(x)>0forall x € 5} .

Definition 2.6. Let J € C!(W!¢(Q)). We say that J satisfies the “Cerami condition”, C-condition for short, if every sequence
{4} peny € WC(Q) such that {J(u,)},en C R is bounded and

A+ lu, NI () — 0 in WO Q)" as n — +oo,

admits a strongly convergent subsequence. Where (W -¢(Q2))* is the topological dual of W ¢(Q).

Definition 2.7 (see [16]).

(1) A nonempty set .S is said “downward directed”, if u;,u, € S, then we can find u € .S such that u <u; and u < u,.
(2) A nonempty set S is said “upward directed”, if u;,u, € .S, then we can find u € S such that u; <u and u, <u.

2.2. Further properties of orlicz-Sobolev spaces and the non-linear term f

In this subsection, we assume conditions (g,) — (g4) and explore new properties of the Orlicz-Sobolev spaces. We also establish
the variational framework for problem (P).

Evidently, G and G are complementary N-functions. Under the condition (g,), the function G(¢) satisfies the a,-condition. We
assume also that the complementary N-function G satisfies the A,-condition.

In the following, we give the proofs of some lemmas and theorem which will be used in the proofs of our results.
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Lemma 2.8. Suppose that (g,) — (g,) are satisfied. Then, for all a,b € R, we have

gla+b)b—g(a)b >0 and (g(a) — g(b))(b—a) <0.

Proof. The right inequality is simple. Indeed, since g is increasing on R, then
sgn(g(a) — g(b)) = —sgn(b —a), for all a,b € R,

which gives us
(g(a) —gb))(b—a) <0, foralla,beR.

For the left inequality, we make four cases (in all the cases have in mind the fact that g is increasing on R). Case 1: If a > 0 and
b>0, then a+ b > a and

(gla+b)—gl@) b 20
—_—
>0 20
Case 2: Ifa<0and b <0, then a+ b < a and
(gla+b)—gl@) b =0
—_—
<0 <0

Case 3: If a>0and b <0, then a+ b < a and

(gla+b)—gl@) b =0
\"““‘"'V"““"'J\’-/
<0 <0

Case 4: If a <0 and b > 0, then a+ b > a and

(gla+b)—g@) b =20
N e N~
20 20

From Case 1-Case 4, we get
gla+b)b—g(a)b>0, forall a,beR.

This ends the proof. []

Lemma 2.9 ([26, Lemma 2.9]). Let G be an N-function satisfying (g,) — (g3) such that G(t) = /0' g(s) ds = /ot a(|s|)s ds. Then for every
&,n € RN, we have

(allnln — a(lEDE.n — Epn 20

where (.)gn is the inner product on RV,

Lemma 2.10 ([31, Lemma 2.1]). Let G be an N-function satisfying (g,) — (g4)- Then for every n,& € RV,

G(|n)) + G(|¢]) n+¢& n-¢
— ZG<|T|> +G<|T|>.

Lemma 2.11 ([32, Lemma 3.4]). Let G be an N-function satisfying (g,) — (g4) such that G(r) = /ot g(s)ds = fot a(|s|)sds. Then for every
n,& € RN\ {0}, we have

(allnlyn - a(lED2) - (1 - &) 2 4G <_"7 =i ) ,

Proof. Let n,& € RN\ {0}. Since G is convex, we have

n+¢& n n=¢
G(|ﬂ|)SG<|T|>+g(|ﬂ|)m'T
and
n+¢ E ¢&-1
G(Eh <G (11== LI S
(IeD) < <| . ')*g('é')m 2
Adding the above two relations, we find that
! <g<|n|)l —g(|5|>£> C(1- 8> G(lnl) + G - 26 <|m|> @7)
2 [n [€] 2

for all n,& € RN\ {0}).
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On the other hand, we deduce by Lemma 2.10, that

G(|n|>+G<|f|>zzc<|¥|) +26 (|¥|> @.8)
for all n,& e RV,
From (2.7) and (2.8), we get
n ¢ In —§|>
< = ).m-o246 == 2.9
(g(lnl)m| g(éD) |§|> n-%2 ( ) (2.9

for all ,& € RN\ {0}.
Using (2.9) and the fact that g(r) = a(|t|)1, for all + € R\ {0}, we deduce our desired result

(a(lnhn = a(l€DE) - (n = &) > 4G < In - él )

for all n,& € RN\ {0}. O
In what follows, we give some definitions and lemmas related to the variational setting of problem (P).
Lemma 2.12 (see [17,28]). Under the assumptions (g,) — (g,). If u, — u in W6(Q) and
lim sup/ a(|Vu,|)Vu, .V, —u) + a(|lu,Du,(u, —u)dx <0,
Q

n—+oo

then
u, = u in who(Q).
Definition 2.13. We say that u € W!9(Q) is a weak solution of problem (P) if
/ [a(|Vu])Vu.Vo + a(ju))uv] dx +/ b |ulP2uvdy = ,1/ Fx,wyvdx, Yo e WO(Q) (2.10)
Q 00 Q

where dy is the measure on the boundary 09Q.
The energy functional corresponding to problem (P) is defined as J : W!¢(Q) - R

J(u) = K(u) + 1 / b(x)|ulPdy — /1/ F(x,u)dx, (2.11)
P Joo Q
where K is defined in (2.6).
Definition 2.14.
(1) A function u € W¢(Q) is an “upper solution” for problem (P) if
/ a(|Vu|)Vu.Vodx +/ a(|u|)uvdx +/ b(x)|ul”2uvdy > ﬂ/ f(x,u)vdx, (2.12)
Q Q o) Q

for all v € WO (Q),.
(2) A function u € W9(Q) is a “ lower solution” for problem (P) if

/ a(|Vu|)Vu.Vodx +/ a(Ju|)uvdx +/ bC)|ulP2uvdy < A/ f(x,uvdx, (2.13)
Q Q 02 Q
for all v € WO (Q),.
Definition 2.15.
(1) We say that uy, € WG(Q) is a local C!(Q2)-minimizer of J, if we can find ry > 0 such that
J(ug) < J(uy + v), for all v e C'(Q) with loller ) < ro-
(2) We say that uy € W19(Q) is a local W 1-¢(Q)-minimizer of J, if we can find r; > 0 such that
J(uy) < J(uy + v), for all v e W4(Q) with ||v|| <r,.
Now, we give some technical Lemmas related to the assumptions on the non-linear term f.
Lemma 2.16. Suppose that f satisfies (f,) — (f,). Then, for any € > 0, there exist C, > 0 and r € (g”, g;) such that
L] S el ™+ G IF el S ezl + G 2.14)

for each x € Q and t € R.
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Proof. For ¢ > 0, we can use (f3) to obtain 6 > 0, such that
fn<elt]f 7!, vxeq, |f| <é.
By (f,), there exists r; > 0 such that
F(x,1) > |t|g+, for all x € 2 and |t| > r|,
which gives us
F(x,t) = g%_f(x,t)t — F(x,0) < g%rf(x, Nt, for all x € 2 and |¢| > r,.
From (2.16) and (f,), we get
LGl < 2l =07 P < L1 D7) ),
for all x € Q and |7| > r, = max{ry,r;}, which is equivalent to
el < e

for all x € Q and || > r,. It follows, by (2.17), that

1
é o—1 (g~ —Do+l é o—1 _
I/l < (g—+> lf| 1 = <E> le",

for all x € Q and |7| > r,, where g~ <r= i_ﬁ <g;-

Next, since we have % is continuous, then we can find C, > 0, such that

I£Ge Dl < C e,

forallxe Qand 6 < |7| <rp.
Putting together (2.15), (2.18) and (2.19), we get

lfnl <elt|® ' +C|1|"7!, forall xe QandteR.
Then
|[F(x,1)] < ei_ltlgf +C, lltl’, for all x € 2 and 1 € R.
b4 r

Thus the proof. [J

Lemma 2.17. Under the assumptions (f), (f;) and (g3), we have

(1
t qg+(t)l is increasing on (0, +),
proom
)
q®) . . . 0
pr is non-increasing on (0, +o0),
3
:fi)l is increasing on (0, +o0),
“

h
t— G(ta") is convex on (0, +o0).

Proof. (1) The proof of (1) follows directly from the following fact
g = (gt = D () > (g7 - DO 2 = (gt - e ()
=l(g" - = (" - Dlgy* 2

for all ¢+ > 0. In the above inequality, we used assumption (g3).
(2) From (f3’), we find

>0,

q O = (gt = D17 200 < (g - Dan® 72— (gF = Dr¥ 2q(r) = 0, for all 1 > 0.

(2.15)

(2.16)

(2.17)

(2.18)

(2.19)

(2.20)

(2.21)

(2.22)

(2.23)
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This proves (2).
(3) By (f}), we have
WO = (g* = D 2h(t) > (h7 = DA™ = (g7 = D7 ()
= [(h™ = D)= (g* = DI ™ > 0,
for all 7 > 0. Which conclude the proof of (3).
(4) Using ( f;) and (g3), we obtain that
2-24F 1-2 + -z + 1-2¢%

+ t 1- + + = q+ + Yt
(q+)2g(t'1 oA+ (+)2 g(tq ot (+)2g(t'1 ot P g(tq oa

g_ Lo2-2¢t 1 gt - 1124t
2 7 g(ttfr )t q* gt — @7 g(,q+ )y oat

1 1=2gF [g’—l gt -1

=gt ) o

@»? (@7

] >0 (since gt < g7).

Thus ends the proof. []

3. Fixed sign solutions

In this Section, under each class of assumptions on f, we prove the existence of at least two weak solutions with constant sign
(fixed sign) to the problem (P). Namely, we give the proofs of Theorems 1.3 and 1.4.
Before that we give the following result.

Proposition 3.1. Assume that the assumptions (f,) and (g,) — (g,) hold. Let u € W G(Q) N (CY(Q),) be a non-negative ( v €
wWie Q) n (-C! (.Q)+) be a non-positive ) weak solution for the problem (P). Then u € int(C! (.Q)+) is a positive ( v € —int(C! (.Q)+)
is a negative ) weak solution for the problem (P).

Proof. Letu € W'¢(Q)n(C!(Q),) be a non-negative weak solution for the problem (P). Then, we can fix M > max{||Vu||,,,1} and

a(t), t<M
i) = e (3.24)
L am), 1> M.

Using the assumption (g,) and Lemma 2.3, we obtain
a(lnhlnl> = a(nDlnl* = g(nl)lnl = g~ G(lnl)
> G()ymin{|n[¢" . nl¢")
> G()(|n¥ = 1), for |n| < M. (3.25)

Hence, by Lemma 2.3, we get

Inl¢” 2 aM) -
—M a(M)|n] Mg,_zlnl » for [n| > M. (3.26)

From (3.25) and (3.26), we can find a;,a, > 0 such that

a(nlnl* =

alnhinl* > a;nl®” —ay, VneRN. (3.27)

Next, we define the function A : @ xRN — RN by A(x,n) = aid(lrll)n, that is
1

) aila(mnn, Il < M
Acem=9 (3.28)
o MET ca(Myn. Inl > M.

Again, using assumption (g,) and Lemma 2.3, we obtain

- 1 _ _
Gl = Latabinl = gt < £ )maxumg gl
1
< & (|n|g -1y Mg**l), for |n] < M. (3.29)
a)
Also, by (3.28), we have
|G| = i]\“;M) i€, for |l > M. (3.30)

10
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Putting together (3.29) and (3.30), we infer that
[AG.m| < ¢ilnl ™" +¢,, forall n e RV (3.31)

for some ¢, ¢, > 0.
From (3.27), it follows that

- 1. -«
Ay -n = —a(nDlnl > Inl* —fwfmaHWGRM (3.32)
1 1

Setting B(x,u) := la(lu(x)l)u(x) — f(x,u(x)), we infer that u is a weak solution for the following quasilinear problem
a
—div(A(x, Vu)) + B(x,u) = 0 in Q.

Since A satisfies the inequalities (3.31) and (3.32), then, from [33, Theorem 1.1, p. 724], we deduce that u € int(C'(Q) ,) is a
positive weak solution for the problem (P).

On the other side, if we let v € W1G(2)n(-~C!(2),) be a non-positive weak solution for the problem (P) such that u € —-C!(Q),.
Then, we can see that w = —v € WL6(Q2)n CL(Q) + is a non-negative weak solution for the following problem

{ —div(a(|Vu(x)|)Vu(x)) + a(|u(x))u(x) = Ag(x,u(x)), x € Q

P1
a(|Vu(x))) 22 4 b(x) [u(x) [ 2u(x) = 0, X €00, *b

where g(x,1) = —f(x,—t) for all x € Q and ¢ € R.
Using the same argument as above, we prove that w € int(C'(Q) ,) is a positive weak solution for the problem (P1). So, we
deduce that v € —int(C(Q) +) is a negative weak solution for the problem (P). Thus, the proof is complete. [

3.1. Proof of Theorem 1.3

First, let us introduce the Carathéodory functions f, : 2 xR — R defined by

£ Af(x,t) if t>0 (3.33)
X, 1) = .
* 0 if 1<0,
and f_ : 2 xR — R defined by
Af(x,t) if 1<0
f_(x,t>={ Jeen (3.34)
0 if 1>0.

We set F,(x,s) = f; f.(x,ndt and consider the C'-functionals J, : W!¢(2) - R defined by
J, () = K(u) + 1 / b(x)|ulPdy — / F,(x,wdx, for all u e W14 (Q). (3.35)
- P Joao Q -
Let F(x.1) = = f(x.00 = Fy(x.1), for all x €  and 1 € R.
Proposition 3.2. Assume that the assumptions of Theorem 1.3 hold. If {u,},en € W (Q) is a (C),, -sequence for J,, that is

J, () —c, and (1+ ||u,,||)||J;(u,,)||(W1,G(Q))* — 0, as n— +o.

Then {u,},cy is bounded in W1-C(Q).

Proof. We give the proof for the functional J; the proof for J_ is similar.
Let {u,},en € WC(Q) be a (C)., -sequence for J,, that is

J,(u,) —c, and (1+ ||u,,||)||J4’_(u,,)||(W1,G(Q))* — 0, as n—> +oo.
Then
J,(u,) — c, and (er(un), u,) — 0, as n— +oo. (3.36)

By (3.36) and assumption (g,), for n sufficiently large, there exists C > 0 such that
1
C=z J+(un) - g_+<‘,-:.(un)’ un)
1
> — f O uu, — F o (x,u,)| dx
/Q [g+ + +

= / F(x,u,)dx. (3.37)
Q

11
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Arguing by contradiction, we assume that [|u,|| — +oo, then ||u,|| > 1 for n large enough. Let v, =

and up to subsequence we can assume that
v, = vin w9 Q) and v,(x) = v(x) a.e. x € Q.

Note that, exploiting Lemma 2.3 and assumption (g,), we find that

(er(un),u,,)=/a(|Vun|)Vun.Vundx+/a(lu,,l)u,,.undx
Q Q

+/ b(x)|u,,|”dx—/f+(x,u,,)u,,dx
02 Q

2/a(|Vu,,|)Vu,,.Vu,,dx+/a(|u,,|)u,,.u,,dx
Q Q
—/f+(x,u,,)u,,dx
Q
> g’]C(u,,)—/ fi(x,u)u,dx
Q

> fluylE /Q FoGeuuydx, (since [luy | > 1)

for n large enough, thus

(JJ’r(un),_m 51— f+(x,u_,,)undx_
lluy ll€ a llu,ll®
It follows, from (3.36) and (3.39), that
lim sup Mundx > 1
n—-+co JQ Hun”g
Set for r > 0

§() :=inf {F, (x,s): x€Randse€R withs>r}.
By (f4), we have

F(r) > 0, for all r large, and F(r) » +oo0 as r — +oo.
For0<a<b<+oo let

Ayab) :={x€Q: a<|u,x)|<b}

and

¢ i= inf { Frs(l’;’,s) . xeQandseR\ (0} with a < |s| < b}.
Note that

F (x,u,)> chunlgi, for all x € A,(a,b).
It follows from (3.37) that

CZ/FJr(x,u,,)dx
Q

=/ F+(x,u,,)dx+/ F+(x,un)dx+/ F+(x,u,,)dx

A,(0,0) Ap(a,b) Ay (bAo0)

> / Fy (o )dx + / € dx + FB)| Ay (b, +00)]
A,0.a) Ay(a.b)

for n large enough.
Using Theorem 2.5, we get y3 > 0 such that ||v, ||, < r3llv,ll =7; with 1 <r < g.
Let0<e< % By assumption (f3), there exists a, > 0 such that

Ifo(x.8)] < 3i|s|g’—1 for each [s| < a,.
73

From (3.43) and Theorem 2.5, we obtain

(x,u,) u, |8 !
/ f+—_nu,,de £ I, —u,dx
Ap0.a) ugll® 373 J 4,00 uall®

<= v, 1€ dx
373 J 4,04,

12

Y e WO (Q) with ||v,|| = 1

lluy I

(3.38)

(3.39)

(3.40)

(3.41)

(3.42)

(3.43)
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£
3y3
g, for all n € N. (3.44)

ralloalE

Now, exploiting (3.42) and assumption (f,), we see that
C”z/ Fy(ru)dx > FO)| A, (b, +o0),
Ap(b+00)

where C’ > 0. It follows, using the fact §(b) — +o0 as b — +oo, that
|A,(b,+o0)] - 0, as b — +oo, uniformly in n. (3.45)

Set ¢’ = ﬁ (where ¢ is defined in (f,)). Since ¢ > N one sees that g~¢’ € (g7.8))
Let 7 € (g7 0, g,). Using Theorem 2.5, the Holder inequality and (3.45), for b large, we find

L 8

- 7 =g o g o’ = ’
/ [v,1¢ 7 dx <A, (b, +o0)| =’ / [o,I” " &7  dx
Ay (b+oo) Ay (b+c0)

&

r—g’a’ v
< |A, (b, +00)| = / lv,|"dx
A, (b+c0)

r—g_a’ _
<A, (b, +0)| = ylly,lI¥
T—g_a’
=|A,(b,+00)| = ¥
< %, uniformly in n. (3.46)

By (f4), Holder inequality, (3.37) and (3.46), we can choose b, > r, large so that

X, U X, U -
/ Mundxﬁ/ M“}“g dx
A, (bg,+00)

[lea,, lI&~ A(bertoo) |u, &1
.\ :
< / dx / v, 187 dx
A, (b ,+00) A, (be,+00)
1 1

o o
< E/ F (x,u,)dx / |Un|g7"/dx
Ay (bg,+00) Ay (by+00)
<&
3

Sy (e uy)

=
o4, |

, uniformly in n. (3.47)

Next, from (3.42), we have

- 1 _
/ |v,1¢ dx = —,/ lu,|® dx
A(a,b) e, 1187 S 4, .0

"
< % — 0 asn— +oo, (3.48)
collu,ll®
where C” > 0. Since If“'g(%_xl) is continuous on a < |s| < b, then, there exists ¢ > 0 depend on a and b and independent from », such
N
that
| £ CGou)l < clu,|8 7L, for all x € A,(a, b). (3.49)

Using (3.48) and (3.49), we can choose n,, large enough such that

(x,u,) (x,u,) _
/ f*—_"undx < f*—jﬁmﬁ dx
Ayapby Nugll® Anagby) |uy|®

Sc/' 0| dx
Ap(ag,be)

C+1
e lluy Il
< % for all n > n,. (3.50)
Putting together (3.44), (3.47) and (3.50), we find that

f+(X, ”n)
o llu,liE

Which is contradict with (3.40). Therefore, {u,},cy is bounded in W'¢(Q). [

u,dx <e, forall n>n,.

13
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Proposition 3.3. Assume that (f|) — (f4) and (g;) — (g4) hold. Then, J, satisfies the C-condition at level c,.

Proof. Let {u,} c W'G(Q) be a (C)., -sequence for J,, that is

J.(,) —c, and (1+ ”un“)”J;(un)”(WLG(Q))* — 0, as n— +oo. (3.51)

By Proposition 3.2, we see that {u,} is bounded. Then, up to a subsequence, there exists u € W19(Q) such that u, converges to u
weakly in W6(Q), strongly in L"(2), 1 <r < g7, and a.e. in Q.
From (3.51), we have

HETDO(J;(M,,), u, —uy =0. (3.52)
Since the embedding W4 (Q) < L"(dR) is compact for 1 < r < g, (see Theorem 2.5), then, by Holder inequality, we get
/ B0ty 172, 1, = wdx < 1B o o) it 127l = wll, — 0, a5 n — +oo. (3.53)
02

Using, (f;), Holder inequality, Lemma 2.1 and the fact that the embedding W19(Q2) & L#(Q2) and W16 (Q) = L!(Q) are compact
(see Theorems 2.4 and 2.5), we find that

/ LG, —wydx < 18] o) (/ lu, —uldx +/ h(lu, )|y, — u|dx>
Q Q Q

<@l oo luy, = uldx + | Clu, DIl gy llu, = ull g
Q

<@l Lo (/ |u, — uldx + Cllu, — u||(H>>
o

— 0, as n - +o0 (3.54)

where € > 0.
From (3.52), (3.53) and (3.54), we obtain

lim sup/ a(|Vu,|)Vu, .V, —u) + a(|lu,u,(u, —u)dx < 0.
n—+o00 JQ

It follows, by Lemma 2.12, that
u, — u in wleQ).

Thus the proof. []

The next result deals with Mountain Pass Geometry of J,.

Proposition 3.4. Under the assumptions of Theorem 1.3, there exists A, > 0 such that the functionals J, satisfy the following conditions
forall A< A,

(1) there exist p,a > 0 such that
J,wy>a, forallue whO(Q) with ||u|| = p;

(2) there exists e € B;(O) verifying J, (e) < 0.

Proof. (1) Let u € WG (Q) such that |ju|| < 1. Using Lemmas 2.3, 2.16 (for € = 1) and Theorem 2.5, we infer that

T @) > Jull®” —/ Fo(x,u)dx
Q

znuug*—A(/ |u|g’dx+c]/ |u|"dx>
Q Q

> lullE" = 2 (Cy- [l + C,Cyllull")
> lull” = 2(Cyp +C,Cy) ull® (since g~ <r). (3.55)
Choosing 4, = —— then,

2ACe-+C,Cp)°
24(Ce- +C,C) < 1, forall 0<a< 4
1
Let, for A € (0, A*), 2Aa)s™—¢~ < p < 1 such that
+

P
J.(w)2a= - for [|lull = p.

14
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(2) From (f;), for any A > 0, there exists R4 > 0, such that
A|t|g+ < F.(x,1), for all x € 2 and all |7| > R,. (3.56)

Let u € W9(Q) such that |lu|| > 1. Using (3.56) and Lemmas 2.3, 2.16, for || > R,, we obtain
+ 1 +
1w < Wl + 2 [ peotaupay - a [ i
- P Joo Q

+ + |I|p + +
< 1HE Null®t + TIIbllm lulPdy — Alr|# |ul®
02 Q
+ + |I|p + +
< 1HE Null® + TIIbllm lulPdy — AJt]* ||M||§+
Q2

+ + [z]? + +
<18 Null® +TIIbllcx,C,,IIMII”—Altlg IIMIIi’;+

||P—efr

+ + t
<r® <|Iullg +

.
Il Gl — A||u||§+) (3.57)

s
In (3.57), when A > % > 0, we deduce that
u

g+
J,(tu) - —oo, as |t| — +oo.
Therefore, there exists 7 large enough such that

e=1fu€ B;(O) and J,(e) <0.

Thus the proof. [J

Proof of Theorem 1.3 concluded.

From Propositions 3.3 and 3.4, we can apply the Mountain Pass Theorem in [34]. Therefore, there exist u, v, € W% (L) such
that J, (ug) = ¢y, J} (up) = 0 and J_(vy) = c_, J! (vp) = 0.

Since u, and v, are critical points respectively for J, and J_, then

(J1(up),v) =0, forall ve W (Q) (3.58)
and
(J (vp),v) =0, forall ve W9 Q). (3.59)

In (3.58), we act with v = uy, we get

/ [a(| VgD Vg Vug + allugDugiy | dx + / b(x)|u0|1’—2u0u5dy = / F(x ugugdx. (3.60)
0 02 Q
From (3.33), (3.60) and assumption (g,), one has
Ky) < / [a(1Vug DIVuy 2 + a(lug )ug)*] dx <0
Q

which give us, by Lemma 2.3, that uy = 0. Thus, 4, is a non-negative function.

In (3.59), we act with v = v, we get

/ [a(IVvo)V0o.Vug + allugDvgug] dx +/ b(x)|u0|P*2u0ugdy = / fo (e, vp)ug dx. (3.61)
Q a2 0
From (3.34), (3.61) and assumption (g,), one has

kwp) < [ [aveogDives P+ g P ax <0

which give us, by Lemma 2.3, that v = 0. Thus, v, is a non-positive function.
Next, by the truncation on f (see (3.33) and (3.34)), we infer that u is a non-negative and v, is a non-positive weak solutions
for the problem (P). Hence, from [26, Theorems 2.13 and 2.14, p. 71, one sees that u, and v, are bounded and

uy € C'(Q), and v, € —-C'(Q),. (3.62)

Exploiting (3.62) and Proposition 3.1, we deduce that uy € W -6(Q)nint(C!(2),) and v, € W -G(Q)n(-int(C!(R),)) are, respectively,
a positive and a negative weak solutions for the problem (P). This ends the proof. []

15
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3.2. Proof of Theorem 1.4

Let us introduce the Carathéodory functions £, : 2 X R — R defined by
_ Af(x,tt) if t<q
filx,0) = ] * (3.63)
Af(x,ny) if 1>y,
and f_ : 2 xR — R defined by

_ Af(x,no)  if <
Fan={ AOem i< (3.64)
Af(x,tm) if 12,
where 7, and #_ are defined in ().
We set F,(x,s) = [ fi(x,ndt and consider the C!-functionals J, : W!(Q) - R defined by
J.(w) = K@)+ 1 / b(x)|ulPdy — / F,(x,u)dx, forall u e W4 (). (3.65)
- P Joo Q

Proof of Theorem 1.4 concluded. We start by the existence of positive solution. Using (3.63), (3.65) and Lemma 2.3, we find that

Ty 2 min { ullE, " } - Ci1@1 = Cyllull. for all u e W) (3.66)

where C; and C, are two positive constants. From (3.66) it is clear that J, is coercive.
Let {u,},en € WC(), such that u, - u in W1¢(Q2). We have

liminf J, (u,) > liminf K(u,) + liminf 1 / b(x)|u,|’dy — lim sup/ Fo(x,u,)dx. (3.67)
n—+oo n—+oo n—+o p 0Q n—+o0o JQ

Exploiting Fatou’s lemma and the compactness embedding theorem (see Theorem 2.5) in (3.67), we obtain
lrIIT-il—gof Jo () > J, ().

Therefore, J, is sequentially weakly lower semi-continuous. Then, by the Weierstrass-Tonelli theorem we can find u, € W9(Q)
such that

Ty =min {J (@) : ue W'CQ)}. (3.68)
Let u € int(C!(£2),) and choose ¢ € (0, 1) smalls enough such that
0 < tu(x) < min{6,n,}, forall x € Q.

Since F, (x,tu) = AF(x,tu), using Lemma 2.3 and assumption ( f3’), we get
L= [ 160V + Gunlax+ 1 [ soomtrar - [ Foxmax
Q P Joo Q
<1 [ 16avu)+ Gaubiax+ 1 [ scoluray -4 [ Fxwax
Q p 0Q Q

<K@+ 2 [ soolurray - e a®” [ oupax.
p 02 q 2
Since ¢* < p < g~, we can choose ¢ € (0, 1) sufficiently small such that J, (tu) < 0. Hence, by (3.68), we get J, (uy) < J, (tu) < 0 = J,(0).

Therefore, uy # 0.
Recall that u is a global minimizer of J,, then

(J1(up),u) =0 for all u e W'4(Q). (3.69)

We act with u = Uy in (3.69), we obtain
/ a(|Vuy[)Vuy.Vugdx +/ a(lug | uguy dx +/ b(x)|u0|”_2u0uady
Q Q Q

= / f_Jr(x,uO)ude,
Q

it follows, by assumption (g,) and the truncation (3.63), that

n(ug)s/a(|Vu(;|)|Vu(;|2dx+/a(|u5|)(u5)2dxso.
Q Q

Thus u; = 0. Then uj # 0 and uy > 0.
Again, in (3.69), we act with u = (u; — ,)* and using (f‘{), we infer that

/ a(|Vug|)Vug. V(g — 1) dx + / allugDug(ug — n,)*dx
el el

16
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S / .f+(x> u())(u() - ’7+)+dx
Q

= /1/0 FGen )y —ny) dx

<0. (3.70)
Exploiting (3.70) and Lemmas 2.3, 2.11, we get

0> / a(|Vug|)Vug. V(g — n,)dx +/ a(|ugug(ug — ny.)dx
uy=n

214 up21y

24/ G<|V(“0_Vl+)|>+4/ G<|“0_’7+|>

uy=ny 2 uy=ny 2

=4/G<|V(Mo—'l+)+|>+4/G(l(uo—ﬂ+)+|>
Q 2 Q 2

_ + _ +
zmm{u(“" 2”*) e, e ||g*}. 3.71)

2

Therefore, we infer that (uy —#,)* = 0. Namely, u, € [0,#,]. Next, From the truncation (3.63), we conclude that u; is a non-negative
bounded weak solution for problem (P) and by [26, Theorem 2.14, p. 7], we deduce that 4, € C 1)) +- Using Proposition 3.1, we
get that u, € int(C 1@ ). Similarly, using J_ and the truncation (3.64), we prove that problem (P) has a negative weak solution
vy € —int(C'(Q),). O

4. Nodal solution

This section devoted for the existence of nodal solution. Our plan for the proof is, at first we prove that the set of all the positive
solutions of problem (P) has a minimum u, and we prove that the set of all negative solutions of problem (P) has a maximum v,
in the sense of Proposition 4.2. Next, we prove the existence of another solution y, between u, and v,. So, evidently, y, = 0 or y,
is a nodal solution. Here, we compute the critical groups at the origin to prove that y, cannot be zero. In our proofs, we draw on
arguments used in [16,21-23,35,36].

4.1. Some properties for the sets of fixed sign solutions

In what follow, under the assumptions of Theorem 1.4, we will show that problem (P) admits extremal constant sign solutions,
that is, there exist a smallest positive solution u, € int(C'(2) ) and a greatest negative solution v, € —int(C Q) )
We introduce the following two sets

S, = {u : u is a positive solution of problem (P)},

S_ = {u : u is a negative solution of problem (P)}.
By Theorem 1.4, we have

g+, cint(C'(R),) and @ # S_ C —int(C'(Q),).

Hypotheses (f}) and ( f3’) imply, for a.a. x € £, that

¢q(s) — c3h(s) < f(x,s), forall s>0 (4.72)
and

f(x,5) < cpq(s) — c3h(s), forall s <O, (4.73)
for some c,, c; > 0. Next, we consider the following auxiliary Robin problem

{ —div(a(|Vu(x))Vu(x)) + a(|u(x)Du(x) = ¢, Ag(u(x)) — c3Ah(u(x)), x € L

A
a1V 20 4 () u(x)[P2u(x) = 0, x €0 )

The following result prove the existence and uniqueness of positive and negative weak solutions for the problem (A).

Proposition 4.1. Under assumptions (f), ( f3’) and (g;) — (g4), problem (A) admits a unique positive weak solution i € int(C Q) +) and
a unique negative weak solution 0 = —ii € —int(C1(Q) )

Proof. First, we prove that problem (A) admits a non-negative smooth solution. For this, we introduce the C!-functional 9 L
W16(Q) — R defined by

19+(u):IC(u)+l/ b(x)|u|”dy—c2/l/Q(u+)dx+c3A/H(u+)dx
P Joo Q Q

17
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for all u e WG (Q).
Let u € W9(Q) such that ||u|| > 1. Using Lemma 2.3, and the continuous embedding of W '¢(Q2) in L2(RQ), we get

9.0 > K@ - e [ 0t
Q
> lulle” = €2 (1lull®” + lull )

for some C > 0. Since g~ < g+ < g, we conclude that 9, is coercive. Exploiting the compactness embedding and Fatou lemma,
we prove that 9, is sequentially weakly lower semicontinuous. Then using the Weierstrass-Tonelli theorem (see [37]), we can find
i € WG(Q) such that

9,.(@) = min{9, (u),u € WH9(Q)}. (4.74)

Now, Let u € int(C!(2) ) and 7 € (0, 1) small enough. By Lemma 2.3, we infer that

19+(tu):/[G(|Vtu|)+G(|tu|)]dx+l/ b(x)|tu|Pdy
Q P Joo

CZA/Q(|Iu+|)dx+C3ﬁ/ H(|tut|)dx
Q Q

IN

11 K + L / BCOlulPdy
p 002

c2/1|t|4*/Q(|u+|)dx+c3/1|z|h'/H(|u+|)dx.
Q Q

Taking in mind that ¢~ < ¢* < p < g~ < g% < h™ < ht, then we can choose ¢ € (0, 1) small enough such that 9, (ru) < 0. It follows,
by (4.74), that

9,(@) < 9, (u) < 0=9,(0),
so, ii # 0. Since i is a global minimum of 9, we have

(9, @@),vy =0 forall ve W"4(Q)

which is equivalent to
/a(lVﬂl)Vﬁ.Vde+/a(Iﬁl)ﬁde+/ b(x)|a|P~2avdy
Q Q 02

- cz/l/ q(ﬂ+)udx+c3/l/ h@iyvdx =0 (4.75)
Q Q

for all v € WG (Q).
We act with v =i~ in (4.75), we obtain

/a(lVﬁ‘l)VzT.Vﬁ‘dx+/ a(ji )@ )?dx < 0. (4.76)
Q Q
Using assumption (g,) in (4.76), we see that

K@ )<0

which gives that i~ = 0 (by Lemma 2.3). We conclude that # > 0 and & # 0.
So @ is a non-negative weak solution for problem (A). From [26, Theorems 2.13 and 2.14, p. 7], we infer that & € L*(Q2) and
iecCc'(Q) . Hence, arguing as in Proposition 3.1, we find that & is a positive solution for problem (A). _
Next, we show the uniqueness of this positive solution. For this purpose, we consider the integral function o, : L'(Q2) — R =
R U {+c} defined by

1 1 P 1
/ G(|Vus® )dx + l/ b(x)|ud | dy ifu>0, urt e WH6(Q),
Q P Joo

o, ()= 4.77)

+00 otherwise.

1
Let wy,w, € dom(s,) = {u >0, 6, (u) < +oo} and let w = (fw; + (1 — Hw,)7* with ¢ € [0,1]. From Diaz and Saa [38, Lemma 1, p.
522], we have that

1 qt 1 g

Vel <|tVw? | +1=0|Vw! |

L
+\ 7+

Then, by Lemma 2.17 and the fact that r — G(z) is increasing, we deduce

1

L qt L gt \d

G(Vw) <G|V | +1-D|Vw! |

18
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L 1
<1G <|le"+ |) +(1-1G <|sz"+ |> )

Since ¢* < p, we have that the function ¢ — t'JL* is convex. Therefore, we deduce that ¢, is convex. Moreover, via the Fatou lemma,
we see that o, is lower semi-continuous.

Suppose that u;,u, € W9(Q) are two nontrivial positive solutions of (A). From the first part of the proof, we have u, and
uy € int(C 1(5) ). Therefore, u‘l’+ and ug+ € dom(c, ). Using Proposition 4.1.22 of Papageorgiou-Radulescu-Repdvs [7, p. 274], we
see that

N er>@) and 2 e1>Q). (4.78)
u uy

2

+ + — + +
Letv = u‘l’ - ug € C!1(). Then, from (4.78), for ¢ € [—1, 1] with |¢| small, we have u‘l’ +1tv, ug +tv € dom(s, ). Therefore, since
+ +
o, is convex, we have that the Gateaux derivative of o, atu] and at 4] in the direction v exist. Moreover, via the chain rule and
the nonlinear Green’s identity, we have
—div(a(|Vu;|)Vuy) d

1 1 —div(a(|Vuy|)Vuy,)
‘7;(”?+)(U)= q_Jr‘/_Qu‘f'——‘U x and G_/'_(u?)(u): F‘/Q#de
1

qt-1
Uy

The convexity of ¢, implies that ¢/, is increasing. Therefore, by Lemma 2.17, we have

0< / <—d1v(a(|Vu1|)Vul) . d1v(a(|Vu2|)Vu2)) 08" —af i
Q

qt-1 at-1
uy U

coAq(uy) —c3Ah(uy)  g(uy)  cAq(uy) — c3Ah(uy)  g(uy) 7 7
= - - + W —u,y )dx
gt—1 gt—1 gt—1 gt—1 1 2
2 ) “ o) )

_ quy)  quy) @ gt
_CZA/Q<uq+1 u"+’l (u1 u, )dx

1 2

h(u,)  h(uy) @ gt
+ C3AA2<uq+l - e () —uy )dx

2 1

gwy)  guy) + +
+/Q(uq+1 —uq+l>(u‘1’ —ug )dx

2 1

<0

which implies that u; = u, and this proves the uniqueness of the non-trivial positive weak solution i € int(C Q) ) for problem (A).
Since the problem (A) is odd, then it has a unique non-trivial negative weak solution & = i € —int(C!(2) ). This ends the proof. []

In the following result we prove that the weak solutions & and & of problem (A), provide bounds for the sets .S, and S_, where
i is a lower bound for S, and & is an upper bound for S_.

Proposition 4.2. Under the assumptions (f), ( fé) and (g;) — (g4), we have i <u forallue S, andv <o forallve S_.

Proof (Proof). Let u € S,. We consider the Carathéodory function k, : 2 X R — R defined by
0 if s<0,
ky(x,5) =13 c¢yAq(s) — c3AA(s) if 0<s<ux), (4.79)
e Aq(u(x)) — c3Ah(u(x)) if u(x) <s.

We set K, (x,s) = f; k,(x,)dt and consider the C!-functional 9, : W'6(Q) — R defined by
9, (w) = Kw) + 1 / b(x)|w|Pdy — / K, (x, w)dx
D Joo Q

for all w € WG (Q).
From (4.79), we can see that 9, is coercive. Exploiting Fatou lemma and the compactness embedding theorem, we prove that
9, is sequentially weakly lower semicontinuous. Then, using the Weierstrass-Tonelli theorem, we can find i, € W1¢(Q) such that

9,(@,) = min{d, (w) : wew"(Q). (4.80)

As before, if w € int(Cl(ﬁ)Jr) and ¢+ € (0,1) small enough such that rw < u, we have §+(tw) < 0. Due to (4.80), we have
9, (i,) < 0=39,(0). Hence, i, # 0.
From (4.80), we have (9,)'(ii,) = 0, that is,
/a(lVﬁ*l)Vﬁ*.Vvdx+/a(|ﬁ*|)ﬁ*.udx+/ b(x)|ﬁ*|"_2ﬁ*udy—/ ky(x,i,)vdx =0 (4.81)
Q Q 0Q Q
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for all v € WG (Q).
We act with v = &7 € W6() in (4.81), we conclude that i, > 0 and &, # 0.
Next, we act with v = (7, —u)* € WH0(Q) in (4.81), we get

/ AV, DV, V@, - w)*dx+ / alli, )i, @, — uy*dx + / bl 1721, @, — u)* dy
Q Q 02
=/ ko Gx, @)@, —u)tdx
Q
= / [e24q(u(x)) — 3 Ah(u(x))] (i, — u)*dx
Q
< / Af (x,u)(iE, —u)tdx ( see (4.72))
Q
= / a(|Vu|)Vu.V (@i, —u)tdx +/ a(lu|)u(i, —u)tdx
Q Q
+ / b(x)|ulP2u(@, —uwytdy, wes,). (4.82)
a2
It follows, by (4.82), that

/ [a( V&, Vi, — a(|Vu)Vu] .V (@, — uydx + / [a(@, )i, — a(Jul)u] (@, — wydx < 0. (4.83)
(i1, >u} {

i, >u}

Using (4.83) and Lemmas 2.3, 2.11, we infer that &, < u. So, we have proved that
i, € [0,u], @, #0. (4.84)

From (4.79), (4.84) and Proposition 4.1, it follows that i, = @. Thus, see (4.84), i <uforallue sS,.
Similarly, by using (4.72) and the following Carathéodory function

e Aq(v(x)) — c3Ah(v(x)) i s < v(x),
k_(x,s) =9 cyAq(s) — c3Ah(s) if v(x)<s<0, (4.85)
0 if 0<s,

where v € S_, with a C!-functional §_ : W19(Q2) — R defined by
§_(w) = K(w) + 1 / b(x)|w|Pdy —/ K_(x,w)dx
P Joo Q

for all w € W'9(Q), where K_(x,s) = [, k_(x,0)dt, we show that v < d forall ve S_. [

Proposition 4.3. Assume that assumptions of Theorem 1.4 hold. Then, if u,, u, € W'¢(Q) are two nontrivial upper solutions for problem
(P), then it = min {u;,u, } € W9(Q) is an upper solution for (P). And if v, v, € W9(Q) are two nontrivial lower solutions for problem
(P), then 0 = max {v,v,} € W19(Q) is a lower solution for (P).

Proof. First we prove that if u;, u, are two upper solutions for the problem (P), then & = min {u;,u, } € W9(Q) is upper solution
for (P).
Let £ > 0 and consider the truncation function &, : R — R defined by

—€ if s<-¢
E(s)=1q s if —e<s<e (4.86)
I3 if € <s.
Clearly ¢, is Lipschitz continuous. Hence, we have
& —w)) e W) (4.87)
and
DE ((uy —up)7) = fé((lh —up)")D(uy —uy)”. (4.88)
Let w € Ccl(.Q) a test function such that y > 0. Then
E((uy —up) Ty € W) N L¥(R) (4.89)
and
D&, ((u) —up)w) = wDE((u) —up)™) + &,((u; —up)”) Dy
= & ((y — up) ") D(uy — up) "y + & ((ug — 1)) Dy (4.90)
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Since by hypothesis u;, u, € W19(Q) are upper solution for problem (P), then from Definition 2.14, we have
)»/ SO u)ée((uy —up)ydx < / a(|Vu DVuy V(& () — up) y)dx
Q Q
+ / alluy Duy & ((uy —uy) )wdx
Q

+ / OOy 1P 2u & () — up) wdy (4.91)
002

and
/1/ SO up)(e = E((u) —up) " )wdx < / a(|Vuy [)Vuy . V((e = &.((uy — up)")w)dx
Q Q
+ /Q a(luy Duy(e = & ((uy — up)")wdx

+ /a ; B0 ua [P 2uy (e = &,((uy — u)))wdy. (4.92)

Putting together (4.91) and (4.92), we get
/1/ f(%“])@((“] - uz)_)WdX + A/ fx, “2)(5 - fg((ul - u2)_))y/dx
Q Q
< / a1V )V V() — ) )
Q
+ / aluy Duy & ((uy — up) Iwdx
Q
+ / by 1772wy &, ((uy — wp) Iwdy
00
+ '/!2 a(|Vu,y |)Vu, V(e — & () —uy) " )y)dx
+ / aluyuy(e — & (g — up)™))wdx
Q

+ / 0O |up 1P 2uy (e — &,((uy — up))wdy. (4.93)
00

Note that
/Qa(lvull)vul-v(ﬁg((m —up) )y)dx + /Qa(lul Duy & ((uy — up) wdx

+ / by 1P~2uy &, ((uy = up) wdy
00

= / a(|Vu1|)VulA§£((ul —uy) )V (uy —uy) " wdx
Q

+ / a(|Vu|)Vu, &, () —uy)”)Vydx
Q

+ / aluy Duy & ((uy — up) Iwdx
Q

+ / by 1P~ 2u & ((uy = up) wdy
00

=- / a(|Vu )Vu; V(u; —uy)wdx

{—e<u;—u, <0}

+ /-Qa(|Vu1|)Vu1..§E((u]—uz)’)Vy/dx
+ /Qa(lull)ulﬁs((ul—uz)f)y/dx

+/ bOO)uy 1P~2uy & ((uy = up) wdy (4.94)
Q

and
/!2 a(|Viy )\Vuy V(e = & () = up))y)dx + /Q a(luy s (e = & ((uy — ) Nwdx
+ /o . by |7y (e = & (g — up) Ny
=- /Q a(|Vu2|)Vu2.§£((ul —uy) )V (uy —uy) wdx
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+ /g a(|Vu,|)Vu, (e = &, ((u; —uy)™))Vydx
+ /Q a(luyuy(e = & ((uy — ux) )wdx
+ /a POl uste — £ —w) Dwdy

= / a(|Vuy |)Vuy V(uy —uy)ydx

{—e<u;—uy <0}

+ /Q a(|Vuy |)Vuy (e = & ((u) —uy)™))Vydx
+ /!2 alliy (e — &, (g — up) Ny
+ /o ; b [P 2us (e = & (uy — ) Nwdy. (4.95)
Adding (4.94) and (4.95) and using Lemma 2.9 and the fact that y > 0, we obtain
/Q a(|Vuy )V V& () = up) y)dx + /Q aluy Dy & ((uy = ) ydx
+ / b P2 &, (g — ) wedy
P
+ /!2 a(|Vu ) Vuy V(e = & ((u) — up) )w)dx
+ /Q a(luyuy(e — & ((uy — up)7))ydx
+ /d ; by 1P~ uy (e = & (g —up) Nwdy

== / a(|Vu |)Vu; .V, —uy)ydx

{—e<u;—uy <0}

+ La(qu1|)Vu1.§£((ul—uz)_)dex
+/a(|u1|)u1§g((u1—u2)_)wdx
Q
+ / bOOuy 1772y &, (uy — up) Iydy
02

+ [ a0V -

{—e<u;—up <0}

¥ /Q a(IVity Vit (e = & (G, = up) )Vdx
+ /Q a(luy Duy(e — & ((uy = up)))ydx
+ /a ; b(X)uy P2y (€ = E.((u) — up) )wdy
< /Q a(| Vi )Vaty &, (g — ) ) Vypdx
+ /Qauumul:g((ul—u2>-)wdx
+ / b P26, (g — up) wedy
00
¥ /Q a(1Vity ) Vit (& — (g — up) ) Vprdx
+ /Q a(Juy uy.(& = E((u) — up))ydx
+ /m b |72 up (e — & ((uy — up))wdy. (4.96)
We return to (4.93), use (4.96) and then divide by £ > 0, we obtain
A /Q f(x,ul)éie((ul —up)ydx + A /Q f(x,ule—é:é((ul - up)))wdx
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1 _
S/a(W”lDV”l;ge((”l —uy) )Vydx
Q
1 -
+ / a(luy Duy. =& ((uy — up) wdx
Q 13
o 1 _
+ [ b0t L - vy
0Q €
1 _
+ / a(|Vuy)Vuy.(1 = ZGe(u —w) ") Vydx
Q
1 _
+ / a(luyuy (1 - ;55((141 —up) Nwdx
Q

_ 1 _
+ / 00y [P 2uy (1 - ;@((lu —uy) )ydy. (4.97)
R
Let us observe that
1 _
ggg((ul —up)" (%) = X(u<uy)(X) a.€.onase N0

and

Huyzuy) = 1 ~ Muy<up}-

Therefore, if we pass to the limit as e — 0% in (4.97), we get

A / [ up)ydx + A / [ u)ydx < /a(qu,l)Vu].Vu/dx+ / a(|Vuy|)Vu, Vydx

{uy<up} {uy2u;} fuy<up} {uy2u;}
+ / a(luDuyydx + / a(|uy | Du,wdx
{uy<up} {uy2uy }
+ / b()|uy 1P 2uywdy + / b(xX)|us [P 2uyyrdy. (4.98)
{x€0Q, uj<uy} {x€09, uj>u,}
Recall that & = min{u;,u,} € W'9(Q) and
Du(x) a.e. on {u; <u,},
Dii =
Du,(x) a.e. on {u; > uy}.

Using this in (4.98), we obtain
A/f(x,ﬁ)wdxg/a(|Vﬁ|)Vﬁ.Vy/dx+/ a(|ﬁ|)ﬁwdx+/ b)) a2 aydy. (4.99)
Q Q Q R

Since C1(2), is dense in W1C(Q),, from (4.99), we conclude that & = min{uj,u,} € WC(Q) is an upper solution for problem (P).
Using a similar argument, we can show that if v;, v, € WG (Q) are two lower solutions of problem (P), then o = max{v;,0,} €
W1G(Q) is a lower solution of problem (P). []

Proposition 4.4. Under the assumptions of Theorem 1.4, the set S, is downward directed (see Definition 2.7) and the set S_ is upward
directed (see Definition 2.7).

Proof. For this purpose, let u;, u, €.5,. Both u; and u, are also upper solutions for problem (P). So by virtue of Proposition 4.3,
4 =min{u;,uy} € WG(Q) is an upper solution for problem (P).
We consider the Carathéodory function /, : 2 xR — R defined by

0 if s<0
I, (x,8)=3 Af(x,s) if 0<s<ax) (4.100)
Af (x,0(x)) if a(x) <s.
We set L, (x,s) = f; I, (x,ndr and the C'-functional £, : W!¢(Q) — R defined by

£+(u)=lC(u)+l/ b(x)|u|pdy—/L+(x,u)dx
P Joo Q

for all w € W'¢(Q). From (4.100), we can see that £ + is coercive. Exploiting Fatou lemma and the compactness embedding
theorem, we prove that £, is sequentially weakly lower semicontinuous. Then, using the Weierstrass—Tonelli theorem, we can find
y, € WI6(Q) such that

L£,.(y)=min{L, () : ue W Q). (4.101)

As before, if u € int(CL(Q) ) and r € (0,1) small enough such that ru < @, we have £ (fu) < 0. Due to (4.101), we have
£,(y,) <0=L,(0). Hence, y, # 0.
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From (4.101), we have (£,)'(y,) = 0, that is,
/ a(|Vy,DVy, . Vodx +/ a(ly.Dy.vdx +/ by, 1Py, vdy — / I (x,y)vdx =0 (4.102)
Q Q Q2 Q

for all v € WG (Q).
We act with v = y; € W6(Q) in (4.102), we conclude that y, > 0 and y, # 0. Next, we act with v = (y, - &) € W9(Q) in
(4.102), we get

/ a(|Vy)Vy,.V(y, — D dx +/ a(|y, )y, — D) dx
Q Q
+ [ bl - 0
0Q
=/ L (x, ). — ) dx
Q
= /1/ f D)y, — DT dx
Q
< / a(|Va)vVa.V(y, — i)tdx
Q
+ / a(|a)a(y, — ay*dx
Q
+ / b(x)lﬁl”’zﬁ(y* —i)*dy, (& is an “upper solution”). (4.103)
0Q
It follows, by (4.103), that

/( ) [a(1Vy, )V, — a(Va))Va] .V(y, — D)dx + / [aCly, D)y, — a(laDa] (v, — @)dx < 0. (4.104)
Yol .

{yu2it}

Using (4.104) and Lemmas 2.3, 2.11, we infer that y, < & = min{u;,u,}. Hence, from (4.100), we have that y, € W'¢(Q) is a
positive solution of problem (P). So, we conclude that S, is downward directed. Arguing similarly, we show that .S_ is upward
directed. [

Now, we are able to generate extremal constant sign solutions of (P).

Proposition 4.5. Under the assumptions (f;) — (f>), ( f3’) -(f i) and (g,) — (g4), the problem (P) has a smallest non-trivial positive solution
u, € int(C' (), ) and a biggest non-trivial negative solution v, € —int(C'(2),).

Proof. Recall that S, is the set of non-trivial positive solutions of problem (P). From Proposition 4.4, we know that the set .S, is
downward directed. Then Lemma 3.10 of Hu-Papageorgiou [39, p. 178] implies that there exists a decreasing sequence {u,},cy € S,
such that

;:rellf\l u, =inf S,.
From [26, Theorem 2.13, p. 7] and the fact that {u,},cy is a positive decreasing sequence, we can see that {u,},cy € W6 (Q) is
bounded. Since W 1-¢(Q) is a reflexive space, we can find u, € W!9(Q) such that

u, = u, in wh6(Q,

u, > u, in L¥(Q) andin L'(0RQ), for | <r<g; (4.105)

and u,(x) - u,(x) a.a. xe€ Q.

Taking the fact that u, € S, we get
/ a(|Vu,|)Vu,.Vodx +/ a(lu,|)u,vdx +/ b(x)lu,,l”’zunvdy = A/ f(x,u,)vdx, (4.106)
Q Q )Xo} Q

for all v € W¢(Q) and n € N.
In (4.106), we act with v = u, —u,, we obtain

/a(|Vun|)Vun.V(un—u*)dx+/a(lu,,l)un(u,,—u*)dx
Q Q

+ / 0Oy 1P~ 2u, (uy, — u,)dy
002

= /1/ SO u,)(u, —u)dx. (4.107)
Q
Note that, from (4.105), we have
lim / FGeuy), —u)dx =0, (4.108)
n—>+oo Q
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and
lim / b(x)|u, |P2u, (u, — u,)dy = 0. (4.109)
n—>+oo Fre)
Passing to the limit in (4.107) as n — +oo0 and using (4.108) and (4.109), we get
lir_P / a(|Vu,|)Vu, .V, —u,) + a(lu,u,w, —u,)dx = 0. (4.110)
n—+00 Q
It follows, by Lemma 2.12, that
u, — u, in WH(Q). (4.111)

Passing to the limit as n — +oo0 in (4.106) and using (4.111), we infer that
/ a(|Vu,|)Vu, . Vodx +/ a(lu,|)u,vdx +/ b(x)lu*lp_zu*vdy = A/ f(x,u,)vdx, (4.112)
Q Q o0 Q

for all v € W1G(Q).
Furthermore, since u, € S, for all n > 0, from Proposition 4.2, we have

0<a<u, foralln>0. (4.113)
In light of (4.105) and (4.113), we see that 0 < & < u,. Hence, from Proposition 3.1, we deduce that u, € S, and u, = inf S,.
Similarly, we prove that there exists v, € S_ such that v <v, forallve S_. []

4.2. Critical groups at the origin

As we mentioned in the beginning of the section, we need to compute the critical groups at zero. So, in the next result, we prove
that C,(J,0) =0 for all k € N.

Proposition 4.6. Under the assumptions (f}), ( fsl) and (g;) — (g4), we have C,(J,0) =0 for all k € N.

Proof. The critical groups at zero for J is defined by
Cy(J.0) = Hy(U n J°, (U n JO\{0})

where U is a neighborhood of zero. We can take U = B, = {u € W'¥(Q) : ||u|| < o}, with ¢ € (0, ).
Let X be a Banach space and Y, C Y¥; C X. From [40, Proposition 4.9 and 4.10, p. 389], if Y| and Y, are contractible, then the
singular homology groups for the pair (Y,,Y,)

H,(Y,,Yy) =0, forall k >0.

So, to prove our proposition, we just need to show that Eo nJO and (EO n J9\{0} are contractible. We divide the proof into two
steps.

«Step 1: We prove that B, n J is contractible.

Let u € W9(Q) and 0 <7 < 1, we have

J(tu) = / [G(|Vtu|) + G(|tu])] dx + 1 / b(x)|tulPdy — /1/ F(x,tu)dx. (4.114)
Q P Joo Q
From assumptions (f;) and ( f3’), we get
F(x,s) > ¢;0(s|]) —cgH(|s]) forall seR (4.115)
and
g F(x,s) — f(x,s)s > =& H(|s|) for almost all x € 2 and s € R. (4.116)

Using (4.114), (4.115) and Lemma 2.3, we find that

T < |z|g‘/ [G(Vul) + G(ul)] dx + l|z|”/ b lulPdy
Q p 0Q

cl/I/Q(|tu|)dx+co/l/H(|tu|)dx
Q Q

< 18 K + L / b lulPdy
)4 02

c1/1|z|q*/ O(uldx + coAlt|"” / H(lu|)dx.
Q Q
Since g~ < q" <p< g~ <g*' <h™ <h,itis clear that we can find t* € (0, 1) such that

J(tu) < 0 for all 1 € (0,1%). (4.117)
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Now, let u € WG(Q) such that 0 < |lu|| <1 and J () = 0, we have

= (J'(u),u)

t=1

d
— J (¢
7 (tu)

=/a(|Vu|)Vu.Vudx+/a(|u|)u2dx+/ b(x)lul”dy—/l/f(x,u)udx—q+J(u)
Q Q 0 Q
=/a(|Vu|)Vu.Vudx+/a(|u|)u2dx+/ b(x)lul”dy—/l/f(x,u)udx
Q Q e} Q
+
- q+/ [G(|W|>+G(|u|)]dx—q—/ b(x)lulpdy+q+/1/ F(x,u)dx
Q P Joo Q

+
> (g —qHKw+(1 - q—)/ b(x)|ulPdy + /1/ g F(x,u) — f(x,wudx. (4.118)
P Jio Q
Exploiting (4.116), (4.118) and continuous embedding result, we get

d
i
a1

> (g —¢gNHKw) - 53/1/ H(luDdx
t=1 Q
_ + . - +
> (g7 = ")lulle” — & Amaxllull’y .l )
_ + - + .
> (g7 = gOllullf — ey dAmax{[lull™”, ||u])""} (since WC(Q) & L7 ().
Since gt < p< g~ < gt < h™ < h*, there exists some ¢ € (0, 1) small such that

d
ZJ@
7 (tu)

>0, (4.119)
1

=
for all u € W9(Q) with 0 < |lu|| < ¢ and J(u) = 0.
Claim.

J(tu) <0 for all 1 € [0, 1], (4.120)
for all u € WG(Q), with 0 < ||u|| < ¢ and J(u) < 0.
Proof of Claim. Arguing by contradiction, we suppose that there is some #, € (0, 1) such that J(t,u) > 0. Since J is continuous and

J(u) <0, by Bolzano’s theorem, we can find ; € (t, 1] such that J(t;u) = 0.
Let 7, = min{r € [¢y, 1] : J(tu) =0} > 1, > 0. Then

J(tu) > 0 for all ¢ € [1y,1,). (4.121)

Let v =1,u. We have 0 < ||v|| < ||lu|| £ ¢ and J(v) = 0. Therefore, from (4.119) it follows that

> 0. (4.122)

=1

d
—J
7 (tv)

From (4.121), we have

J()=J@u)=0< J(tu) forall t € [1,,1,)

so,
— J(1t
ij(w) = lim M = lim M = lim (1)
dt =1 1=l t—1 »1t—1 =1 t—1
J(t
=t,lim (#t,) =1, lim J(su) (s =t,1)
=11t —1, s= s — 1,
<o0. (4.123)

Comparing (4.122) and (4.123), we get a contradiction. This proves (4.120).
Now, Taking ¢ € (0, 1) even smaller if necessary, such that K; n E‘o = {0}.
Let ¢ : [0,1]X (B, N J% — B, n JO be a continuous function defined by

@(t,u) = (1 —tu for all (t,u) € [0,1]1x (B, n JO).

From (4.120) we see that ¢(.,.) is well-defined. This deformation proves that Bg n JO is contractable in itself.
« Step 2: we show that (BQ N J9\{0} is contractible.
Fix u € B, with J(u) > 0. We shall prove that there exists a unique 7 € (0, 1) such that

J(fu) = 0. (4.124)
From (4.117), we have

J(tu) <0, for all t € (0,1*)
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Recall that + — J(tu) is continuous and we have J(u)J(tu) < 0 for all ¢+ € (0,t*). So, the existence of some 7 € (0, 1) follows from
Bolzano’s theorem. Next we prove the uniqueness of 7. Suppose that there are 0 < 7; < 7, < 1 such that J(f;u) = J(fyu) = 0. From
(4.120), we have

k(t) = J(ttyu) <0 for all ¢ € [0, 1].
Hence :—‘ € (0,1) is a maximizer of k(.), so, using the same computation in (4.123), we get
2

d I d -
—k@®)| . =0= = —J(t
dt (),: 7, di (Zu),:

n
o

d .
= —J(tt =0,
ar (1 u) -

7
L 1
1

which is contradict with (4.119). Then there exists a unique 7 € (0, 1) such that J(fu) = 0.
From the uniqueness of 7 and the fact that J(u) > 0, we get
J(@u) <0 ift€(0,7) and J(tu) >0 ifr € (7 1]. (4.125)
Now, let ¢, : B,\{0} — (0, 1] defined by

1 if B\{0}, J(u) <0,
o16) = ! 1 ue _0\{ b Jw) < 4126)
f if u € B\{0}, J(w) > 0.

We shall prove that ¢, (.) is continuous, so, we just need to see the continuity at u € Bg\{O} with J(u) = 0. Let u,, — u with J(u,) > 0
for all n > 1. Arguing by contradiction, suppose that by passing to a subsequence if necessary, we have 7, <7< 1 for all n > 1. From
(4.125), we get

J(tu,)>0 forallre(7,1] andalln>1,
which gives us

J(tu) >0 forallt e (1]
Hence, from (4.120), we have

J(tu)=0 forallze (1] (4.127)
It follows, from (4.127), that

=0,

d
—J(t
dt () =1

which is contradiction with (4.119). This proves that ¢,(.) is continuous.
Next, we consider the map ¢, : B,\{0} — (B, n J%)\{0} defined by

if u € B\{0}, J(u) <0,
¢2(u)={ u ifue B\{0}, J(w) <

4.128
@ (Wu ifueEo\{O}, J() > 0. ( )

Evidently, ¢,(.) is continuous and
(/’2|(Ban10)\{o1 = id|(1§pn10)\(0)-

Therefore, ¢,(.) is a retraction of B,\{0} into (B,n J%)\{0}. But B,\{0} is contractible in itself. Hence, (B, J%)\{0} is contractible,
too.
From Steps 1 and 2, we see that (Bg N JO\{0} and Bo N JO are contractible, then

C(J,0) = H,(B,nJ°, (B,nJO\{0}) =0 forall k>0. [J
4.3. Proof of Theorem 1.5

Using the extremal constant sign solutions of problem (P), we produce a nodal solution. Precisely, via a suitable truncation
and variational methods coupled with Morse theory, we show that problem (P) admits a solution in [v,,u,] distinct from 0, v,, v,.
Evidently, this is a nodal solution.

Let u, and v, be the two extremal constant sign solutions produced in Proposition 4.5. We introduce the following Carathéodory
function f : 2 x R — R defined by

Af(x,0,.(x)) if s <v,(x),
fu9) =4 Af(xs) if 0,(x) <5 <u,(x), 4129)
Af(x,u, () if u,(x)<s.

We also consider the following Carathéodory functions f, : 2 xR — R defined by
Files) = flx, s%). (4.130)
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We set F(x,s) = [y f(x,ndt and F,(x,s) = f; f.(x,0)dt and consider the C'-functional p, u, : W'¢(Q) - R defined by

ﬂ(u)zk,‘(u)+1/ b(x)|u|l’dy—/ﬁ(x,u)dx
P Joa Q
and
() = K(w) + = / bColulPdy — / Fo(x, u)dx
- P Joo Q -

for all u € W9(Q).
From (4.129) and (4.130), we infer that

K, C[v,.u,1nC'(Q),
K,, €[0.u,1nC'(Q),,
K, Cl[v,.01n(-C'(@),).

The extremality of the solutions u, and v, implies that

K, Slo,u,1nC'(Q), K

4, =10.u,} and K, ={v,.0}. (4.131)

Due to (4.129) and (4.130), we can see that p, is coercive and it is sequentially weakly lower semicontinuous. Hence, by the
Weierstrass—Tonelli theorem, we can find 2, € W ¢ (Q) such that

uy(0,) = min{p, () : ue WH9(Q)). (4.132)

As before, we prove that u, (,) < 0 = p,(0), then 4, # 0. so &, = u, (see (4.131)).
It is clear that

Hlo@, = e lo@,
Since u, € int(C 1(Q) +), it follows that u, is a local C 1(@)-minimizer of . Using [26, Theorem 2.14, p. 7], we get

u, is alocal W16 (Q) — minimizer of pu. (4.133)
Similarly, working with the functional u_, we show that

v, is alocal W16 (Q) — minimizer of . (4.134)

Without lose of generality, we assume that u(v,) < u(u,). From (4.131), if K,, is not finite, then we have an infinity of smooth nodal
solutions and so we are done. So, we may assume that K|, is finite. Then (4.133) and Theorem 5.7.6 of Papageorgiou-Radulescu-
Repovs [7, p. 449], we can find p € (0, 1) small enough such that

u(v,) < puu,) <inf{u@) : lu—u, =p} =m. (4.135)

By (4.129), we have that y is coercive. These implies that u satisfies the C-condition, see [7, Proposition 5.1.15, p. 369]. This fact
coupled with (4.135) permit the use of the mountain pass theorem. So, there is y, € W6 () such that

Yo € K, € [v,,u,]NC"(Q) and m < u(y,). (4.136)

From (4.135) and (4.136), we conclude that y, & {v,,u,}.
Using Corollary 6.6.9 of Papageorgiou—Radulescu—Repovs [7, p. 533], we get that

Cy (1, yp) # 0. (4.137)

From (4.129), it is clear that u ltv, 1= I Mo, ,15 from the homotopy invariance of critical groups and Proposition 4.6, we infer that
C (1,00 =C(J,00=0 forall k>0. (4.138)

Comparing (4.137) and (4.138), we conclude that y, # 0. Hence, y, is a sign changing solution for the problem (P). Combining this
with the result of Theorem 1.4, we get our result.
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