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A B S T R A C T

In this paper we consider a non-linear Robin problem driven by the Orlicz 𝑔-Laplacian operator.
Using variational technique combined with a suitable truncation and Morse theory (critical
groups), we prove two multiplicity theorems with sign information for all the solutions. In the
first theorem, we establish the existence of at least two non-trivial solutions with fixed sign. In
the second, we prove the existence of at least three non-trivial solutions with sign information
(one positive, one negative, and the other change sign) and order. The result of the nodal
solution is new for the non-linear 𝑔-Laplacian problems with the Robin boundary condition.

. Introduction

Let 𝛺 be a bounded open subset of R𝑁 (𝑁 ≥ 3) with 𝐶2-boundary 𝜕𝛺. We consider the following Robin problem:

⎧

⎪

⎨

⎪

⎩

−div(𝑎(|∇𝑢(𝑥)|)∇𝑢(𝑥)) + 𝑎(|𝑢(𝑥)|)𝑢(𝑥) = 𝜆𝑓 (𝑥, 𝑢(𝑥)), 𝑥 ∈ 𝛺

𝑎(|∇𝑢(𝑥)|)
𝜕𝑢(𝑥)
𝑑𝜈

+ 𝑏(𝑥)|𝑢(𝑥)|𝑝−2𝑢(𝑥) = 0, 𝑥 ∈ 𝜕𝛺,
(P)

here 𝜈 is the unit exterior vector on 𝜕𝛺, 𝜆 > 0, 𝑝 > 0, and 𝑏 ∈ 𝐶1,𝜃(𝜕𝛺) for some 𝜃 ∈ (0, 1), inf𝑥∈𝜕𝛺 𝑏(𝑥) > 0 and the function 𝑎(|𝑡|)𝑡
s an increasing homeomorphism from R onto R. In the right side of problem (P) there is a Carathéodory function 𝑓 ∶ 𝛺 ×R ⟶ R,
hat is 𝑥⟼ 𝑓 (𝑥, 𝑡) is measurable for all 𝑡 ∈ R and 𝑡⟼ 𝑓 (𝑥, 𝑡) continuous for a.e. 𝑥 ∈ 𝛺.

The main feature of this paper is to deal with the existence of smooth nodal (i.e. sign-changing) solutions for the Robin problem
f type (P) without assuming the well-known Ambrosetti–Rabinowitz ((𝐴𝑅) for short) or monotonicity condition on 𝑓 . To the best
f our knowledge, this is the first paper proving the existence of sign-changing solutions for problem (P). The tools used are a
ombination of cut-off techniques (truncation), together with variational methods based on the critical point and critical groups
heories. More precisely we assume two classes of hypotheses on 𝑓 . For the first class, we prove the existence of 𝜆∗ > 0 such that,
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for all 0 < 𝜆 ≤ 𝜆∗, problem (P) admits positive and negative solutions. For the second we show that, for all 𝜆 > 0, problem (P) has
at least three non-trivial smooth solutions, all with sign information: positive, negative, and nodal solutions.

The study of variational problems in the classical Sobolev and Orlicz-Sobolev spaces is an interesting topic of research due
to its significant role in many fields of mathematics, such as approximation theory, partial differential equations, calculus of
variations, non-linear potential theory, the theory of quasi-conformal mappings, non-Newtonian fluids, differential geometry,
geometric function theory, probability theory, and image processing (see [1–7]). In particular, when incorporating Robin boundary
conditions in image processing tasks, the context is often related to how the boundary of the image domain interacts with the
processing algorithm. Robin boundary conditions represent a mix of Dirichlet and Neumann conditions and can be particularly
useful in modeling various physical phenomena or constraints at the boundaries of the image domain, see [8].

We point out that if we let 𝑎(𝑡) = 1, problem (P) turns into the well-known Laplace equation. The existence of nodal solutions fro
these kinds of classical problems have been studied by many authors because of their various applications to different disciplines
see [9–15] and references therein. Moreover, there are a lot of papers dealing with the existence of smooth nodal solutions for
problems driven by the 𝑝-Laplacian, 𝑝(𝑥)-Laplacian or the Orlicz 𝑔-Laplacian operator, see [16–23] and references therein. In [16],
using truncation techniques together with critical groups theory, Aizicovici et al. proved the existence of five non-trivial smooth
solutions, two positive, two negative, and one nodal, for the following Neumann equation

⎧

⎪

⎨

⎪

⎩

−div(|∇𝑢(𝑥)|𝑝−2∇𝑢(𝑥)) + 𝛽|𝑢(𝑥)|𝑝−2𝑢(𝑥) = 𝑓 (𝑥, 𝑢(𝑥)), 𝑥 ∈ 𝛺
𝜕𝑢(𝑥)
𝑑𝜈

= 0, 𝑥 ∈ 𝜕𝛺, 2 ≤ 𝑝 <∞,

where 𝛺 ⊆ R𝑁 is a bounded domain with a 𝐶2 boundary 𝜕𝛺, 𝛽 > 0, 𝑓 (𝑥, 𝑡) is a Carathéodory function.
As a generalization of the 𝑝-Laplacian operator, Papageorgiou et al. [21], produced three non-trivial smooth solutions with sign

nformation (one is a nodal solution) for the following non-linear non-homogeneous Robin equation

⎧

⎪

⎨

⎪

⎩

−div(𝑎(|∇𝑢(𝑥)|)) + 𝜉(𝑥)|𝑢(𝑥)|𝑝−2𝑢(𝑥) = 𝑓 (𝑥, 𝑢(𝑥)), 𝑥 ∈ 𝛺

𝑎(|∇𝑢|)
𝜕𝑢(𝑥)
𝑑𝜈

+ 𝛽(𝑥)|𝑢(𝑥)|𝑝−2𝑢(𝑥) = 0, 𝑥 ∈ 𝜕𝛺,

where 𝛺 ⊆ R𝑁 is a bounded domain with a 𝐶2 boundary 𝜕𝛺, 𝑓 (𝑥, 𝑡) is a Carathéodory function, 𝜉(.) ∈ 𝐿∞(𝛺), 𝑎 is a continuous,
strictly monotone map, 𝛽(.) ∈ 𝐶1,𝛼(𝜕𝛺), for some 𝛼 ∈ (0, 1), 𝛽 ≥ 0 and 𝜈 is the outward unit normal on 𝜕𝛺.

For the 𝑝(𝑥)-Laplacian operator, Gasiński and Papageorgiou [20] established the existence of at least three non-trivial smooth
solutions: two with constant sign (one positive, the other negative) and the third with an unknown sign, for a non-linear Neumann
problems driven by the 𝑝(𝑥)-Laplacian operator

⎧

⎪

⎨

⎪

⎩

−div(|∇𝑢(𝑥)|𝑝(𝑥)−2∇𝑢(𝑥)) = 𝑓 (𝑥, 𝑢(𝑥)), 𝑥 ∈ 𝛺
𝜕𝑢(𝑥)
𝑑𝜈

= 0, 𝑥 ∈ 𝜕𝛺,

here 𝛺 ⊆ R𝑁 is a bounded domain with a 𝐶2 boundary 𝜕𝛺, 𝑓 (𝑥, 𝑡) is a Carathéodory function and 𝜈 is the outward unit normal
on 𝜕𝛺. In [23], using the arguments employed in [16], Papageorgiou and Winkert studied the existence of a nodal solution for the
above problem. Precisely, the authors proved the existence of a sign-changing solution for an anisotropic Robin problem driven by
the 𝑝(𝑥)-Laplacian with a little modification in the assumptions on 𝑓 . In 2013, Zhong and Fang (see [17]) treated the existence of
smooth nodal solutions for the following Dirichlet problem driven by the Orlicz 𝑔-Laplacian operator

{

−div(𝑎(|∇𝑢(𝑥)|)∇𝑢(𝑥)) = 𝑓 (𝑥, 𝑢(𝑥)), 𝑥 ∈ 𝛺

𝑢(𝑥) = 0, 𝑥 ∈ 𝜕𝛺,

where 𝛺 ∈ R𝑁 is a bounded domain with smooth boundary 𝜕𝛺, 𝑎(|𝑡|)𝑡 ∈ 𝐶(R) and 𝑓 (𝑥, 𝑡) ∈ 𝐶(𝛺 × R). In order to prove the
xistence of nodal solutions, the authors gave some new regularity results which are crucial in the application of the truncation and
ub-supersolution methods.

In [18], by using the nodal Nehari manifold method, Figueiredo and Santos established the existence of a sign-changing solution
or Kirchhoff equations driven by the Orlicz operator. Here, we would like to mention that the last cited paper about the Orlicz
roblem considered only the equations with Dirichlet boundary value condition.

To the best of our knowledge, there are no results concerning the existence of sign-changing solutions for the Orlicz equations
ith Robin boundary value condition. Hence, a natural question is whether or not there exist nodal solutions of problem (P).

The main aim of our work is the study of the existence of smooth nodal solutions for non-linear problems driven by the Orlicz
-Laplacian operator of type (P). Such problems, present challenging mathematical difficulties (non-homogeneity of the 𝑔-Laplacian
perator). To overcome these difficulties, we produce new technical lemmas.

Specifically, we consider two classes of assumptions on the non-linear term 𝑓 .
∙ The first class:

(𝑓1) 𝑓 (𝑥, 0) = 0 and there exist an odd increasing homomorphism ℎ ∈ 𝐶1(R,R), and a positive function 𝑎(𝑡) ∈ 𝐿∞(𝛺) such that

𝛺

2

|𝑓 (𝑥, 𝑡)| ≤ 𝑎(𝑥)(1 + ℎ(|𝑡|)), ∀ 𝑡 ∈ R, ∀𝑥 ∈
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𝐺 ≺≺ 𝐻 ≺≺ 𝐺∗,

1 < 𝑔+ < ℎ− ∶= inf
𝑡>0

ℎ(𝑡)𝑡
𝐻(𝑡)

≤ ℎ+ ∶= sup
𝑡>0

ℎ(𝑡)𝑡
𝐻(𝑡)

≤
𝑔−∗
𝑔−
,

1 < ℎ− − 1 ∶= inf
𝑡>0

ℎ′(𝑡)𝑡
ℎ(𝑡)

≤ ℎ+ − 1 ∶= sup
𝑡>0

ℎ′(𝑡)𝑡
ℎ(𝑡)

where

𝐻(𝑡) ∶= ∫

𝑡

0
ℎ(𝑠) 𝑑𝑠

is an 𝑁-function.
(𝑓2) lim𝑡→±∞

𝐹 (𝑥,𝑡)
|𝑡|𝑔+

= +∞, uniformly in 𝑥 ∈ 𝛺, where 𝐹 (𝑥, 𝑡) = ∫ 𝑡0 𝑓 (𝑥, 𝑠)𝑑𝑠.

(𝑓3) 𝑓 (𝑥, 𝑡) = 𝑜(|𝑡|𝑔
−−1) as |𝑡| → 0 uniformly in 𝑥 ∈ 𝛺.

(𝑓4) 𝐹 (𝑥, 𝑡) =
1
𝑔+ 𝑓 (𝑥, 𝑡)𝑡 − 𝐹 (𝑥, 𝑡) > 0, for |𝑡| large and there exist constants 𝜎 > 𝑁

𝑔− , 𝑐 > 0 and 𝑟0 > 0, such that

|𝑓 (𝑥, 𝑡)|𝜎 ≤ 𝑐|𝑡|(𝑔
−−1)𝜎𝐹 (𝑥, 𝑡), ∀ (𝑥, 𝑡) ∈ 𝛺 × R, |𝑡| ≥ 𝑟0.

∙ The second class: We suppose that 𝑓 satisfies (𝑓1) − (𝑓2) and the following conditions

(𝑓 ′
3) There exist an odd increasing homomorphism 𝑞 ∈ 𝐶1(R,R), and a positive constants 𝑐0 ≥ 0, 𝛿 ≥ 0 such that

𝑐0𝑞(𝑡)𝑡 ≤ 𝑓 (𝑥, 𝑡)𝑡 ≤ 𝑞+𝐹 (𝑥, 𝑡), for almost all 𝑥 ∈ 𝛺 and for all 0 < |𝑡| ≤ 𝛿

and

𝑄 ≺≺ 𝐺,

1 < 𝑞− ∶= inf
𝑡>0

𝑞(𝑡)𝑡
𝑄(𝑡)

≤ 𝑞+ ∶= sup
𝑡>0

𝑞(𝑡)𝑡
𝑄(𝑡)

< 𝑝 < 𝑔−,

1 < 𝑞− − 1 ∶= inf
𝑡>0

𝑞′(𝑡)𝑡
𝑞(𝑡)

≤ 𝑞+ − 1 ∶= sup
𝑡>0

𝑞′(𝑡)𝑡
𝑞(𝑡)

where

𝑄(𝑡) = ∫

𝑡

0
𝑞(𝑠)𝑑𝑠

is an 𝑁-function.
(𝑓 ′

4) There exist 𝜂− < 0 and 𝜂+ > 0 such that

𝑓 (𝑥, 𝜂+) < 0 < 𝑓 (𝑥, 𝜂−), for a.a. 𝑥 ∈ 𝛺.

Remark 1.1. (𝑖) In the first class of assumptions, condition (𝑓4) will be important in the proof of the boundedness of the Cerami
sequence (see Proposition 3.2). To the best of our knowledge, a similar condition to (𝑓4) was firstly introduced in [24] for some
scalar Schrödinger equation. Moreover, the assumption (𝑓4) weaker then the well-known Ambrosetti–Rabinowitz condition.

(𝑖𝑖) The following function satisfies (𝑓1) − (𝑓4) and it does not satisfies the (𝐴𝑅) condition (see [25, p. 1277])
∙ 𝑓 (𝑥, 𝑡) = |𝑡|𝛽−2𝑡 ln(1 + |𝑡|), 𝛽 ∈ 2N and 2 < 𝛽 < 𝑁 ≤ 𝛽 + 1, while 𝑎(𝑡) = |𝑡|𝛽−2, 𝑔(𝑡) = |𝑡|𝛽−2𝑡 and 𝑔− = 𝑔+ = 𝛽. (𝑖𝑖𝑖) For the second

lass of assumptions on 𝑓 , the following function satisfies hypotheses (𝑓1)−(𝑓2) and (𝑓 ′
3)−(𝑓 ′

4), but fails to fulfill the (𝐴𝑅) condition.

∙𝑓 (𝑥, 𝑡) =

{

|𝑡|𝛼−2𝑡 − 2|𝑡|𝑝−2𝑡 if |𝑡| ≤ 1

|𝑡|𝑔
+−2𝑡 ln(|𝑡|) − |𝑡|𝛼−2𝑡 if 1 < |𝑡|,

where 0 < 𝛼 + 1 < 𝑝 < 𝑔− and 2 < 𝑔− ≤ 𝑔+ < 𝑁 ≤ 𝑔− + 1.
(𝑖𝑣)The above assumptions related to the Robin boundary condition (on 𝜕𝛺, 𝑏, and 𝑝) are intricately connected to the regularity

esults obtained in [26]. These results will be instrumental in establishing the main results.

Next, we give the assumption on the Young function 𝑔. So, let

𝑔(𝑡) ∶=

{

𝑎(|𝑡|)𝑡, if 𝑡 ≠ 0,

0, if 𝑡 = 0,

e an odd increasing homeomorphism from R onto itself. Let

𝐺(𝑡) ∶= ∫

𝑡

0
𝑔(𝑠)𝑑𝑠 and 𝐺̃(𝑡) ∶= ∫

𝑡

0
𝑔−1(𝑠)𝑑𝑠.
3

n order to construct an Orlicz-Sobolev space setting for problem (P), we impose the following condition on 𝐺, 𝑎 and 𝑔:
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(𝑔1) : 𝑎(𝑡) ∈ 𝐶1(0,+∞), 𝑎(𝑡) > 0 and 𝑎(𝑡) is an increasing function for 𝑡 > 0.
(𝑔2) : 1 < 𝑝 < 𝑔− ∶= inf 𝑡>0

𝑔(𝑡)𝑡
𝐺(𝑡) ≤ 𝑔+ ∶= sup𝑡>0

𝑔(𝑡)𝑡
𝐺(𝑡) < 𝑁 .

(𝑔3) : 0 < 𝑔− − 1 = 𝑎− ∶= inf 𝑡>0
𝑔′(𝑡)𝑡
𝑔(𝑡) ≤ 𝑔+ − 1 = 𝑎+ ∶= sup𝑡>0

𝑔′(𝑡)𝑡
𝑔(𝑡) .

(𝑔4) : 𝑡↦ 𝐺(
√

𝑡) is convex on [0,+∞), ∫ +∞
1

𝐺−1(𝑡)

𝑡
𝑁+1
𝑁

𝑑𝑡 = ∞ and ∫ 1
0

𝐺−1(𝑡)

𝑡
𝑁+1
𝑁

𝑑𝑡 <∞.

Remark 1.2. Here are some examples of 𝑁-functions:
∙ For the non-linear elasticity: 𝐺(𝑡) = (1 + 𝑡2)𝛼 − 1.
∙ For the plasticity: 𝐺(𝑡) = 𝑡𝛼(log(1 + 𝑡))𝛽 , 𝛼 ≥ 1, 𝛽 > 0.

Now, we can set our results. The aim of this paper is summarized in these theorems.

heorem 1.3. Assume that 𝑓 , 𝑔 and 𝐺 satisfy (𝑓1) − (𝑓4) and (𝑔1) − (𝑔4). Then, there exists 𝜆∗ > 0 such that for all 0 < 𝜆 ≤ 𝜆∗, problem
(P) admits a positive smooth solution 𝑢0 ∈ 𝑊 1,𝐺(𝛺) ∩ int(𝐶1(𝛺)+) and a negative smooth solution 𝑣0 ∈ 𝑊 1,𝐺(𝛺) ∩ (−int(𝐶1(𝛺)+)) in the
sense of Definition 2.13.

Theorem 1.4. Assume that 𝑓 , 𝑔 and 𝐺 satisfy (𝑓1) − (𝑓2), (𝑓 ′
3) − (𝑓 ′

4) and (𝑔1) − (𝑔4). Then, for all 𝜆 > 0, problem (P) admits a positive
smooth solution 𝑢0 ∈ 𝑊 1,𝐺(𝛺)∩ int(𝐶1(𝛺)+) and a negative smooth solution 𝑣0 ∈ 𝑊 1,𝐺(𝛺)∩ (−int(𝐶1(𝛺)+)) in the sense of Definition 2.13.

Theorem 1.5. Assume that 𝑓 , 𝑔 and 𝐺 satisfy (𝑓1) − (𝑓2), (𝑓 ′
3) − (𝑓 ′

4) and (𝑔1) − (𝑔4). Then, for all 𝜆 > 0, problem (P) admits a nodal
solution.

Our plan for the proof of the existence of the nodal solution is divided into four steps. In step one, we prove that the sets of
positive and negative solutions are non-empty. In the next step, we show that the set of positive solutions has a smallest element
𝑢∗ and the set of negative solutions has a greatest element 𝑣∗. In the third step, we prove the existence of another solution 𝑦0 for
the problem (P) lies between 𝑢∗ and 𝑣∗. Evidently, 𝑦0 = 0 or 𝑦0 is a nodal solution for our problem. In the final step, we compute
the critical groups at the origin and at 𝑦0 to prove that 𝑦0 cannot be zero.

The paper is organized as follows. In Section 2, we recall the basic properties of the Orlicz Sobolev spaces and the Orlicz Laplacian
operator. Moreover, we mention some tools/definitions we need later (Cerami-condition, critical groups). In Section 3, for each class
of assumptions on 𝑓 , we prove the existence of at least positive and negative solutions (Theorems 1.3 and 1.4). Finally, we establish
the existence of a nodal solution to our problem which lies between the extremal constant sign solutions (Theorem 1.5).

2. Preliminaries

In this section, we provide the mathematical background and framework for our problem (P).

2.1. Mathematical background: Orlicz and Orlicz-Sobolev spaces, critical groups

In this subsection, we recall some general properties about Orlicz spaces, Orlicz-Sobolev spaces, critical groups and some
tools⧵definitions needed in the sequel (see [27–29]).

We start by recalling the definition of the well-known 𝑁-functions. Let 𝑔 be a real-valued function defined on R and having the
following properties:

(𝑔0) (1) 𝑔(0) = 0, 𝑔(𝑡) > 0 if 𝑡 > 0 and lim𝑡→+∞ 𝑔(𝑡) = +∞.
(2) 𝑔 is non-decreasing and odd function.
(3) 𝑔 is right continuous.

The real-valued function 𝐺 defined on R by

𝐺(𝑡) = ∫

𝑡

0
𝑔(𝑠) 𝑑𝑠

is called an 𝑁-function. 𝐺 is even, positive, continuous and convex function, Moreover 𝐺(0) = 0,
𝐺(𝑡)
𝑡 → 0 as 𝑡 → 0 and 𝐺(𝑡)

𝑡 → +∞ as 𝑡 → +∞.
The complementary 𝑁-function of 𝐺 is defined by

𝐺̃(𝑡) = ∫

𝑡

0
𝑔̃(𝑠) 𝑑𝑠,

here 𝑔̃ ∶ R → R is given by 𝑔̃(𝑡) = sup{𝑠 ∶ 𝑔(𝑠) ≤ 𝑡}. If 𝑔 is continuous on R, then 𝑔̃(𝑡) = 𝑔−1(𝑡) for all 𝑡 ∈ R. Moreover, we have

𝑠𝑡 ≤ 𝐺(𝑠) + 𝐺̃(𝑡), (2.1)

hich is known as the Young inequality. Equality in (2.1) holds if and only if either 𝑡 = 𝑔(𝑠) or 𝑠 = 𝑔̃(𝑡).
4
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We say that 𝐺 satisfies the ▵2-condition, if there exists 𝐶 > 0, such that

𝐺(2𝑡) ≤ 𝐶𝐺(𝑡), for all 𝑡 > 0. (2.2)

n equivalent condition to (2.2) is: there exist 𝑔− and 𝑔+ such that

1 < 𝑔− ∶= inf
𝑡>0

𝑔(𝑡)𝑡
𝐺(𝑡)

≤ 𝑔+ ∶= sup
𝑡>0

𝑔(𝑡)𝑡
𝐺(𝑡)

< +∞. (2.3)

If 𝐴 and 𝐵 are two 𝑁-functions, we say that 𝐴 grow essentially more slowly than 𝐵 (𝐴 ≺≺ 𝐵 in symbols), if and only if for every
ositive constant 𝑘, we have

lim
𝑡→+∞

𝐴(𝑘𝑡)
𝐵(𝑡)

= 0. (2.4)

Another important function related to function 𝐺, is the Sobolev conjugate function 𝐺∗ defined by

𝐺−1
∗ (𝑡) = ∫

𝑡

0

𝐺−1(𝑠)

𝑠
𝑁+1
𝑁

𝑑𝑠, 𝑡 > 0.

f 𝐺 satisfies the ▵2-condition, then 𝐺∗ satisfies the ▵2-condition. Namely, there exist 𝑔−∗ = 𝑁𝑔−

𝑁−𝑔− and 𝑔+∗ = 𝑁𝑔+

𝑁−𝑔+ such that

𝑔+ < 𝑔−∗ ∶= inf
𝑡>0

𝑔∗(𝑡)𝑡
𝐺∗(𝑡)

≤ 𝑔+∗ ∶= sup
𝑡>0

𝑔∗(𝑡)𝑡
𝐺∗(𝑡)

< +∞. (2.5)

Let 𝐺 be an 𝑁-function satisfies the ▵2-condition. Then we can define the Orlicz space 𝐿𝐺(𝛺) as the vectorial space of measurable
functions 𝑢 ∶ 𝛺 → R such that

𝜌(𝑢) = ∫𝛺
𝐺(|𝑢(𝑥)|) 𝑑𝑥 <∞.

𝐿𝐺(𝛺) is a Banach space under the Luxemburg norm

‖𝑢‖(𝐺) = inf
{

𝜆 > 0 ∶ 𝜌( 𝑢
𝜆
) ≤ 1

}

.

For Orlicz spaces, the Hölder inequality reads as follows

∫𝛺
𝑢𝑣𝑑𝑥 ≤ ‖𝑢‖(𝐺)‖𝑣‖(𝐺̃), for all 𝑢 ∈ 𝐿𝐺(𝛺) and 𝑢 ∈ 𝐿𝐺̃(𝛺).

Next, we introduce the Orlicz-Sobolev space. We denote by 𝑊 1,𝐺(𝛺) the Orlicz-Sobolev space defined by

𝑊 1,𝐺(𝛺) ∶=
{

𝑢 ∈ 𝐿𝐺(𝛺) ∶ 𝜕𝑢
𝜕𝑥𝑖

∈ 𝐿𝐺(𝛺), 𝑖 = 1,… , 𝑁
}

.

𝑊 1,𝐺(𝛺) is a Banach space with respect to the norm

‖𝑢‖𝐺 = ‖𝑢‖(𝐺) + ‖∇𝑢‖(𝐺).

Another equivalent norm is

‖𝑢‖ = inf
{

𝜆 > 0 ∶ ( 𝑢
𝜆
) ≤ 1

}

,

here

(𝑢) = ∫𝛺
𝐺(|∇𝑢(𝑥)|)𝑑𝑥 + ∫𝛺

𝐺(|𝑢(𝑥)|) 𝑑𝑥. (2.6)

In the sequel, we give a general results related to the 𝑁-function and the Orlicz, Orlicz-Sobolev spaces.

Lemma 2.1 (see [30]). Let 𝐺 be an 𝑁-function satisfying (2.3) such that 𝐺(𝑡) = ∫ 𝑡0 𝑔(𝑠)𝑑𝑠 and we denote by 𝐺̃ its complementary function.
hen

𝐺̃(𝑔(𝑡)) ≤ (𝑔+ + 1)𝐺(𝑡) and 𝐺̃
(

𝐺(𝑡)
𝑡

)

≤ 𝐺(𝑡),

for all 𝑡 ≥ 0, where 𝑔+ is defined in (2.3).

Lemma 2.2 (see [27,29]).. Let 𝐺 be an 𝑁-function and 𝐺̃ its complementary 𝑁-function. If 𝐺 and 𝐺̃ satisfy (2.3), then, 𝐿𝐺(𝛺), 𝑊 1,𝐺(𝛺)
are separable and reflexive Banach spaces.

Lemma 2.3 (see [28]). Let 𝐺 be an 𝑁-function satisfying (2.3) such that 𝐺(𝑡) = ∫ 𝑡0 𝑔(𝑠)𝑑𝑠. Then

(1) if 0 < 𝑡 < 1, then 𝐺(𝑧)𝑡𝑔+ ≤ 𝐺(𝑡𝑧) ≤ 𝐺(𝑧)𝑡𝑔− , for 𝑧 ∈ R;
(2) if 1 < 𝑡, then 𝐺(𝑧)𝑡𝑔− ≤ 𝐺(𝑡𝑧) ≤ 𝐺(𝑧)𝑡𝑔+ , for 𝑧 ∈ R;
5
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(3) if 0 < 𝑡 < 1, then 𝑔(𝑧)𝑡𝑔+−1 ≤ 𝑔(𝑡𝑧) ≤ 𝑔(𝑧)𝑡𝑔−−1, for 𝑧 ∈ R;
(4) if 1 < 𝑡, then 𝑔(𝑧)𝑡𝑔−−1 ≤ 𝑔(𝑡𝑧) ≤ 𝑔(𝑧)𝑡𝑔+−1, for 𝑧 ∈ R;
(5) if ‖𝑢‖(𝐺) < 1, then ‖𝑢‖𝑔

+

(𝐺) ≤ 𝜌(𝑢) ≤ ‖𝑢‖𝑔
−

(𝐺);
(6) if ‖𝑢‖(𝐺) ≥ 1, then ‖𝑢‖𝑔

−

(𝐺) ≤ 𝜌(𝑢) ≤ ‖𝑢‖𝑔
+

(𝐺);
(7) if ‖𝑢‖ < 1, then ‖𝑢‖𝑔+ ≤ (𝑢) ≤ ‖𝑢‖𝑔− ;
(8) if ‖𝑢‖ ≥ 1, then ‖𝑢‖𝑔− ≤ (𝑢) ≤ ‖𝑢‖𝑔+ .

Theorem 2.4 (see [27,29]).. Let 𝐺 and 𝐻 be 𝑁-functions, such that 𝐻 grow essentially more slowly than 𝐺∗ (where 𝐺∗ is the Sobolev
conjugate function of 𝐺).

(1) If ∫ +∞
1

𝐺−1(𝑡)

𝑡
𝑁+1
𝑁

𝑑𝑡 = ∞ and ∫ 1
0

𝐺−1(𝑡)

𝑡
𝑁+1
𝑁

𝑑𝑡 <∞, then the embedding 𝑊 1,𝐺(𝛺) ↪ 𝐿𝐻 (𝛺) is compact and the embedding 𝑊 1,𝐺(𝛺) ↪

𝐿𝐺∗ (𝛺) is continuous.
(2) If ∫ +∞

1
𝐺−1(𝑡)

𝑡
𝑁+1
𝑁 𝑑𝑡

<∞, then the embedding 𝑊 1,𝐺(𝛺) ↪ 𝐿𝐻 (𝛺) is compact and the embedding 𝑊 1,𝐺(𝛺) ↪ 𝐿∞(𝛺) is continuous.

heorem 2.5 (see [26, Theorem 2.7, p. 5]). Let 𝐺 be an 𝑁-function satisfies (2.3). Then, the Orlicz-Sobolev space𝑊 1,𝐺(𝛺) is continuously
nd compactly embedded in the classical Lebesgue spaces 𝐿𝑟(𝛺) and 𝐿𝑟(𝜕𝛺) for all 1 ≤ 𝑟 < 𝑔−∗ , where 𝑔−∗ is defined in (2.5).

Another mathematical tool that we will use in the sequel is the Morse theory and in particular critical groups. So, let us recall
ome basic definitions from the theory.

Let X be a Banach space and 𝑌2 ⊆ 𝑌1 ⊆ X. For every integer 𝑘 ≥ 0 we denote by 𝐻𝑘(𝑌1, 𝑌2) the 𝑘th relative singular homology
roup for the pair (𝑌1, 𝑌2) with integer coefficient. We recall that 𝐻𝑘(𝑌1, 𝑌2) = 0 for all integer 𝑘 < 0.

Given 𝐽 ∈ 𝐶1(X) and 𝑐 ∈ R, we introduce the following sets:

𝐽 𝑐 = {𝑥 ∈ X, 𝐽 (𝑥) ≤ 𝑐} , and 𝐾𝐽 =
{

𝑥 ∈ X, 𝐽 ′(𝑥) = 0
}

.

he critical groups of 𝐽 at an isolated critical point 𝑥0 ∈ X with 𝑐 = 𝐽 (𝑥0) are defined by

𝐶𝑘(𝐽 , 𝑥0) = 𝐻𝑘(𝐽 𝑐 ∩ 𝑈, (𝐽 𝑐 ∩ 𝑈 )∖{𝑥0}) for all 𝑘 ≥ 0,

here 𝑈 is a neighborhood of 𝑥0 such that 𝐾𝐽 ∩ 𝐽 𝑐 ∩𝑈 = {𝑥0}. The excision property of singular homology theory implies that the
bove definition of critical groups is independent of the choice of the neighborhood 𝑈 .

Given 𝑢 ∈ 𝑊 1,𝐺(𝛺), we set 𝑢± = max{±𝑢, 0} being the positive and negative part of 𝑢, respectively. We know that 𝑢 = 𝑢+ − 𝑢−,
𝑢| = 𝑢+ + 𝑢− and 𝑢± ∈ 𝑊 1,𝐺(𝛺). If 𝑢, 𝑣 ∶ 𝛺 → R are measurable functions and 𝑢(𝑥) ≤ 𝑣(𝑥) for a. a. 𝑥 ∈ 𝛺, then we introduce the

following order interval in 𝑊 1,𝐺(𝛺)

[𝑢, 𝑣] =
{

𝑦 ∈ 𝑊 1,𝐺(𝛺) ∶ 𝑢(𝑥) ≤ 𝑦(𝑥) ≤ 𝑣(𝑥) for a.a. 𝑥 ∈ 𝛺
}

.

Moreover, we need the Banach space 𝐶1(𝛺). This is an ordered Banach space with positive order cone

𝐶1(𝛺)+ =
{

𝑢 ∈ 𝐶1(𝛺), 𝑢(𝑥) ≥ 0 for all 𝑥 ∈ 𝛺
}

.

This cone has a nonempty interior given by

int(𝐶1(𝛺)+) =
{

𝑢 ∈ 𝐶1(𝛺)+, 𝑢(𝑥) > 0 for all 𝑥 ∈ 𝛺
}

.

efinition 2.6. Let 𝐽 ∈ 𝐶1(𝑊 1,𝐺(𝛺)). We say that 𝐽 satisfies the ‘‘Cerami condition’’, 𝐶-condition for short, if every sequence
{𝑢𝑛}𝑛∈N ⊆ 𝑊 1,𝐺(𝛺) such that {𝐽 (𝑢𝑛)}𝑛∈N ⊆ R is bounded and

(1 + |𝑢𝑛|)𝐽 ′(𝑢𝑛) ⟶ 0 in (𝑊 1,𝐺(𝛺))∗ as 𝑛→ +∞,

admits a strongly convergent subsequence. Where (𝑊 1,𝐺(𝛺))∗ is the topological dual of 𝑊 1,𝐺(𝛺).

Definition 2.7 (see [16]).

(1) A nonempty set 𝑆 is said ‘‘downward directed’’, if 𝑢1, 𝑢2 ∈ 𝑆, then we can find 𝑢 ∈ 𝑆 such that 𝑢 ≤ 𝑢1 and 𝑢 ≤ 𝑢2.
(2) A nonempty set 𝑆 is said ‘‘upward directed’’, if 𝑢1, 𝑢2 ∈ 𝑆, then we can find 𝑢 ∈ 𝑆 such that 𝑢1 ≤ 𝑢 and 𝑢2 ≤ 𝑢.

2.2. Further properties of orlicz-Sobolev spaces and the non-linear term 𝑓

In this subsection, we assume conditions (𝑔1) − (𝑔4) and explore new properties of the Orlicz-Sobolev spaces. We also establish
the variational framework for problem (P).

Evidently, 𝐺 and 𝐺̃ are complementary 𝑁-functions. Under the condition (𝑔2), the function 𝐺(𝑡) satisfies the ▵2-condition. We
assume also that the complementary 𝑁-function 𝐺̃ satisfies the ▵2-condition.

In the following, we give the proofs of some lemmas and theorem which will be used in the proofs of our results.
6
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Lemma 2.8. Suppose that (𝑔1) − (𝑔4) are satisfied. Then, for all 𝑎, 𝑏 ∈ R, we have

𝑔(𝑎 + 𝑏)𝑏 − 𝑔(𝑎)𝑏 ≥ 0 and (𝑔(𝑎) − 𝑔(𝑏))(𝑏 − 𝑎) ≤ 0.

Proof. The right inequality is simple. Indeed, since 𝑔 is increasing on R, then

𝑠𝑔𝑛 (𝑔(𝑎) − 𝑔(𝑏)) = −𝑠𝑔𝑛(𝑏 − 𝑎), for all 𝑎, 𝑏 ∈ R,

which gives us

(𝑔(𝑎) − 𝑔(𝑏))(𝑏 − 𝑎) ≤ 0, for all 𝑎, 𝑏 ∈ R.

For the left inequality, we make four cases (in all the cases have in mind the fact that 𝑔 is increasing on R). Case 1: If 𝑎 ≥ 0 and
𝑏 ≥ 0, then 𝑎 + 𝑏 ≥ 𝑎 and

(𝑔(𝑎 + 𝑏) − 𝑔(𝑎))
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏟

≥0

𝑏
⏟⏟⏟

≥0

≥ 0.

Case 2: If 𝑎 ≤ 0 and 𝑏 ≤ 0, then 𝑎 + 𝑏 ≤ 𝑎 and

(𝑔(𝑎 + 𝑏) − 𝑔(𝑎))
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏟

≤0

𝑏
⏟⏟⏟

≤0

≥ 0.

Case 3: If 𝑎 ≥ 0 and 𝑏 ≤ 0, then 𝑎 + 𝑏 ≤ 𝑎 and

(𝑔(𝑎 + 𝑏) − 𝑔(𝑎))
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏟

≤0

𝑏
⏟⏟⏟

≤0

≥ 0.

Case 4: If 𝑎 ≤ 0 and 𝑏 ≥ 0, then 𝑎 + 𝑏 ≥ 𝑎 and

(𝑔(𝑎 + 𝑏) − 𝑔(𝑎))
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏟

≥0

𝑏
⏟⏟⏟

≥0

≥ 0.

From Case 1−Case 4, we get

𝑔(𝑎 + 𝑏)𝑏 − 𝑔(𝑎)𝑏 ≥ 0, for all 𝑎, 𝑏 ∈ R.

This ends the proof. □

Lemma 2.9 ([26, Lemma 2.9]). Let 𝐺 be an 𝑁-function satisfying (𝑔1) − (𝑔3) such that 𝐺(𝑡) = ∫ 𝑡0 𝑔(𝑠) 𝑑𝑠 = ∫ 𝑡0 𝑎(|𝑠|)𝑠 𝑑𝑠. Then for every
𝜉, 𝜂 ∈ R𝑁 , we have

⟨𝑎(|𝜂|)𝜂 − 𝑎(|𝜉|)𝜉, 𝜂 − 𝜉⟩R𝑁 ≥ 0

where ⟨.⟩R𝑁 is the inner product on R𝑁 .

Lemma 2.10 ([31, Lemma 2.1]). Let 𝐺 be an 𝑁-function satisfying (𝑔1) − (𝑔4). Then for every 𝜂, 𝜉 ∈ R𝑁 ,

𝐺(|𝜂|) + 𝐺(|𝜉|)
2

≥ 𝐺
(

|

𝜂 + 𝜉
2

|

)

+ 𝐺
(

|

𝜂 − 𝜉
2

|

)

.

Lemma 2.11 ([32, Lemma 3.4]). Let 𝐺 be an 𝑁-function satisfying (𝑔1) − (𝑔4) such that 𝐺(𝑡) = ∫ 𝑡0 𝑔(𝑠)𝑑𝑠 = ∫ 𝑡0 𝑎(|𝑠|)𝑠𝑑𝑠. Then for every
, 𝜉 ∈ R𝑁∖ {0}, we have

(𝑎(|𝜂|)𝜂 − 𝑎(|𝜉|)𝜉) ⋅ (𝜂 − 𝜉) ≥ 4𝐺
(

|𝜂 − 𝜉|
2

)

.

Proof. Let 𝜂, 𝜉 ∈ R𝑁∖ {0}. Since 𝐺 is convex, we have

𝐺(|𝜂|) ≤ 𝐺
(

|

𝜂 + 𝜉
2

|

)

+ 𝑔(|𝜂|)
𝜂
|𝜂|

⋅
𝜂 − 𝜉
2

nd

𝐺(|𝜉|) ≤ 𝐺
(

|

𝜂 + 𝜉
2

|

)

+ 𝑔(|𝜉|)
𝜉
|𝜉|

⋅
𝜉 − 𝜂
2

.

dding the above two relations, we find that

1
2

(

𝑔(|𝜂|)
𝜂
|𝜂|

− 𝑔(|𝜉|)
𝜉
|𝜉|

)

⋅ (𝜂 − 𝜉) ≥ 𝐺(|𝜂|) + 𝐺(|𝜉|) − 2𝐺
(

|

𝜂 + 𝜉
2

|

)

(2.7)

or all 𝜂, 𝜉 ∈ R𝑁∖ 0 .
7
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On the other hand, we deduce by Lemma 2.10, that

𝐺(|𝜂|) + 𝐺(|𝜉|) ≥ 2𝐺
(

|

𝜂 + 𝜉
2

|

)

+ 2𝐺
(

|

𝜂 − 𝜉
2

|

)

(2.8)

for all 𝜂, 𝜉 ∈ R𝑁 .
From (2.7) and (2.8), we get

(

𝑔(|𝜂|)
𝜂
|𝜂|

− 𝑔(|𝜉|)
𝜉
|𝜉|

)

⋅ (𝜂 − 𝜉) ≥ 4𝐺
(

|𝜂 − 𝜉|
2

)

(2.9)

or all 𝜂, 𝜉 ∈ R𝑁∖ {0}.
Using (2.9) and the fact that 𝑔(𝑡) = 𝑎(|𝑡|)𝑡, for all 𝑡 ∈ R∖ {0}, we deduce our desired result

(𝑎(|𝜂|)𝜂 − 𝑎(|𝜉|)𝜉) ⋅ (𝜂 − 𝜉) ≥ 4𝐺
(

|𝜂 − 𝜉|
2

)

for all 𝜂, 𝜉 ∈ R𝑁∖ {0}. □

In what follows, we give some definitions and lemmas related to the variational setting of problem (P).

emma 2.12 (see [17,28]). Under the assumptions (𝑔1) − (𝑔2). If 𝑢𝑛 ⇀ 𝑢 in 𝑊 1,𝐺(𝛺) and

lim sup
𝑛→+∞ ∫𝛺

𝑎(|∇𝑢𝑛|)∇𝑢𝑛.∇(𝑢𝑛 − 𝑢) + 𝑎(|𝑢𝑛|)𝑢𝑛(𝑢𝑛 − 𝑢)𝑑𝑥 ≤ 0,

then

𝑢𝑛 → 𝑢 in 𝑊 1,𝐺(𝛺).

Definition 2.13. We say that 𝑢 ∈ 𝑊 1,𝐺(𝛺) is a weak solution of problem (P) if

∫𝛺
[𝑎(|∇𝑢|)∇𝑢.∇𝑣 + 𝑎(|𝑢|)𝑢𝑣] 𝑑𝑥 + ∫𝜕𝛺

𝑏(𝑥)|𝑢|𝑝−2𝑢𝑣𝑑𝛾 = 𝜆∫𝛺
𝑓 (𝑥, 𝑢)𝑣𝑑𝑥, ∀𝑣 ∈ 𝑊 1,𝐺(𝛺) (2.10)

where 𝑑𝛾 is the measure on the boundary 𝜕𝛺.
The energy functional corresponding to problem (P) is defined as 𝐽 ∶ 𝑊 1,𝐺(𝛺) → R

𝐽 (𝑢) = (𝑢) + 1
𝑝 ∫𝜕𝛺

𝑏(𝑥)|𝑢|𝑝𝑑𝛾 − 𝜆∫𝛺
𝐹 (𝑥, 𝑢)𝑑𝑥, (2.11)

where  is defined in (2.6).

Definition 2.14.

(1) A function 𝑢 ∈ 𝑊 1,𝐺(𝛺) is an ‘‘upper solution’’ for problem (P) if

∫𝛺
𝑎(|∇𝑢|)∇𝑢.∇𝑣𝑑𝑥 + ∫𝛺

𝑎(|𝑢|)𝑢𝑣𝑑𝑥 + ∫𝜕𝛺
𝑏(𝑥)|𝑢|𝑝−2𝑢𝑣𝑑𝛾 ≥ 𝜆∫𝛺

𝑓 (𝑥, 𝑢)𝑣𝑑𝑥, (2.12)

for all 𝑣 ∈ 𝑊 1,𝐺(𝛺)+.
(2) A function 𝑢 ∈ 𝑊 1,𝐺(𝛺) is a ‘‘ lower solution’’ for problem (P) if

∫𝛺
𝑎(|∇𝑢|)∇𝑢.∇𝑣𝑑𝑥 + ∫𝛺

𝑎(|𝑢|)𝑢𝑣𝑑𝑥 + ∫𝜕𝛺
𝑏(𝑥)|𝑢|𝑝−2𝑢𝑣𝑑𝛾 ≤ 𝜆∫𝛺

𝑓 (𝑥, 𝑢)𝑣𝑑𝑥, (2.13)

for all 𝑣 ∈ 𝑊 1,𝐺(𝛺)+.

efinition 2.15.

(1) We say that 𝑢0 ∈ 𝑊 1,𝐺(𝛺) is a local 𝐶1(𝛺)-minimizer of 𝐽 , if we can find 𝑟0 > 0 such that

𝐽 (𝑢0) ≤ 𝐽 (𝑢0 + 𝑣), for all 𝑣 ∈ 𝐶1(𝛺) with ‖𝑣‖𝐶1(𝛺) ≤ 𝑟0.

(2) We say that 𝑢0 ∈ 𝑊 1,𝐺(𝛺) is a local 𝑊 1,𝐺(𝛺)-minimizer of 𝐽 , if we can find 𝑟1 > 0 such that

𝐽 (𝑢0) ≤ 𝐽 (𝑢0 + 𝑣), for all 𝑣 ∈ 𝑊 1,𝐺(𝛺) with ‖𝑣‖ ≤ 𝑟1.

Now, we give some technical Lemmas related to the assumptions on the non-linear term 𝑓 .

Lemma 2.16. Suppose that 𝑓 satisfies (𝑓2) − (𝑓4). Then, for any 𝜀 > 0, there exist 𝐶𝜀 > 0 and 𝑟 ∈ (𝑔−, 𝑔−∗ ) such that

|𝑓 (𝑥, 𝑡)| ≤ 𝜀|𝑡|𝑔
−−1 + 𝐶𝜀|𝑡|

𝑟−1, |𝐹 (𝑥, 𝑡)| ≤ 𝜀 1
𝑔−

|𝑡|𝑔
−
+ 1
𝑟
𝐶𝜀|𝑡|

𝑟, (2.14)

or each 𝑥 ∈ 𝛺 and 𝑡 ∈ R.
8
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Proof. For 𝜀 > 0, we can use (𝑓3) to obtain 𝛿 > 0, such that

𝑓 (𝑥, 𝑡) ≤ 𝜀|𝑡|𝑔
−−1, ∀𝑥 ∈ 𝛺, |𝑡| ≤ 𝛿. (2.15)

By (𝑓2), there exists 𝑟1 > 0 such that

𝐹 (𝑥, 𝑡) ≥ |𝑡|𝑔
+
, for all 𝑥 ∈ 𝛺 and |𝑡| ≥ 𝑟1,

which gives us

𝐹 (𝑥, 𝑡) = 1
𝑔+
𝑓 (𝑥, 𝑡)𝑡 − 𝐹 (𝑥, 𝑡) ≤ 1

𝑔+
𝑓 (𝑥, 𝑡)𝑡, for all 𝑥 ∈ 𝛺 and |𝑡| ≥ 𝑟1. (2.16)

From (2.16) and (𝑓4), we get

|𝑓 (𝑥, 𝑡)|𝜎 ≤ 𝑐|𝑡|(𝑔
−−1)𝜎𝐹 (𝑥, 𝑡) ≤ 𝑐

𝑔+
|𝑡|(𝑔

−−1)𝜎+1
|𝑓 (𝑥, 𝑡)|,

for all 𝑥 ∈ 𝛺 and |𝑡| ≥ 𝑟2 = max{𝑟0, 𝑟1}, which is equivalent to

|𝑓 (𝑥, 𝑡)|𝜎−1 ≤ 𝑐
𝑔+

|𝑡|(𝑔
−−1)𝜎+1 (2.17)

or all 𝑥 ∈ 𝛺 and |𝑡| ≥ 𝑟2. It follows, by (2.17), that

|𝑓 (𝑥, 𝑡)| ≤
(

𝑐
𝑔+

)
1
𝜎−1

|𝑡|
(𝑔−−1)𝜎+1

𝜎−1 =
(

𝑐
𝑔+

)
1
𝜎−1

|𝑡|𝑟−1, (2.18)

or all 𝑥 ∈ 𝛺 and |𝑡| ≥ 𝑟2, where 𝑔− < 𝑟 = 𝑔−𝜎
𝜎−1 < 𝑔

−
∗ .

Next, since we have 𝑓 (𝑥,𝑡)
|𝑡|𝑟−1

is continuous, then we can find 𝐶𝜀 > 0, such that

|𝑓 (𝑥, 𝑡)| ≤ 𝐶𝜀|𝑡|
𝑟−1, (2.19)

for all 𝑥 ∈ 𝛺 and 𝛿 ≤ |𝑡| ≤ 𝑟2.
Putting together (2.15), (2.18) and (2.19), we get

|𝑓 (𝑥, 𝑡)| ≤ 𝜀|𝑡|𝑔
−−1 + 𝐶𝜀|𝑡|

𝑟−1, for all 𝑥 ∈ 𝛺 and 𝑡 ∈ R.

Then

|𝐹 (𝑥, 𝑡)| ≤ 𝜀 1
𝑔−

|𝑡|𝑔
−
+ 𝐶𝜀

1
𝑟
|𝑡|𝑟, for all 𝑥 ∈ 𝛺 and 𝑡 ∈ R.

hus the proof. □

emma 2.17. Under the assumptions (𝑓1), (𝑓 ′
3) and (𝑔3), we have

(1)

𝑡⟼
𝑔(𝑡)
𝑡𝑞+−1

is increasing on (0,+∞), (2.20)

(2)

𝑡⟼
𝑞(𝑡)
𝑡𝑞+−1

is non-increasing on (0,+∞), (2.21)

(3)

𝑡⟼
ℎ(𝑡)
𝑡𝑞+−1

is increasing on (0,+∞), (2.22)

(4)

𝑡⟼ 𝐺(𝑡
1
𝑞+ ) is convex on (0,+∞). (2.23)

Proof. (1) The proof of (1) follows directly from the following fact

𝑔′(𝑡)𝑡𝑞
+−1 − (𝑞+ − 1)𝑡𝑞

+−2𝑔(𝑡) ≥ (𝑔− − 1)𝑔(𝑡)𝑡𝑞
+−2 − (𝑞+ − 1)𝑡𝑞

+−2𝑔(𝑡)

= [(𝑔− − 1) − (𝑞+ − 1)]𝑔(𝑡)𝑡𝑞
+−2 > 0,

or all 𝑡 > 0. In the above inequality, we used assumption (𝑔3).
(2) From (𝑓 ′

3), we find

𝑞′(𝑡)𝑡𝑞
+−1 − (𝑞+ − 1)𝑡𝑞

+−2𝑞(𝑡) ≤ (𝑞+ − 1)𝑞(𝑡)𝑡𝑞
+−2 − (𝑞+ − 1)𝑡𝑞

+−2𝑞(𝑡) = 0, for all 𝑡 > 0.
9
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This proves (2).
(3) By (𝑓1), we have

ℎ′(𝑡)𝑡𝑞
+−1 − (𝑞+ − 1)𝑡𝑞

+−2ℎ(𝑡) ≥ (ℎ− − 1)ℎ(𝑡)𝑡𝑞
+−2 − (𝑞+ − 1)𝑡𝑞

+−2ℎ(𝑡)

= [(ℎ− − 1) − (𝑞+ − 1)]ℎ(𝑡)𝑡𝑞
+−2 > 0,

for all 𝑡 > 0. Which conclude the proof of (3).
(4) Using (𝑓 ′

3) and (𝑔3), we obtain that

1
(𝑞+)2

𝑔′(𝑡
1
𝑞+ )𝑡

2−2𝑞+
𝑞+ +

1 − 𝑞+

(𝑞+)2
𝑔(𝑡

1
𝑞+ )𝑡

1−2𝑞+
𝑞+ = 1

(𝑞+)2
𝑔′(𝑡

1
𝑞+ )𝑡

2−2𝑞+
𝑞+ −

𝑞+ − 1
(𝑞+)2

𝑔(𝑡
1
𝑞+ )𝑡

1−2𝑞+
𝑞+

≥ 𝑔− − 1
(𝑞+)2

𝑔(𝑡
1
𝑞+ )𝑡

2−2𝑞+
𝑞+ − 1

𝑞+ −
𝑞+ − 1
(𝑞+)2

𝑔(𝑡
1
𝑞+ )𝑡

1−2𝑞+
𝑞+

= 𝑔(𝑡
1
𝑞+ )𝑡

1−2𝑞+
𝑞+

[

𝑔− − 1
(𝑞+)2

−
𝑞+ − 1
(𝑞+)2

]

> 0 (since 𝑞+ < 𝑔−).

hus ends the proof. □

. Fixed sign solutions

In this Section, under each class of assumptions on 𝑓 , we prove the existence of at least two weak solutions with constant sign
fixed sign) to the problem (P). Namely, we give the proofs of Theorems 1.3 and 1.4.

Before that we give the following result.

roposition 3.1. Assume that the assumptions (𝑓1) and (𝑔1) − (𝑔2) hold. Let 𝑢 ∈ 𝑊 1,𝐺(𝛺) ∩ (𝐶1(𝛺)+) be a non-negative ( 𝑣 ∈
𝑊 1,𝐺(𝛺) ∩ (−𝐶1(𝛺)+) be a non-positive ) weak solution for the problem (P). Then 𝑢 ∈ int(𝐶1(𝛺)+) is a positive ( 𝑣 ∈ −int(𝐶1(𝛺)+)
s a negative ) weak solution for the problem (P).

roof. Let 𝑢 ∈ 𝑊 1,𝐺(𝛺) ∩ (𝐶1(𝛺)+) be a non-negative weak solution for the problem (P). Then, we can fix 𝑀 > max{‖∇𝑢‖∞, 1} and

𝑎̃(𝑡) =

{

𝑎(𝑡), 𝑡 ≤𝑀
𝑡𝑔−−2

𝑀𝑔−−2 𝑎(𝑀), 𝑡 > 𝑀.
(3.24)

Using the assumption (𝑔2) and Lemma 2.3, we obtain

𝑎̃(|𝜂|)|𝜂|2 = 𝑎(|𝜂|)|𝜂|2 = 𝑔(|𝜂|)|𝜂| ≥ 𝑔−𝐺(|𝜂|)

≥ 𝐺(1)min{|𝜂|𝑔
−
, |𝜂|𝑔

+
}

≥ 𝐺(1)(|𝜂|𝑔
−
− 1), for |𝜂| ≤𝑀. (3.25)

Hence, by Lemma 2.3, we get

𝑎̃(|𝜂|)|𝜂|2 =
|𝜂|𝑔

−−2

𝑀𝑔−−2
𝑎(𝑀)|𝜂|2 =

𝑎(𝑀)
𝑀𝑔−−2

|𝜂|𝑔
−
, for |𝜂| > 𝑀. (3.26)

rom (3.25) and (3.26), we can find 𝛼1, 𝛼2 > 0 such that

𝑎̃(|𝜂|)|𝜂|2 ≥ 𝛼1|𝜂|
𝑔− − 𝛼2, ∀ 𝜂 ∈ R𝑁 . (3.27)

ext, we define the function 𝐴̃ ∶ 𝛺 × R𝑁 → R𝑁 by 𝐴̃(𝑥, 𝜂) = 1
𝛼1
𝑎̃(|𝜂|)𝜂, that is

𝐴̃(𝑥, 𝜂) =

⎧

⎪

⎨

⎪

⎩

1
𝛼1
𝑎(|𝜂|)𝜂, |𝜂| ≤𝑀

1
𝛼1

|𝜂|𝑔
−−2

𝑀𝑔−−2 𝑎(𝑀)𝜂, |𝜂| > 𝑀.
(3.28)

Again, using assumption (𝑔2) and Lemma 2.3, we obtain

|𝐴̃(𝑥, 𝜂)| = 1
𝛼1
𝑎(|𝜂|)|𝜂| = 1

𝛼1
𝑔(|𝜂|) ≤ 𝑔(1)

𝛼1
max{|𝜂|𝑔

−−1, |𝜂|𝑔
+−1}

≤ 𝑔(1)
𝛼1

(

|𝜂|𝑔
−−1 +𝑀𝑔+−1

)

, for |𝜂| ≤𝑀. (3.29)

lso, by (3.28), we have

|𝐴̃(𝑥, 𝜂)| = 1 𝑎(𝑀)
− |𝜂|𝑔

−−1, for |𝜂| > 𝑀. (3.30)
10
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Putting together (3.29) and (3.30), we infer that

|𝐴̃(𝑥, 𝜂)| ≤ 𝑐1|𝜂|
𝑔−−1 + 𝑐2, for all 𝜂 ∈ R𝑁 (3.31)

for some 𝑐1, 𝑐2 > 0.
From (3.27), it follows that

𝐴̃(𝑥, 𝜂) ⋅ 𝜂 = 1
𝛼1
𝑎̃(|𝜂|)|𝜂|2 ≥ |𝜂|𝑔

−
−
𝛼2
𝛼1
, for all 𝜂 ∈ R𝑁 . (3.32)

Setting 𝐵(𝑥, 𝑢) ∶= 1
𝛼1
𝑎(|𝑢(𝑥)|)𝑢(𝑥) − 𝑓 (𝑥, 𝑢(𝑥)), we infer that 𝑢 is a weak solution for the following quasilinear problem

−div(𝐴̃(𝑥,∇𝑢)) + 𝐵̃(𝑥, 𝑢) = 0 in 𝛺.

Since 𝐴̃ satisfies the inequalities (3.31) and (3.32), then, from [33, Theorem 1.1, p. 724], we deduce that 𝑢 ∈ int(𝐶1(𝛺)+) is a
positive weak solution for the problem (P).

On the other side, if we let 𝑣 ∈ 𝑊 1,𝐺(𝛺)∩ (−𝐶1(𝛺)+) be a non-positive weak solution for the problem (P) such that 𝑢 ∈ −𝐶1(𝛺)+.
Then, we can see that 𝑤 = −𝑣 ∈ 𝑊 1,𝐺(𝛺) ∩ 𝐶1(𝛺)+ is a non-negative weak solution for the following problem

{

−div(𝑎(|∇𝑢(𝑥)|)∇𝑢(𝑥)) + 𝑎(|𝑢(𝑥)|)𝑢(𝑥) = 𝜆𝑔(𝑥, 𝑢(𝑥)), 𝑥 ∈ 𝛺

𝑎(|∇𝑢(𝑥)|) 𝜕𝑢(𝑥)𝑑𝜈 + 𝑏(𝑥)|𝑢(𝑥)|𝑝−2𝑢(𝑥) = 0, 𝑥 ∈ 𝜕𝛺,
(P1)

where 𝑔(𝑥, 𝑡) = −𝑓 (𝑥,−𝑡) for all 𝑥 ∈ 𝛺 and 𝑡 ∈ R.
Using the same argument as above, we prove that 𝑤 ∈ int(𝐶1(𝛺)+) is a positive weak solution for the problem (P1). So, we

educe that 𝑣 ∈ −int(𝐶1(𝛺)+) is a negative weak solution for the problem (P). Thus, the proof is complete. □

.1. Proof of Theorem 1.3

First, let us introduce the Carathéodory functions 𝑓+ ∶ 𝛺 × R → R defined by

𝑓+(𝑥, 𝑡) =

{

𝜆𝑓 (𝑥, 𝑡) if 𝑡 ≥ 0

0 if 𝑡 < 0,
(3.33)

nd 𝑓− ∶ 𝛺 × R → R defined by

𝑓−(𝑥, 𝑡) =

{

𝜆𝑓 (𝑥, 𝑡) if 𝑡 ≤ 0

0 if 𝑡 > 0.
(3.34)

e set 𝐹±(𝑥, 𝑠) = ∫ 𝑠0 𝑓±(𝑥, 𝑡)𝑑𝑡 and consider the 𝐶1-functionals 𝐽± ∶ 𝑊 1,𝐺(𝛺) → R defined by

𝐽±(𝑢) = (𝑢) + 1
𝑝 ∫𝜕𝛺

𝑏(𝑥)|𝑢|𝑝𝑑𝛾 − ∫𝛺
𝐹±(𝑥, 𝑢)𝑑𝑥, for all 𝑢 ∈ 𝑊 1,𝐺(𝛺). (3.35)

Let 𝐹±(𝑥, 𝑡) =
1
𝑔+ 𝑓±(𝑥, 𝑡)𝑡 − 𝐹±(𝑥, 𝑡), for all 𝑥 ∈ 𝛺 and 𝑡 ∈ R.

Proposition 3.2. Assume that the assumptions of Theorem 1.3 hold. If {𝑢𝑛}𝑛∈N ⊂ 𝑊 1,𝐺(𝛺) is a (𝐶)𝑐± -sequence for 𝐽±, that is

𝐽±(𝑢𝑛) ⟶ 𝑐± and (1 + ‖𝑢𝑛‖)‖𝐽 ′
±(𝑢𝑛)‖(𝑊 1,𝐺 (𝛺))∗ ⟶ 0, as 𝑛⟶ +∞.

hen {𝑢𝑛}𝑛∈N is bounded in 𝑊 1,𝐺(𝛺).

roof. We give the proof for the functional 𝐽+; the proof for 𝐽− is similar.
Let {𝑢𝑛}𝑛∈N ⊂ 𝑊 1,𝐺(𝛺) be a (𝐶)𝑐+ -sequence for 𝐽+, that is

𝐽+(𝑢𝑛) ⟶ 𝑐+ and (1 + ‖𝑢𝑛‖)‖𝐽 ′
+(𝑢𝑛)‖(𝑊 1,𝐺 (𝛺))∗ ⟶ 0, as 𝑛⟶ +∞.

hen

𝐽+(𝑢𝑛) ⟶ 𝑐+ and ⟨𝐽 ′
+(𝑢𝑛), 𝑢𝑛⟩ ⟶ 0, as 𝑛⟶ +∞. (3.36)

y (3.36) and assumption (𝑔2), for 𝑛 sufficiently large, there exists 𝐶 > 0 such that

𝐶 ≥ 𝐽+(𝑢𝑛) −
1
𝑔+

⟨𝐽 ′
+(𝑢𝑛), 𝑢𝑛⟩

≥ ∫𝛺

[

1
𝑔+
𝑓+(𝑥, 𝑢𝑛)𝑢𝑛 − 𝐹+(𝑥, 𝑢𝑛)

]

𝑑𝑥

= ∫𝛺
𝐹+(𝑥, 𝑢𝑛)𝑑𝑥. (3.37)
11
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Arguing by contradiction, we assume that ‖𝑢𝑛‖ ⟶ +∞, then ‖𝑢𝑛‖ ≥ 1 for 𝑛 large enough. Let 𝑣𝑛 =
𝑢𝑛

‖𝑢𝑛‖
∈ 𝑊 1,𝐺(𝛺) with ‖𝑣𝑛‖ = 1

and up to subsequence we can assume that

𝑣𝑛 ⇀ 𝑣 in 𝑊 1,𝐺(𝛺) and 𝑣𝑛(𝑥) → 𝑣(𝑥) a.e. 𝑥 ∈ 𝛺.

Note that, exploiting Lemma 2.3 and assumption (𝑔2), we find that

⟨𝐽 ′
+(𝑢𝑛), 𝑢𝑛⟩ = ∫𝛺

𝑎(|∇𝑢𝑛|)∇𝑢𝑛.∇𝑢𝑛𝑑𝑥 + ∫𝛺
𝑎(|𝑢𝑛|)𝑢𝑛.𝑢𝑛𝑑𝑥

+ ∫𝜕𝛺
𝑏(𝑥)|𝑢𝑛|

𝑝𝑑𝑥 − ∫𝛺
𝑓+(𝑥, 𝑢𝑛)𝑢𝑛𝑑𝑥

≥ ∫𝛺
𝑎(|∇𝑢𝑛|)∇𝑢𝑛.∇𝑢𝑛𝑑𝑥 + ∫𝛺

𝑎(|𝑢𝑛|)𝑢𝑛.𝑢𝑛𝑑𝑥

− ∫𝛺
𝑓+(𝑥, 𝑢𝑛)𝑢𝑛𝑑𝑥

≥ 𝑔−(𝑢𝑛) − ∫𝛺
𝑓+(𝑥, 𝑢𝑛)𝑢𝑛𝑑𝑥

≥ ‖𝑢𝑛‖
𝑔− − ∫𝛺

𝑓+(𝑥, 𝑢𝑛)𝑢𝑛𝑑𝑥, (since ‖𝑢𝑛‖ ≥ 1) (3.38)

or 𝑛 large enough, thus
⟨𝐽 ′

+(𝑢𝑛), 𝑢𝑛⟩
‖𝑢𝑛‖𝑔

− ≥ 1 − ∫𝛺

𝑓+(𝑥, 𝑢𝑛)
‖𝑢𝑛‖𝑔

− 𝑢𝑛𝑑𝑥. (3.39)

t follows, from (3.36) and (3.39), that

lim sup
𝑛→+∞ ∫𝛺

𝑓+(𝑥, 𝑢𝑛)
‖𝑢𝑛‖𝑔

− 𝑢𝑛𝑑𝑥 ≥ 1. (3.40)

et for 𝑟 ≥ 0

F(𝑟) ∶= inf
{

𝐹+(𝑥, 𝑠) ∶ 𝑥 ∈ 𝛺 and 𝑠 ∈ R with 𝑠 ≥ 𝑟
}

.

y (𝑓4), we have

F(𝑟) > 0, for all 𝑟 large, and F(𝑟) → +∞ as 𝑟 → +∞.

or 0 ≤ 𝑎 < 𝑏 ≤ +∞ let

𝐴𝑛(𝑎, 𝑏) ∶=
{

𝑥 ∈ 𝛺 ∶ 𝑎 ≤ |𝑢𝑛(𝑥)| < 𝑏
}

nd

𝑐𝑏𝑎 ∶= inf
{

𝐹+(𝑥, 𝑠)
|𝑠|𝑔−

∶ 𝑥 ∈ 𝛺 and 𝑠 ∈ R ⧵ {0} with 𝑎 ≤ |𝑠| < 𝑏
}

.

Note that

𝐹+(𝑥, 𝑢𝑛) ≥ 𝑐𝑏𝑎|𝑢𝑛|
𝑔− , for all 𝑥 ∈ 𝐴𝑛(𝑎, 𝑏). (3.41)

t follows from (3.37) that

𝐶 ≥ ∫𝛺
𝐹+(𝑥, 𝑢𝑛)𝑑𝑥

= ∫𝐴𝑛(0,𝑎)
𝐹+(𝑥, 𝑢𝑛)𝑑𝑥 + ∫𝐴𝑛(𝑎,𝑏)

𝐹+(𝑥, 𝑢𝑛)𝑑𝑥 + ∫𝐴𝑛(𝑏,+∞)
𝐹+(𝑥, 𝑢𝑛)𝑑𝑥

≥ ∫𝐴𝑛(0,𝑎)
𝐹+(𝑥, 𝑢𝑛)𝑑𝑥 + 𝑐𝑏𝑎 ∫𝐴𝑛(𝑎,𝑏)

|𝑢𝑛|
𝑔−𝑑𝑥 + F(𝑏)|𝐴𝑛(𝑏,+∞)| (3.42)

or 𝑛 large enough.
Using Theorem 2.5, we get 𝛾3 > 0 such that ‖𝑣𝑛‖𝑟 ≤ 𝛾3‖𝑣𝑛‖ = 𝛾3 with 1 ≤ 𝑟 < 𝑔−∗ .
Let 0 < 𝜀 < 1

3 . By assumption (𝑓3), there exists 𝑎𝜀 > 0 such that

|𝑓+(𝑥, 𝑠)| ≤
𝜀
3𝛾3

|𝑠|𝑔
−−1 for each |𝑠| ≤ 𝑎𝜀. (3.43)

From (3.43) and Theorem 2.5, we obtain

∫𝐴𝑛(0,𝑎𝜀)

𝑓+(𝑥, 𝑢𝑛)
‖𝑢𝑛‖𝑔

− 𝑢𝑛𝑑𝑥 ≤ 𝜀
3𝛾3 ∫𝐴𝑛(0,𝑎𝜀)

|𝑢𝑛|
𝑔−−1

‖𝑢𝑛‖𝑔
− 𝑢𝑛𝑑𝑥

≤ 𝜀
|𝑣𝑛|

𝑔−𝑑𝑥
12

3𝛾3 ∫𝐴𝑛(0,𝑎𝜀)
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≤ 𝜀
3𝛾3

𝛾3‖𝑣𝑛‖
𝑔−

= 𝜀
3
, for all 𝑛 ∈ N. (3.44)

Now, exploiting (3.42) and assumption (𝑓4), we see that

𝐶 ′ ≥ ∫𝐴𝑛(𝑏,+∞)
𝐹+(𝑥, 𝑢𝑛)𝑑𝑥 ≥ F(𝑏)|𝐴𝑛(𝑏,+∞)|,

where 𝐶 ′ > 0. It follows, using the fact F(𝑏) → +∞ as 𝑏→ +∞, that

|𝐴𝑛(𝑏,+∞)| → 0, as 𝑏→ +∞, uniformly in 𝑛. (3.45)

Set 𝜎′ = 𝜎
𝜎−1 (where 𝜎 is defined in (𝑓4)). Since 𝜎 > 𝑁

𝑔− , one sees that 𝑔−𝜎′ ∈ (𝑔−, 𝑔−∗ ).
Let 𝜏 ∈ (𝑔−𝜎′, 𝑔−∗ ). Using Theorem 2.5, the Hölder inequality and (3.45), for 𝑏 large, we find

(

∫𝐴𝑛(𝑏,+∞)
|𝑣𝑛|

𝑔−𝜎′𝑑𝑥

)
1
𝜎′

≤ |𝐴𝑛(𝑏,+∞)|
𝜏−𝑔−𝜎′
𝜏𝜎′

(

∫𝐴𝑛(𝑏,+∞)
|𝑣𝑛|

𝑔−𝜎′ 𝜏
𝑔−𝜎′ 𝑑𝑥

)
𝑔−
𝜏

≤ |𝐴𝑛(𝑏,+∞)|
𝜏−𝑔−𝜎′
𝜏𝜎′

(

∫𝐴𝑛(𝑏,+∞)
|𝑣𝑛|

𝜏𝑑𝑥

)
𝑔−
𝜏

≤ |𝐴𝑛(𝑏,+∞)|
𝜏−𝑔−𝜎′
𝜏𝜎′ 𝛾‖𝑣𝑛‖

𝑔−

= |𝐴𝑛(𝑏,+∞)|
𝜏−𝑔−𝜎′
𝜏𝜎′ 𝛾

≤ 𝜀
3
, uniformly in 𝑛. (3.46)

y (𝑓4), Hölder inequality, (3.37) and (3.46), we can choose 𝑏𝜀 ≥ 𝑟0 large so that

∫𝐴𝑛(𝑏𝜀 ,+∞)

𝑓+(𝑥, 𝑢𝑛)
‖𝑢𝑛‖𝑔

− 𝑢𝑛𝑑𝑥 ≤ ∫𝐴𝑛(𝑏𝜀 ,+∞)

𝑓+(𝑥, 𝑢𝑛)

|𝑢𝑛|
𝑔−−1

|𝑣𝑛|
𝑔−𝑑𝑥

≤

(

∫𝐴𝑛(𝑏𝜀 ,+∞)

|

|

|

|

|

𝑓+(𝑥, 𝑢𝑛)

|𝑢𝑛|
𝑔−−1

|

|

|

|

|

𝜎

𝑑𝑥

)
1
𝜎
(

∫𝐴𝑛(𝑏𝜀 ,+∞)
|𝑣𝑛|

𝑔−𝜎′𝑑𝑥

)
1
𝜎′

≤

(

𝑐 ∫𝐴𝑛(𝑏𝜀 ,+∞)
𝐹+(𝑥, 𝑢𝑛)𝑑𝑥

)
1
𝜎
(

∫𝐴𝑛(𝑏𝜀 ,+∞)
|𝑣𝑛|

𝑔−𝜎′𝑑𝑥

)
1
𝜎′

≤ 𝜀
3
, uniformly in 𝑛. (3.47)

ext, from (3.42), we have

∫𝐴𝑛(𝑎,𝑏)
|𝑣𝑛|

𝑔−𝑑𝑥 = 1
‖𝑢𝑛‖𝑔

− ∫𝐴𝑛(𝑎,𝑏)
|𝑢𝑛|

𝑔−𝑑𝑥

≤ 𝐶 ′′

𝑐𝑏𝑎‖𝑢𝑛‖𝑔
− ⟶ 0 as 𝑛⟶ +∞, (3.48)

here 𝐶 ′′ > 0. Since 𝑓+(𝑥,𝑠)
|𝑠|𝑔−−1 is continuous on 𝑎 ≤ |𝑠| ≤ 𝑏, then, there exists 𝑐 > 0 depend on 𝑎 and 𝑏 and independent from 𝑛, such

that

|𝑓+(𝑥, 𝑢𝑛)| ≤ 𝑐|𝑢𝑛|
𝑔−−1, for all 𝑥 ∈ 𝐴𝑛(𝑎, 𝑏). (3.49)

Using (3.48) and (3.49), we can choose 𝑛0 large enough such that

∫𝐴𝑛(𝑎𝜀 ,𝑏𝜀)

𝑓+(𝑥, 𝑢𝑛)
‖𝑢𝑛‖𝑔

− 𝑢𝑛𝑑𝑥 ≤ ∫𝐴𝑛(𝑎𝜀 ,𝑏𝜀)

𝑓+(𝑥, 𝑢𝑛)

|𝑢𝑛|
𝑔−−1

|𝑣𝑛|
𝑔−𝑑𝑥

≤ 𝑐 ∫𝐴𝑛(𝑎𝜀 ,𝑏𝜀)
|𝑣𝑛|

𝑔−𝑑𝑥

≤ 𝑐 𝐶 + 1
𝑐𝑏𝜀𝑎𝜀‖𝑢𝑛‖

𝑔−

≤ 𝜀
3
, for all 𝑛 ≥ 𝑛0. (3.50)

Putting together (3.44), (3.47) and (3.50), we find that

∫𝛺

𝑓+(𝑥, 𝑢𝑛)
‖𝑢𝑛‖𝑔

− 𝑢𝑛𝑑𝑥 ≤ 𝜀, for all 𝑛 ≥ 𝑛0.

1,𝐺
13

Which is contradict with (3.40). Therefore, {𝑢𝑛}𝑛∈N is bounded in 𝑊 (𝛺). □
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Proposition 3.3. Assume that (𝑓1) − (𝑓4) and (𝑔1) − (𝑔4) hold. Then, 𝐽± satisfies the 𝐶-condition at level 𝑐±.

Proof. Let {𝑢𝑛} ⊂ 𝑊 1,𝐺(𝛺) be a (𝐶)𝑐± -sequence for 𝐽±, that is

𝐽±(𝑢𝑛) ⟶ 𝑐± and (1 + ‖𝑢𝑛‖)‖𝐽 ′
±(𝑢𝑛)‖(𝑊 1,𝐺 (𝛺))∗ ⟶ 0, as 𝑛⟶ +∞. (3.51)

By Proposition 3.2, we see that {𝑢𝑛} is bounded. Then, up to a subsequence, there exists 𝑢 ∈ 𝑊 1,𝐺(𝛺) such that 𝑢𝑛 converges to 𝑢
eakly in 𝑊 1,𝐺(𝛺), strongly in 𝐿𝑟(𝛺), 1 ≤ 𝑟 < 𝑔−∗ , and a.e. in 𝛺.

From (3.51), we have

lim
𝑛→+∞

⟨𝐽 ′
±(𝑢𝑛), 𝑢𝑛 − 𝑢⟩ = 0. (3.52)

ince the embedding 𝑊 1,𝐺(𝛺) ↪ 𝐿𝑟(𝜕𝛺) is compact for 1 ≤ 𝑟 < 𝑔−∗ (see Theorem 2.5), then, by Hölder inequality, we get

∫𝜕𝛺
𝑏(𝑥)|𝑢𝑛|

𝑝−2𝑢𝑛(𝑢𝑛 − 𝑢)𝑑𝑥 ≤ ‖𝑏‖𝐿∞(𝜕𝛺)‖𝑢𝑛‖
𝑝−1
𝑝 ‖𝑢𝑛 − 𝑢‖𝑝 ⟶ 0, as 𝑛⟶ +∞. (3.53)

sing, (𝑓1), Hölder inequality, Lemma 2.1 and the fact that the embedding 𝑊 1,𝐺(𝛺) ↪ 𝐿𝐻 (𝛺) and 𝑊 1,𝐺(𝛺) ↪ 𝐿1(𝛺) are compact
see Theorems 2.4 and 2.5), we find that

∫𝛺
𝑓±(𝑥, 𝑢𝑛)(𝑢𝑛 − 𝑢)𝑑𝑥 ≤ ‖𝑎‖𝐿∞(𝛺)

(

∫𝛺
|𝑢𝑛 − 𝑢|𝑑𝑥 + ∫𝛺

ℎ(|𝑢𝑛|)|𝑢𝑛 − 𝑢|𝑑𝑥
)

≤ ‖𝑎‖𝐿∞(𝛺)

(

∫𝛺
|𝑢𝑛 − 𝑢|𝑑𝑥 + ‖ℎ(|𝑢𝑛|)‖(𝐻̃)‖𝑢𝑛 − 𝑢‖(𝐻)

)

≤ ‖𝑎‖𝐿∞(𝛺)

(

∫𝛺
|𝑢𝑛 − 𝑢|𝑑𝑥 + 𝐶̃‖𝑢𝑛 − 𝑢‖(𝐻)

)

⟶ 0, as 𝑛→ +∞ (3.54)

here 𝐶̃ > 0.
From (3.52), (3.53) and (3.54), we obtain

lim sup
𝑛→+∞ ∫𝛺

𝑎(|∇𝑢𝑛|)∇𝑢𝑛.∇(𝑢𝑛 − 𝑢) + 𝑎(|𝑢𝑛|)𝑢𝑛(𝑢𝑛 − 𝑢)𝑑𝑥 ≤ 0.

t follows, by Lemma 2.12, that

𝑢𝑛 → 𝑢 in 𝑊 1,𝐺(𝛺).

hus the proof. □

The next result deals with Mountain Pass Geometry of 𝐽±.

roposition 3.4. Under the assumptions of Theorem 1.3, there exists 𝜆∗ > 0 such that the functionals 𝐽± satisfy the following conditions
or all 𝜆 ≤ 𝜆∗:

(1) there exist 𝜌, 𝛼 > 0 such that

𝐽±(𝑢) ≥ 𝛼, for all 𝑢 ∈ 𝑊 1,𝐺(𝛺) with ‖𝑢‖ = 𝜌;

(2) there exists 𝑒 ∈ 𝐵𝑐𝜌(0) verifying 𝐽±(𝑒) < 0.

roof. (1) Let 𝑢 ∈ 𝑊 1,𝐺(𝛺) such that ‖𝑢‖ ≤ 1. Using Lemmas 2.3, 2.16 (for 𝜀 = 1) and Theorem 2.5, we infer that

𝐽±(𝑢) ≥ ‖𝑢‖𝑔
+
− ∫𝛺

𝐹±(𝑥, 𝑢)𝑑𝑥

≥ ‖𝑢‖𝑔
+
− 𝜆

(

∫𝛺
|𝑢|𝑔

−
𝑑𝑥 + 𝐶1 ∫𝛺

|𝑢|𝑟𝑑𝑥
)

≥ ‖𝑢‖𝑔
+
− 𝜆

(

𝐶𝑔−‖𝑢‖
𝑔− + 𝐶𝑟𝐶1‖𝑢‖

𝑟)

≥ ‖𝑢‖𝑔
+
− 𝜆

(

𝐶𝑔− + 𝐶𝑟𝐶1
)

‖𝑢‖𝑔
−

(since 𝑔− < 𝑟). (3.55)

hoosing 𝜆∗ = 1
2(𝐶𝑔−+𝐶𝑟𝐶1)

, then,

2𝜆(𝐶𝑔− + 𝐶𝑟𝐶1) < 1, for all 0 < 𝜆 < 𝜆∗.

et, for 𝜆 ∈ (0, 𝜆∗), (2𝜆𝛼)
1

𝑔+−𝑔− < 𝜌 < 1 such that

𝐽 (𝑢) ≥ 𝛼 =
𝜌𝑔+

, for ‖𝑢‖ = 𝜌.
14

± 2
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(2) From (𝑓2), for any 𝐴 > 0, there exists 𝑅𝐴 > 0, such that

𝐴|𝑡|𝑔
+ ≤ 𝐹±(𝑥, 𝑡), for all 𝑥 ∈ 𝛺 and all |𝑡| ≥ 𝑅𝐴. (3.56)

Let 𝑢 ∈ 𝑊 1,𝐺(𝛺) such that ‖𝑢‖ ≥ 1. Using (3.56) and Lemmas 2.3, 2.16, for |𝑡| ≥ 𝑅𝐴, we obtain

𝐽±(𝑡𝑢) ≤ ‖𝑡𝑢‖𝑔
+
+ 1
𝑝 ∫𝜕𝛺

𝑏(𝑥)|𝑡𝑢|𝑝𝑑𝛾 − 𝐴∫𝛺
|𝑡𝑢|𝑔

+

≤ |𝑡|𝑔
+
‖𝑢‖𝑔

+
+

|𝑡|𝑝

𝑝
‖𝑏‖∞ ∫𝜕𝛺

|𝑢|𝑝𝑑𝛾 − 𝐴|𝑡|𝑔
+

∫𝛺
|𝑢|𝑔

+

≤ |𝑡|𝑔
+
‖𝑢‖𝑔

+
+

|𝑡|𝑝

𝑝
‖𝑏‖∞ ∫𝜕𝛺

|𝑢|𝑝𝑑𝛾 − 𝐴|𝑡|𝑔
+
‖𝑢‖𝑔

+

𝑔+

≤ |𝑡|𝑔
+
‖𝑢‖𝑔

+
+

|𝑡|𝑝

𝑝
‖𝑏‖∞𝐶𝑝‖𝑢‖

𝑝 − 𝐴|𝑡|𝑔
+
‖𝑢‖𝑔

+

𝑔+

≤ |𝑡|𝑔
+

(

‖𝑢‖𝑔
+
+

|𝑡|𝑝−𝑔
+

𝑝
‖𝑏‖∞𝐶𝑝‖𝑢‖

𝑔+ − 𝐴‖𝑢‖𝑔
+

𝑔+

)

(3.57)

n (3.57), when 𝐴 ≥ ‖𝑢‖𝑔+

‖𝑢‖𝑔
+
𝑔+

≥ 0, we deduce that

𝐽±(𝑡𝑢) → −∞, as |𝑡| → +∞.

Therefore, there exists 𝑡 large enough such that

𝑒 = 𝑡𝑢 ∈ 𝐵𝑐𝜌(0) and 𝐽±(𝑒) < 0.

Thus the proof. □

Proof of Theorem 1.3 concluded.
From Propositions 3.3 and 3.4, we can apply the Mountain Pass Theorem in [34]. Therefore, there exist 𝑢0, 𝑣0 ∈ 𝑊 1,𝐺(𝛺) such

that 𝐽+(𝑢0) = 𝑐+, 𝐽 ′
+(𝑢0) = 0 and 𝐽−(𝑣0) = 𝑐−, 𝐽 ′

−(𝑣0) = 0.
Since 𝑢0 and 𝑣0 are critical points respectively for 𝐽+ and 𝐽−, then

⟨𝐽 ′
+(𝑢0), 𝑣⟩ = 0, for all 𝑣 ∈ 𝑊 1,𝐺(𝛺) (3.58)

and

⟨𝐽 ′
−(𝑣0), 𝑣⟩ = 0, for all 𝑣 ∈ 𝑊 1,𝐺(𝛺). (3.59)

In (3.58), we act with 𝑣 = 𝑢−0 , we get

∫𝛺

[

𝑎(|∇𝑢0|)∇𝑢0.∇𝑢−0 + 𝑎(|𝑢0|)𝑢0𝑢−0
]

𝑑𝑥 + ∫𝜕𝛺
𝑏(𝑥)|𝑢0|

𝑝−2𝑢0𝑢
−
0 𝑑𝛾 = ∫𝛺

𝑓+(𝑥, 𝑢0)𝑢−0 𝑑𝑥. (3.60)

From (3.33), (3.60) and assumption (𝑔2), one has

(𝑣−0 ) ≤ ∫𝛺

[

𝑎(|∇𝑢−0 |)|∇𝑢
−
0 |

2 + 𝑎(|𝑢−0 |)(𝑢
−
0 )

2] 𝑑𝑥 ≤ 0

which give us, by Lemma 2.3, that 𝑢−0 = 0. Thus, 𝑢0 is a non-negative function.
In (3.59), we act with 𝑣 = 𝑣+0 , we get

∫𝛺

[

𝑎(|∇𝑣0|)∇𝑣0.∇𝑣+0 + 𝑎(|𝑣0|)𝑣0𝑣+0
]

𝑑𝑥 + ∫𝜕𝛺
𝑏(𝑥)|𝑣0|

𝑝−2𝑣0𝑣
+
0 𝑑𝛾 = ∫𝛺

𝑓−(𝑥, 𝑣0)𝑣+0 𝑑𝑥. (3.61)

From (3.34), (3.61) and assumption (𝑔2), one has

(𝑣+0 ) ≤ ∫𝛺

[

𝑎(|∇𝑣+0 |)|∇𝑣
+
0 |

2 + 𝑎(|𝑣+0 |)(𝑣
+
0 )

2
]

𝑑𝑥 ≤ 0

which give us, by Lemma 2.3, that 𝑣+0 = 0. Thus, 𝑣0 is a non-positive function.
Next, by the truncation on 𝑓 (see (3.33) and (3.34)), we infer that 𝑢0 is a non-negative and 𝑣0 is a non-positive weak solutions

for the problem (P). Hence, from [26, Theorems 2.13 and 2.14, p. 7], one sees that 𝑢0 and 𝑣0 are bounded and

𝑢0 ∈ 𝐶1(𝛺)+ and 𝑣0 ∈ −𝐶1(𝛺)+. (3.62)

xploiting (3.62) and Proposition 3.1, we deduce that 𝑢0 ∈ 𝑊 1,𝐺(𝛺)∩int(𝐶1(𝛺)+) and 𝑣0 ∈ 𝑊 1,𝐺(𝛺)∩(−int(𝐶1(𝛺)+)) are, respectively,
positive and a negative weak solutions for the problem (P). This ends the proof. □
15
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3.2. Proof of Theorem 1.4

Let us introduce the Carathéodory functions 𝑓+ ∶ 𝛺 × R → R defined by

𝑓+(𝑥, 𝑡) =

{

𝜆𝑓 (𝑥, 𝑡+) if 𝑡 ≤ 𝜂+
𝜆𝑓 (𝑥, 𝜂+) if 𝑡 > 𝜂+,

(3.63)

and 𝑓− ∶ 𝛺 × R → R defined by

𝑓−(𝑥, 𝑡) =

{

𝜆𝑓 (𝑥, 𝜂−) if 𝑡 < 𝜂−
𝜆𝑓 (𝑥, 𝑡−) if 𝑡 ≥ 𝜂−,

(3.64)

where 𝜂+ and 𝜂− are defined in (𝑓 ′
4).

We set 𝐹±(𝑥, 𝑠) = ∫ 𝑠0 𝑓±(𝑥, 𝑡)𝑑𝑡 and consider the 𝐶1-functionals 𝐽± ∶ 𝑊 1,𝐺(𝛺) → R defined by

𝐽±(𝑢) = (𝑢) + 1
𝑝 ∫𝜕𝛺

𝑏(𝑥)|𝑢|𝑝𝑑𝛾 − ∫𝛺
𝐹±(𝑥, 𝑢)𝑑𝑥, for all 𝑢 ∈ 𝑊 1,𝐺(𝛺). (3.65)

roof of Theorem 1.4 concluded. We start by the existence of positive solution. Using (3.63), (3.65) and Lemma 2.3, we find that

𝐽+(𝑢) ≥ min
{

‖𝑢‖𝑔
−
, ‖𝑢‖𝑔

+
}

− 𝐶1|𝛺| − 𝐶2‖𝑢‖, for all 𝑢 ∈ 𝑊 1,𝐺(𝛺) (3.66)

here 𝐶1 and 𝐶2 are two positive constants. From (3.66) it is clear that 𝐽+ is coercive.
Let {𝑢𝑛}𝑛∈N ⊂ 𝑊 1,𝐺(𝛺), such that 𝑢𝑛 ⇀ 𝑢 in 𝑊 1,𝐺(𝛺). We have

lim inf
𝑛→+∞

𝐽+(𝑢𝑛) ≥ lim inf
𝑛→+∞

(𝑢𝑛) + lim inf
𝑛→+∞

1
𝑝 ∫𝜕𝛺

𝑏(𝑥)|𝑢𝑛|
𝑝𝑑𝛾 − lim sup

𝑛→+∞ ∫𝛺
𝐹+(𝑥, 𝑢𝑛)𝑑𝑥. (3.67)

xploiting Fatou’s lemma and the compactness embedding theorem (see Theorem 2.5) in (3.67), we obtain

lim inf
𝑛→+∞

𝐽+(𝑢𝑛) ≥ 𝐽+(𝑢).

Therefore, 𝐽+ is sequentially weakly lower semi-continuous. Then, by the Weierstrass–Tonelli theorem we can find 𝑢0 ∈ 𝑊 1,𝐺(𝛺)
such that

𝐽+(𝑢0) = min
{

𝐽+(𝑢) ∶ 𝑢 ∈ 𝑊 1,𝐺(𝛺)
}

. (3.68)

Let 𝑢 ∈ int(𝐶1(𝛺)+) and choose 𝑡 ∈ (0, 1) smalls enough such that

0 < 𝑡𝑢(𝑥) ≤ min{𝛿, 𝜂+}, for all 𝑥 ∈ 𝛺.

ince 𝐹+(𝑥, 𝑡𝑢) = 𝜆𝐹 (𝑥, 𝑡𝑢), using Lemma 2.3 and assumption (𝑓 ′
3), we get

𝐽+(𝑡𝑢) = ∫𝛺
[𝐺(|∇𝑡𝑢|) + 𝐺(|𝑡𝑢|)] 𝑑𝑥 + 1

𝑝 ∫𝜕𝛺
𝑏(𝑥)|𝑡𝑢|𝑝𝑑𝛾 − ∫𝛺

𝐹+(𝑥, 𝑡𝑢)𝑑𝑥

≤ |𝑡|𝑔
−

∫𝛺
[𝐺(|∇𝑢|) + 𝐺(|𝑢|)] 𝑑𝑥 + 1

𝑝
|𝑡|𝑝 ∫𝜕𝛺

𝑏(𝑥)|𝑢|𝑝𝑑𝛾 − 𝜆∫𝛺
𝐹 (𝑥, 𝑡𝑢)𝑑𝑥

≤ |𝑡|𝑔
−(𝑢) + 1

𝑝
|𝑡|𝑝 ∫𝜕𝛺

𝑏(𝑥)|𝑢|𝑝𝑑𝛾 − 𝑐0
𝑔−

𝑞+
𝜆|𝑡|𝑞

+

∫𝛺
𝑄(|𝑢|)𝑑𝑥.

ince 𝑞+ < 𝑝 < 𝑔−, we can choose 𝑡 ∈ (0, 1) sufficiently small such that 𝐽+(𝑡𝑢) < 0. Hence, by (3.68), we get 𝐽+(𝑢0) ≤ 𝐽+(𝑡𝑢) < 0 = 𝐽+(0).
herefore, 𝑢0 ≠ 0.

Recall that 𝑢0 is a global minimizer of 𝐽+, then

⟨𝐽 ′
+(𝑢0), 𝑢⟩ = 0 for all 𝑢 ∈ 𝑊 1,𝐺(𝛺). (3.69)

e act with 𝑢 = 𝑢−0 in (3.69), we obtain

∫𝛺
𝑎(|∇𝑢0|)∇𝑢0.∇𝑢−0 𝑑𝑥 + ∫𝛺

𝑎(|𝑢0|)𝑢0𝑢−0 𝑑𝑥 + ∫𝜕𝛺
𝑏(𝑥)|𝑢0|

𝑝−2𝑢0𝑢
−
0 𝑑𝛾

= ∫𝛺
𝑓+(𝑥, 𝑢0)𝑢−0 𝑑𝑥,

t follows, by assumption (𝑔2) and the truncation (3.63), that

(𝑢−0 ) ≤ ∫𝛺
𝑎(|∇𝑢−0 |)|∇𝑢

−
0 |

2𝑑𝑥 + ∫𝛺
𝑎(|𝑢−0 |)(𝑢

−
0 )

2𝑑𝑥 ≤ 0.

hus 𝑢−0 = 0. Then 𝑢0 ≠ 0 and 𝑢0 ≥ 0.
Again, in (3.69), we act with 𝑢 = (𝑢0 − 𝜂+)+ and using (𝑓 ′

4), we infer that

𝑎(|∇𝑢0|)∇𝑢0.∇(𝑢0 − 𝜂+)+𝑑𝑥 + 𝑎(|𝑢0|)𝑢0(𝑢0 − 𝜂+)+𝑑𝑥
16

∫𝛺 ∫𝛺
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𝑊

≤ ∫𝛺
𝑓+(𝑥, 𝑢0)(𝑢0 − 𝜂+)+𝑑𝑥

= 𝜆∫𝛺
𝑓 (𝑥, 𝜂+)(𝑢0 − 𝜂+)+𝑑𝑥

≤ 0. (3.70)

Exploiting (3.70) and Lemmas 2.3, 2.11, we get

0 ≥ ∫𝑢0≥𝜂+
𝑎(|∇𝑢0|)∇𝑢0.∇(𝑢0 − 𝜂+)𝑑𝑥 + ∫𝑢0≥𝜂+

𝑎(|𝑢0|)𝑢0(𝑢0 − 𝜂+)𝑑𝑥

≥ 4∫𝑢0≥𝜂+
𝐺
(

|∇(𝑢0 − 𝜂+)|
2

)

+ 4∫𝑢0≥𝜂+
𝐺
(

|𝑢0 − 𝜂+|
2

)

= 4∫𝛺
𝐺
(

|∇(𝑢0 − 𝜂+)+|
2

)

+ 4∫𝛺
𝐺
(

|(𝑢0 − 𝜂+)+|
2

)

≥ 4min
{

‖

(𝑢0 − 𝜂+)+

2
‖

𝑔− , ‖
(𝑢0 − 𝜂+)+

2
‖

𝑔+
}

. (3.71)

herefore, we infer that (𝑢0 − 𝜂+)+ = 0. Namely, 𝑢0 ∈ [0, 𝜂+]. Next, From the truncation (3.63), we conclude that 𝑢0 is a non-negative
bounded weak solution for problem (P) and by [26, Theorem 2.14, p. 7], we deduce that 𝑢0 ∈ 𝐶1(𝛺)+. Using Proposition 3.1, we
get that 𝑢0 ∈ int(𝐶1(𝛺)+). Similarly, using 𝐽− and the truncation (3.64), we prove that problem (P) has a negative weak solution
𝑣0 ∈ −int(𝐶1(𝛺)+). □

. Nodal solution

This section devoted for the existence of nodal solution. Our plan for the proof is, at first we prove that the set of all the positive
olutions of problem (P) has a minimum 𝑢∗ and we prove that the set of all negative solutions of problem (P) has a maximum 𝑣∗

in the sense of Proposition 4.2. Next, we prove the existence of another solution 𝑦0 between 𝑢∗ and 𝑣∗. So, evidently, 𝑦0 = 0 or 𝑦0
is a nodal solution. Here, we compute the critical groups at the origin to prove that 𝑦0 cannot be zero. In our proofs, we draw on
arguments used in [16,21–23,35,36].

4.1. Some properties for the sets of fixed sign solutions

In what follow, under the assumptions of Theorem 1.4, we will show that problem (P) admits extremal constant sign solutions,
that is, there exist a smallest positive solution 𝑢∗ ∈ int(𝐶1(𝛺)+) and a greatest negative solution 𝑣∗ ∈ −int(𝐶1(𝛺)+).

We introduce the following two sets

𝑆+ = {𝑢 ∶ 𝑢 is a positive solution of problem (P)} ,

𝑆− = {𝑢 ∶ 𝑢 is a negative solution of problem (P)} .

y Theorem 1.4, we have

∅ ≠ 𝑆+ ⊆ int(𝐶1(𝛺)+) and ∅ ≠ 𝑆− ⊆ −int(𝐶1(𝛺)+).

Hypotheses (𝑓1) and (𝑓 ′
3) imply, for a.a. 𝑥 ∈ 𝛺, that

𝑐2𝑞(𝑠) − 𝑐3ℎ(𝑠) ≤ 𝑓 (𝑥, 𝑠), for all 𝑠 ≥ 0 (4.72)

and

𝑓 (𝑥, 𝑠) ≤ 𝑐2𝑞(𝑠) − 𝑐3ℎ(𝑠), for all 𝑠 ≤ 0, (4.73)

for some 𝑐2, 𝑐3 > 0. Next, we consider the following auxiliary Robin problem
{

−div(𝑎(|∇𝑢(𝑥)|)∇𝑢(𝑥)) + 𝑎(|𝑢(𝑥)|)𝑢(𝑥) = 𝑐2𝜆𝑞(𝑢(𝑥)) − 𝑐3𝜆ℎ(𝑢(𝑥)), 𝑥 ∈ 𝛺

𝑎(|∇𝑢|) 𝜕𝑢(𝑥)𝑑𝜈 + 𝑏(𝑥)|𝑢(𝑥)|𝑝−2𝑢(𝑥) = 0, 𝑥 ∈ 𝜕𝛺
(A)

The following result prove the existence and uniqueness of positive and negative weak solutions for the problem (A).

Proposition 4.1. Under assumptions (𝑓1), (𝑓 ′
3) and (𝑔1) − (𝑔4), problem (A) admits a unique positive weak solution 𝑢̃ ∈ int(𝐶1(𝛺)+) and

unique negative weak solution 𝑣̃ = −𝑢̃ ∈ −int(𝐶1(𝛺)+).

Proof. First, we prove that problem (A) admits a non-negative smooth solution. For this, we introduce the 𝐶1-functional 𝜗+ ∶
1,𝐺(𝛺) ⟶ R defined by

𝜗+(𝑢) = (𝑢) + 1 𝑏(𝑥)|𝑢|𝑝𝑑𝛾 − 𝑐2𝜆 𝑄(𝑢+)𝑑𝑥 + 𝑐3𝜆 𝐻(𝑢+)𝑑𝑥
17

𝑝 ∫𝜕𝛺 ∫𝛺 ∫𝛺



Nonlinear Analysis: Real World Applications 81 (2025) 104186A. Bahrouni et al.

𝑢

L
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for all 𝑢 ∈ 𝑊 1,𝐺(𝛺).
Let 𝑢 ∈ 𝑊 1,𝐺(𝛺) such that ‖𝑢‖ ≥ 1. Using Lemma 2.3, and the continuous embedding of 𝑊 1,𝐺(𝛺) in 𝐿𝑄(𝛺), we get

𝜗+(𝑢) ≥ (𝑢) − 𝑐2𝜆∫𝛺
𝑄(|𝑢+|)𝑑𝑥

≥ ‖𝑢‖𝑔
−
− 𝐶𝜆

(

‖𝑢‖𝑞
+
+ ‖𝑢‖𝑞

−
)

for some 𝐶 > 0. Since 𝑞− ≤ 𝑞+ < 𝑔−, we conclude that 𝜗+ is coercive. Exploiting the compactness embedding and Fatou lemma,
we prove that 𝜗+ is sequentially weakly lower semicontinuous. Then using the Weierstrass–Tonelli theorem (see [37]), we can find
̃ ∈ 𝑊 1,𝐺(𝛺) such that

𝜗+(𝑢̃) = min{𝜗+(𝑢), 𝑢 ∈ 𝑊 1,𝐺(𝛺)}. (4.74)

Now, Let 𝑢 ∈ int(𝐶1(𝛺)+) and 𝑡 ∈ (0, 1) small enough. By Lemma 2.3, we infer that

𝜗+(𝑡𝑢) = ∫𝛺
[𝐺(|∇𝑡𝑢|) + 𝐺(|𝑡𝑢|)] 𝑑𝑥 + 1

𝑝 ∫𝜕𝛺
𝑏(𝑥)|𝑡𝑢|𝑝𝑑𝛾

− 𝑐2𝜆∫𝛺
𝑄(|𝑡𝑢+|)𝑑𝑥 + 𝑐3𝜆∫𝛺

𝐻(|𝑡𝑢+|)𝑑𝑥

≤ |𝑡|𝑔
−(𝑢) + 1

𝑝
|𝑡|𝑝 ∫𝜕𝛺

𝑏(𝑥)|𝑢|𝑝𝑑𝛾

− 𝑐2𝜆|𝑡|
𝑞+

∫𝛺
𝑄(|𝑢+|)𝑑𝑥 + 𝑐3𝜆|𝑡|

ℎ−

∫𝛺
𝐻(|𝑢+|)𝑑𝑥.

Taking in mind that 𝑞− ≤ 𝑞+ < 𝑝 < 𝑔− ≤ 𝑔+ < ℎ− ≤ ℎ+, then we can choose 𝑡 ∈ (0, 1) small enough such that 𝜗+(𝑡𝑢) < 0. It follows,
by (4.74), that

𝜗+(𝑢̃) ≤ 𝜗+(𝑡𝑢) < 0 = 𝜗+(0),

so, 𝑢̃ ≠ 0. Since 𝑢̃ is a global minimum of 𝜗+, we have

⟨𝜗′+(𝑢̃), 𝑣⟩ = 0 for all 𝑣 ∈ 𝑊 1,𝐺(𝛺)

which is equivalent to

∫𝛺
𝑎(|∇𝑢̃|)∇𝑢̃.∇𝑣𝑑𝑥 + ∫𝛺

𝑎(|𝑢̃|)𝑢̃𝑣𝑑𝑥 + ∫𝜕𝛺
𝑏(𝑥)|𝑢̃|𝑝−2𝑢̃𝑣𝑑𝛾

− 𝑐2𝜆∫𝛺
𝑞(𝑢̃+)𝑣𝑑𝑥 + 𝑐3𝜆∫𝛺

ℎ(𝑢̃+)𝑣𝑑𝑥 = 0 (4.75)

for all 𝑣 ∈ 𝑊 1,𝐺(𝛺).
We act with 𝑣 = 𝑢̃− in (4.75), we obtain

∫𝛺
𝑎(|∇𝑢̃−|)∇𝑢̃−.∇𝑢̃−𝑑𝑥 + ∫𝛺

𝑎(|𝑢̃−|)(𝑢̃−)2𝑑𝑥 ≤ 0. (4.76)

Using assumption (𝑔2) in (4.76), we see that

(𝑢̃−) ≤ 0

which gives that 𝑢̃− = 0 (by Lemma 2.3). We conclude that 𝑢̃ ≥ 0 and 𝑢̃ ≠ 0.
So 𝑢̃ is a non-negative weak solution for problem (A). From [26, Theorems 2.13 and 2.14, p. 7], we infer that 𝑢̃ ∈ 𝐿∞(𝛺) and

𝑢̃ ∈ 𝐶1(𝛺)+. Hence, arguing as in Proposition 3.1, we find that 𝑢̃ is a positive solution for problem (A).
Next, we show the uniqueness of this positive solution. For this purpose, we consider the integral function 𝜎+ ∶ 𝐿1(𝛺) ⟶ R =

R ∪ {+∞} defined by

𝜎+(𝑢) =

⎧

⎪

⎨

⎪

⎩

∫𝛺
𝐺(|∇𝑢

1
𝑞+

|)𝑑𝑥 + 1
𝑝 ∫𝜕𝛺

𝑏(𝑥)|𝑢
1
𝑞+

|

𝑝
𝑑𝛾 if 𝑢 ≥ 0, 𝑢

1
𝑞+ ∈ 𝑊 1,𝐺(𝛺),

+∞ otherwise.
(4.77)

et 𝑤1, 𝑤2 ∈ dom(𝜎+) =
{

𝑢 ≥ 0, 𝜎+(𝑢) < +∞
}

and let 𝑤 = (𝑡𝑤1 + (1 − 𝑡)𝑤2)
1
𝑞+ with 𝑡 ∈ [0, 1]. From Diaz and Saa [38, Lemma 1, p.

22], we have that

|∇𝑤| ≤
⎛

⎜

⎜

⎝

𝑡|∇𝑤
1
𝑞+

1 |

𝑞+

+ (1 − 𝑡)|∇𝑤
1
𝑞+

2 |

𝑞+
⎞

⎟

⎟

⎠

1
𝑞+

.

Then, by Lemma 2.17 and the fact that 𝑡⟼ 𝐺(𝑡) is increasing, we deduce

𝐺 (|∇𝑤|) ≤ 𝐺

⎛

⎜

⎜

⎜

⎛

⎜

⎜

⎝

𝑡|∇𝑤
1
𝑞+

1 |

𝑞+

+ (1 − 𝑡)|∇𝑤
1
𝑞+

2 |

𝑞+
⎞

⎟

⎟

⎠

1
𝑞+ ⎞

⎟

⎟

⎟

18

⎝ ⎠
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𝜎
t

S

𝑢

P

𝜗

≤ 𝑡𝐺

(

|∇𝑤
1
𝑞+

1 |

)

+ (1 − 𝑡)𝐺

(

|∇𝑤
1
𝑞+

2 |

)

.

Since 𝑞+ < 𝑝, we have that the function 𝑡 ↦ 𝑡
𝑝
𝑞+ is convex. Therefore, we deduce that 𝜎+ is convex. Moreover, via the Fatou lemma,

we see that 𝜎+ is lower semi-continuous.
Suppose that 𝑢1, 𝑢2 ∈ 𝑊 1,𝐺(𝛺) are two nontrivial positive solutions of (A). From the first part of the proof, we have 𝑢1 and

𝑢2 ∈ int(𝐶1(𝛺)+). Therefore, 𝑢𝑞
+

1 and 𝑢𝑞
+

2 ∈ dom(𝜎+). Using Proposition 4.1.22 of Papageorgiou–Rădulescu–Repŏvs [7, p. 274], we
see that

𝑢1
𝑢2

∈ 𝐿∞(𝛺) and
𝑢2
𝑢1

∈ 𝐿∞(𝛺). (4.78)

Let 𝑣 = 𝑢𝑞
+

1 − 𝑢𝑞
+

2 ∈ 𝐶1(𝛺). Then, from (4.78), for 𝑡 ∈ [−1, 1] with |𝑡| small, we have 𝑢𝑞
+

1 + 𝑡𝑣, 𝑢𝑞
+

2 + 𝑡𝑣 ∈ dom(𝜎+). Therefore, since

+ is convex, we have that the Gâteaux derivative of 𝜎+ at 𝑢𝑞
+

1 and at 𝑢𝑞
+

2 in the direction 𝑣 exist. Moreover, via the chain rule and
he nonlinear Green’s identity, we have

𝜎′+(𝑢
𝑞+
1 )(𝑣) = 1

𝑞+ ∫𝛺
−div(𝑎(|∇𝑢1|)∇𝑢1)

𝑢𝑞
+−1
1

𝑣𝑑𝑥 and 𝜎′+(𝑢
𝑞+
2 )(𝑣) = 1

𝑞+ ∫𝛺
−div(𝑎(|∇𝑢2|)∇𝑢2)

𝑢𝑞
+−1
2

𝑣𝑑𝑥

The convexity of 𝜎+ implies that 𝜎′+ is increasing. Therefore, by Lemma 2.17, we have

0 ≤ ∫𝛺

(

−div(𝑎(|∇𝑢1|)∇𝑢1)
𝑢𝑞

+−1
1

+
div(𝑎(|∇𝑢2|)∇𝑢2)

𝑢𝑞
+−1
2

)

(𝑢𝑞
+

1 − 𝑢𝑞
+

2 )𝑑𝑥

= ∫𝛺

(

𝑐2𝜆𝑞(𝑢1) − 𝑐3𝜆ℎ(𝑢1)

𝑢𝑞
+−1
1

−
𝑔(𝑢1)

𝑢𝑞
+−1
1

−
𝑐2𝜆𝑞(𝑢2) − 𝑐3𝜆ℎ(𝑢2)

𝑢𝑞
+−1
2

+
𝑔(𝑢2)

𝑢𝑞
+−1
2

)

(𝑢𝑞
+

1 − 𝑢𝑞
+

2 )𝑑𝑥

= 𝑐2𝜆∫𝛺

(

𝑞(𝑢1)

𝑢𝑞
+−1
1

−
𝑞(𝑢2)

𝑢𝑞
+−1
2

)

(𝑢𝑞
+

1 − 𝑢𝑞
+

2 )𝑑𝑥

+ 𝑐3𝜆∫𝛺

(

ℎ(𝑢2)

𝑢𝑞
+−1
2

−
ℎ(𝑢1)

𝑢𝑞
+−1
1

)

(𝑢𝑞
+

1 − 𝑢𝑞
+

2 )𝑑𝑥

+ ∫𝛺

(

𝑔(𝑢2)

𝑢𝑞
+−1
2

−
𝑔(𝑢1)

𝑢𝑞
+−1
1

)

(𝑢𝑞
+

1 − 𝑢𝑞
+

2 )𝑑𝑥

< 0

which implies that 𝑢1 = 𝑢2 and this proves the uniqueness of the non-trivial positive weak solution 𝑢̃ ∈ int(𝐶1(𝛺)+) for problem (A).
ince the problem (A) is odd, then it has a unique non-trivial negative weak solution 𝑣̃ = 𝑢̃ ∈ −int(𝐶1(𝛺)+). This ends the proof. □

In the following result we prove that the weak solutions 𝑢̃ and 𝑣̃ of problem (A), provide bounds for the sets 𝑆+ and 𝑆−, where
̃ is a lower bound for 𝑆+ and 𝑣̃ is an upper bound for 𝑆−.

roposition 4.2. Under the assumptions (𝑓1), (𝑓 ′
3) and (𝑔1) − (𝑔4), we have 𝑢̃ ≤ 𝑢 for all 𝑢 ∈ 𝑆+ and 𝑣 ≤ 𝑣̃ for all 𝑣 ∈ 𝑆−.

Proof (Proof). Let 𝑢 ∈ 𝑆+. We consider the Carathéodory function 𝑘+ ∶ 𝛺 × R ⟶ R defined by

𝑘+(𝑥, 𝑠) =

⎧

⎪

⎨

⎪

⎩

0 if 𝑠 < 0,

𝑐2𝜆𝑞(𝑠) − 𝑐3𝜆ℎ(𝑠) if 0 ≤ 𝑠 ≤ 𝑢(𝑥),

𝑐2𝜆𝑞(𝑢(𝑥)) − 𝑐3𝜆ℎ(𝑢(𝑥)) if 𝑢(𝑥) < 𝑠.

(4.79)

We set 𝐾+(𝑥, 𝑠) = ∫ 𝑠0 𝑘+(𝑥, 𝑡)𝑑𝑡 and consider the 𝐶1-functional 𝜗+ ∶ 𝑊 1,𝐺(𝛺) ⟶ R defined by

𝜗+(𝑤) = (𝑤) + 1
𝑝 ∫𝜕𝛺

𝑏(𝑥)|𝑤|𝑝𝑑𝛾 − ∫𝛺
𝐾+(𝑥,𝑤)𝑑𝑥

for all 𝑤 ∈ 𝑊 1,𝐺(𝛺).
From (4.79), we can see that 𝜗+ is coercive. Exploiting Fatou lemma and the compactness embedding theorem, we prove that

𝜗+ is sequentially weakly lower semicontinuous. Then, using the Weierstrass–Tonelli theorem, we can find 𝑢̃∗ ∈ 𝑊 1,𝐺(𝛺) such that

𝜗+(𝑢̃∗) = min{𝜗+(𝑤) ∶ 𝑤 ∈ 𝑊 1,𝐺(𝛺)}. (4.80)

As before, if 𝑤 ∈ int(𝐶1(𝛺)+) and 𝑡 ∈ (0, 1) small enough such that 𝑡𝑤 ≤ 𝑢, we have 𝜗+(𝑡𝑤) < 0. Due to (4.80), we have
̂+(𝑢̃∗) < 0 = 𝜗+(0). Hence, 𝑢̃∗ ≠ 0.

From (4.80), we have (𝜗+)′(𝑢̃∗) = 0, that is,

𝑎(|∇𝑢̃∗|)∇𝑢̃∗.∇𝑣𝑑𝑥 + 𝑎(|𝑢̃∗|)𝑢̃∗.𝑣𝑑𝑥 + 𝑏(𝑥)|𝑢̃∗|
𝑝−2𝑢̃∗𝑣𝑑𝛾 − 𝑘+(𝑥, 𝑢̃∗)𝑣𝑑𝑥 = 0 (4.81)
19

∫𝛺 ∫𝛺 ∫𝜕𝛺 ∫𝛺



Nonlinear Analysis: Real World Applications 81 (2025) 104186A. Bahrouni et al.

I

U

F

w

for all 𝑣 ∈ 𝑊 1,𝐺(𝛺).
We act with 𝑣 = 𝑢̃−∗ ∈ 𝑊 1,𝐺(𝛺) in (4.81), we conclude that 𝑢̃∗ ≥ 0 and 𝑢̃∗ ≠ 0.
Next, we act with 𝑣 = (𝑢̃∗ − 𝑢)+ ∈ 𝑊 1,𝐺(𝛺) in (4.81), we get

∫𝛺
𝑎(|∇𝑢̃∗|)∇𝑢̃∗.∇(𝑢̃∗ − 𝑢)+𝑑𝑥 + ∫𝛺

𝑎(|𝑢̃∗|)𝑢̃∗(𝑢̃∗ − 𝑢)+𝑑𝑥 + ∫𝜕𝛺
𝑏(𝑥)|𝑢̃∗|

𝑝−2𝑢̃∗(𝑢̃∗ − 𝑢)+𝑑𝛾

= ∫𝛺
𝑘+(𝑥, 𝑢̃∗)(𝑢̃∗ − 𝑢)+𝑑𝑥

= ∫𝛺

[

𝑐2𝜆𝑞(𝑢(𝑥)) − 𝑐3𝜆ℎ(𝑢(𝑥))
]

(𝑢̃∗ − 𝑢)+𝑑𝑥

≤ ∫𝛺
𝜆𝑓 (𝑥, 𝑢)(𝑢̃∗ − 𝑢)+𝑑𝑥 ( see (4.72))

= ∫𝛺
𝑎(|∇𝑢|)∇𝑢.∇(𝑢̃∗ − 𝑢)+𝑑𝑥 + ∫𝛺

𝑎(|𝑢|)𝑢(𝑢̃∗ − 𝑢)+𝑑𝑥

+ ∫𝜕𝛺
𝑏(𝑥)|𝑢|𝑝−2𝑢(𝑢̃∗ − 𝑢)+𝑑𝛾, (𝑢 ∈ 𝑆+). (4.82)

t follows, by (4.82), that

∫{𝑢̃∗≥𝑢}

[

𝑎(|∇𝑢̃∗|)∇𝑢̃∗ − 𝑎(|∇𝑢|)∇𝑢
]

.∇(𝑢̃∗ − 𝑢)𝑑𝑥 + ∫{𝑢̃∗≥𝑢}

[

𝑎(|𝑢̃∗|)𝑢̃∗ − 𝑎(|𝑢|)𝑢
]

(𝑢̃∗ − 𝑢)𝑑𝑥 ≤ 0. (4.83)

sing (4.83) and Lemmas 2.3, 2.11, we infer that 𝑢̃∗ ≤ 𝑢. So, we have proved that

𝑢̃∗ ∈ [0, 𝑢], 𝑢̃∗ ≠ 0. (4.84)

rom (4.79), (4.84) and Proposition 4.1, it follows that 𝑢̃∗ = 𝑢̃. Thus, see (4.84), 𝑢̃ ≤ 𝑢 for all 𝑢 ∈ 𝑆+.
Similarly, by using (4.72) and the following Carathéodory function

𝑘−(𝑥, 𝑠) =

⎧

⎪

⎨

⎪

⎩

𝑐2𝜆𝑞(𝑣(𝑥)) − 𝑐3𝜆ℎ(𝑣(𝑥)) if 𝑠 < 𝑣(𝑥),

𝑐2𝜆𝑞(𝑠) − 𝑐3𝜆ℎ(𝑠) if 𝑣(𝑥) ≤ 𝑠 ≤ 0,

0 if 0 < 𝑠,

(4.85)

here 𝑣 ∈ 𝑆−, with a 𝐶1-functional 𝜗− ∶ 𝑊 1,𝐺(𝛺) ⟶ R defined by

𝜗−(𝑤) = (𝑤) + 1
𝑝 ∫𝜕𝛺

𝑏(𝑥)|𝑤|𝑝𝑑𝛾 − ∫𝛺
𝐾−(𝑥,𝑤)𝑑𝑥

for all 𝑤 ∈ 𝑊 1,𝐺(𝛺), where 𝐾−(𝑥, 𝑠) = ∫ 𝑠0 𝑘−(𝑥, 𝑡)𝑑𝑡, we show that 𝑣 ≤ 𝑣̃ for all 𝑣 ∈ 𝑆−. □

Proposition 4.3. Assume that assumptions of Theorem 1.4 hold. Then, if 𝑢1, 𝑢2 ∈ 𝑊 1,𝐺(𝛺) are two nontrivial upper solutions for problem
(P), then 𝑢̂ = min

{

𝑢1, 𝑢2
}

∈ 𝑊 1,𝐺(𝛺) is an upper solution for (P). And if 𝑣1, 𝑣2 ∈ 𝑊 1,𝐺(𝛺) are two nontrivial lower solutions for problem
(P), then 𝑣̂ = max

{

𝑣1, 𝑣2
}

∈ 𝑊 1,𝐺(𝛺) is a lower solution for (P).

Proof. First we prove that if 𝑢1, 𝑢2 are two upper solutions for the problem (P), then 𝑢̂ = min
{

𝑢1, 𝑢2
}

∈ 𝑊 1,𝐺(𝛺) is upper solution
for (P).

Let 𝜀 > 0 and consider the truncation function 𝜉𝜀 ∶ R ⟶ R defined by

𝜉𝜀(𝑠) =

⎧

⎪

⎨

⎪

⎩

−𝜀 if 𝑠 < −𝜀

𝑠 if − 𝜀 ≤ 𝑠 ≤ 𝜀

𝜀 if 𝜀 < 𝑠.

(4.86)

Clearly 𝜉𝜀 is Lipschitz continuous. Hence, we have

𝜉𝜀((𝑢1 − 𝑢2)−) ∈ 𝑊 1,𝐺(𝛺) (4.87)

and

𝐷𝜉𝜀((𝑢1 − 𝑢2)−) = 𝜉′𝜀((𝑢1 − 𝑢2)
−)𝐷(𝑢1 − 𝑢2)−. (4.88)

Let 𝜓 ∈ 𝐶1
𝑐 (𝛺) a test function such that 𝜓 ≥ 0. Then

𝜉𝜀((𝑢1 − 𝑢2)−)𝜓 ∈ 𝑊 1,𝐺(𝛺) ∩ 𝐿∞(𝛺) (4.89)

and

𝐷(𝜉𝜀((𝑢1 − 𝑢2)−)𝜓) = 𝜓𝐷𝜉𝜀((𝑢1 − 𝑢2)−) + 𝜉𝜀((𝑢1 − 𝑢2)−)𝐷𝜓

= 𝜉′𝜀((𝑢1 − 𝑢2)
−)𝐷(𝑢1 − 𝑢2)−𝜓 + 𝜉𝜀((𝑢1 − 𝑢2)−)𝐷𝜓. (4.90)
20
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a

Since by hypothesis 𝑢1, 𝑢2 ∈ 𝑊 1,𝐺(𝛺) are upper solution for problem (P), then from Definition 2.14, we have

𝜆∫𝛺
𝑓 (𝑥, 𝑢1)𝜉𝜀((𝑢1 − 𝑢2)−)𝜓𝑑𝑥 ≤ ∫𝛺

𝑎(|∇𝑢1|)∇𝑢1.∇(𝜉𝜀((𝑢1 − 𝑢2)−)𝜓)𝑑𝑥

+ ∫𝛺
𝑎(|𝑢1|)𝑢1𝜉𝜀((𝑢1 − 𝑢2)−)𝜓𝑑𝑥

+ ∫𝜕𝛺
𝑏(𝑥)|𝑢1|

𝑝−2𝑢1𝜉𝜀((𝑢1 − 𝑢2)−)𝜓𝑑𝛾 (4.91)

nd

𝜆∫𝛺
𝑓 (𝑥, 𝑢2)(𝜀 − 𝜉𝜀((𝑢1 − 𝑢2)−))𝜓𝑑𝑥 ≤ ∫𝛺

𝑎(|∇𝑢2|)∇𝑢2.∇((𝜀 − 𝜉𝜀((𝑢1 − 𝑢2)−))𝜓)𝑑𝑥

+ ∫𝛺
𝑎(|𝑢2|)𝑢2(𝜀 − 𝜉𝜀((𝑢1 − 𝑢2)−))𝜓𝑑𝑥

+ ∫𝜕𝛺
𝑏(𝑥)|𝑢2|

𝑝−2𝑢2(𝜀 − 𝜉𝜀((𝑢1 − 𝑢2)−))𝜓𝑑𝛾. (4.92)

Putting together (4.91) and (4.92), we get

𝜆∫𝛺
𝑓 (𝑥, 𝑢1)𝜉𝜀((𝑢1 − 𝑢2)−)𝜓𝑑𝑥 + 𝜆∫𝛺

𝑓 (𝑥, 𝑢2)(𝜀 − 𝜉𝜀((𝑢1 − 𝑢2)−))𝜓𝑑𝑥

≤ ∫𝛺
𝑎(|∇𝑢1|)∇𝑢1.∇(𝜉𝜀((𝑢1 − 𝑢2)−)𝜓)𝑑𝑥

+ ∫𝛺
𝑎(|𝑢1|)𝑢1𝜉𝜀((𝑢1 − 𝑢2)−)𝜓𝑑𝑥

+ ∫𝜕𝛺
𝑏(𝑥)|𝑢1|

𝑝−2𝑢1𝜉𝜀((𝑢1 − 𝑢2)−)𝜓𝑑𝛾

+ ∫𝛺
𝑎(|∇𝑢2|)∇𝑢2.∇(𝜀 − 𝜉𝜀((𝑢1 − 𝑢2)−)𝜓)𝑑𝑥

+ ∫𝛺
𝑎(|𝑢2|)𝑢2(𝜀 − 𝜉𝜀((𝑢1 − 𝑢2)−))𝜓𝑑𝑥

+ ∫𝜕𝛺
𝑏(𝑥)|𝑢2|

𝑝−2𝑢2(𝜀 − 𝜉𝜀((𝑢1 − 𝑢2)−))𝜓𝑑𝛾. (4.93)

Note that

∫𝛺
𝑎(|∇𝑢1|)∇𝑢1.∇(𝜉𝜀((𝑢1 − 𝑢2)−)𝜓)𝑑𝑥 + ∫𝛺

𝑎(|𝑢1|)𝑢1𝜉𝜀((𝑢1 − 𝑢2)−)𝜓𝑑𝑥

+ ∫𝜕𝛺
𝑏(𝑥)|𝑢1|

𝑝−2𝑢1𝜉𝜀((𝑢1 − 𝑢2)−)𝜓𝑑𝛾

= ∫𝛺
𝑎(|∇𝑢1|)∇𝑢1.𝜉′𝜀((𝑢1 − 𝑢2)

−)∇(𝑢1 − 𝑢2)−𝜓𝑑𝑥

+ ∫𝛺
𝑎(|∇𝑢1|)∇𝑢1.𝜉𝜀((𝑢1 − 𝑢2)−)∇𝜓𝑑𝑥

+ ∫𝛺
𝑎(|𝑢1|)𝑢1𝜉𝜀((𝑢1 − 𝑢2)−)𝜓𝑑𝑥

+ ∫𝜕𝛺
𝑏(𝑥)|𝑢1|

𝑝−2𝑢1𝜉𝜀((𝑢1 − 𝑢2)−)𝜓𝑑𝛾

= − ∫
{−𝜀≤𝑢1−𝑢2≤0}

𝑎(|∇𝑢1|)∇𝑢1.∇(𝑢1 − 𝑢2)𝜓𝑑𝑥

+ ∫𝛺
𝑎(|∇𝑢1|)∇𝑢1.𝜉𝜀((𝑢1 − 𝑢2)−)∇𝜓𝑑𝑥

+ ∫𝛺
𝑎(|𝑢1|)𝑢1𝜉𝜀((𝑢1 − 𝑢2)−)𝜓𝑑𝑥

+ ∫𝜕𝛺
𝑏(𝑥)|𝑢1|

𝑝−2𝑢1𝜉𝜀((𝑢1 − 𝑢2)−)𝜓𝑑𝛾 (4.94)

and

∫𝛺
𝑎(|∇𝑢2|)∇𝑢2.∇((𝜀 − 𝜉𝜀((𝑢1 − 𝑢2)−))𝜓)𝑑𝑥 + ∫𝛺

𝑎(|𝑢2|)𝑢2(𝜀 − 𝜉𝜀((𝑢1 − 𝑢2)−))𝜓𝑑𝑥

+ ∫𝜕𝛺
𝑏(𝑥)|𝑢2|

𝑝−2𝑢2(𝜀 − 𝜉𝜀((𝑢1 − 𝑢2)−))𝜓𝑑𝛾

= − 𝑎(|∇𝑢2|)∇𝑢2.𝜉′ ((𝑢1 − 𝑢2)−)∇(𝑢1 − 𝑢2)−𝜓𝑑𝑥
21

∫𝛺 𝜀
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𝑎(|∇𝑢2|)∇𝑢2.(𝜀 − 𝜉𝜀((𝑢1 − 𝑢2)−))∇𝜓𝑑𝑥

+ ∫𝛺
𝑎(|𝑢2|)𝑢2(𝜀 − 𝜉𝜀((𝑢1 − 𝑢2)−))𝜓𝑑𝑥

+ ∫𝜕𝛺
𝑏(𝑥)|𝑢2|

𝑝−2𝑢2(𝜀 − 𝜉𝜀((𝑢1 − 𝑢2)−))𝜓𝑑𝛾

= ∫
{−𝜀≤𝑢1−𝑢2≤0}

𝑎(|∇𝑢2|)∇𝑢2.∇(𝑢1 − 𝑢2)𝜓𝑑𝑥

+ ∫𝛺
𝑎(|∇𝑢2|)∇𝑢2.(𝜀 − 𝜉𝜀((𝑢1 − 𝑢2)−))∇𝜓𝑑𝑥

+ ∫𝛺
𝑎(|𝑢2|)𝑢2(𝜀 − 𝜉𝜀((𝑢1 − 𝑢2)−))𝜓𝑑𝑥

+ ∫𝜕𝛺
𝑏(𝑥)|𝑢2|

𝑝−2𝑢2(𝜀 − 𝜉𝜀((𝑢1 − 𝑢2)−))𝜓𝑑𝛾. (4.95)

Adding (4.94) and (4.95) and using Lemma 2.9 and the fact that 𝜓 ≥ 0, we obtain

∫𝛺
𝑎(|∇𝑢1|)∇𝑢1.∇(𝜉𝜀((𝑢1 − 𝑢2)−)𝜓)𝑑𝑥 + ∫𝛺

𝑎(|𝑢1|)𝑢1𝜉𝜀((𝑢1 − 𝑢2)−)𝜓𝑑𝑥

+ ∫𝜕𝛺
𝑏(𝑥)|𝑢1|

𝑝−2𝑢1𝜉𝜀((𝑢1 − 𝑢2)−)𝜓𝑑𝛾

+ ∫𝛺
𝑎(|∇𝑢2|)∇𝑢2.∇((𝜀 − 𝜉𝜀((𝑢1 − 𝑢2)−))𝜓)𝑑𝑥

+ ∫𝛺
𝑎(|𝑢2|)𝑢2(𝜀 − 𝜉𝜀((𝑢1 − 𝑢2)−))𝜓𝑑𝑥

+ ∫𝜕𝛺
𝑏(𝑥)|𝑢2|

𝑝−2𝑢2(𝜀 − 𝜉𝜀((𝑢1 − 𝑢2)−))𝜓𝑑𝛾

= − ∫
{−𝜀≤𝑢1−𝑢2≤0}

𝑎(|∇𝑢1|)∇𝑢1.∇(𝑢1 − 𝑢2)𝜓𝑑𝑥

+ ∫𝛺
𝑎(|∇𝑢1|)∇𝑢1.𝜉𝜀((𝑢1 − 𝑢2)−)∇𝜓𝑑𝑥

+ ∫𝛺
𝑎(|𝑢1|)𝑢1𝜉𝜀((𝑢1 − 𝑢2)−)𝜓𝑑𝑥

+ ∫𝜕𝛺
𝑏(𝑥)|𝑢1|

𝑝−2𝑢1𝜉𝜀((𝑢1 − 𝑢2)−)𝜓𝑑𝛾

+ ∫
{−𝜀≤𝑢1−𝑢2≤0}

𝑎(|∇𝑢2|)∇𝑢2.∇(𝑢1 − 𝑢2)𝜓𝑑𝑥

+ ∫𝛺
𝑎(|∇𝑢2|)∇𝑢2.(𝜀 − 𝜉𝜀((𝑢1 − 𝑢2)−))∇𝜓𝑑𝑥

+ ∫𝛺
𝑎(|𝑢2|)𝑢2(𝜀 − 𝜉𝜀((𝑢1 − 𝑢2)−))𝜓𝑑𝑥

+ ∫𝜕𝛺
𝑏(𝑥)|𝑢2|

𝑝−2𝑢2(𝜀 − 𝜉𝜀((𝑢1 − 𝑢2)−))𝜓𝑑𝛾

≤ ∫𝛺
𝑎(|∇𝑢1|)∇𝑢1.𝜉𝜀((𝑢1 − 𝑢2)−)∇𝜓𝑑𝑥

+ ∫𝛺
𝑎(|𝑢1|)𝑢1𝜉𝜀((𝑢1 − 𝑢2)−)𝜓𝑑𝑥

+ ∫𝜕𝛺
𝑏(𝑥)|𝑢1|

𝑝−2𝑢1𝜉𝜀((𝑢1 − 𝑢2)−)𝜓𝑑𝛾

+ ∫𝛺
𝑎(|∇𝑢2|)∇𝑢2.(𝜀 − 𝜉𝜀((𝑢1 − 𝑢2)−))∇𝜓𝑑𝑥

+ ∫𝛺
𝑎(|𝑢2|)𝑢2.(𝜀 − 𝜉𝜀((𝑢1 − 𝑢2)−))𝜓𝑑𝑥

+ ∫𝜕𝛺
𝑏(𝑥)|𝑢2|

𝑝−2𝑢2(𝜀 − 𝜉𝜀((𝑢1 − 𝑢2)−))𝜓𝑑𝛾. (4.96)

We return to (4.93), use (4.96) and then divide by 𝜀 > 0, we obtain

𝜆 𝑓 (𝑥, 𝑢1)
1 𝜉𝜀((𝑢1 − 𝑢2)−)𝜓𝑑𝑥 + 𝜆 𝑓 (𝑥, 𝑢2)(1 −

1 𝜉𝜀((𝑢1 − 𝑢2)−))𝜓𝑑𝑥
22
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≤ ∫𝛺
𝑎(|∇𝑢1|)∇𝑢1.

1
𝜀
𝜉𝜀((𝑢1 − 𝑢2)−)∇𝜓𝑑𝑥

+ ∫𝛺
𝑎(|𝑢1|)𝑢1.

1
𝜀
𝜉𝜀((𝑢1 − 𝑢2)−)𝜓𝑑𝑥

+ ∫𝜕𝛺
𝑏(𝑥)|𝑢1|

𝑝−2𝑢1
1
𝜀
𝜉𝜀((𝑢1 − 𝑢2)−)𝜓𝑑𝛾

+ ∫𝛺
𝑎(|∇𝑢2|)∇𝑢2.(1 −

1
𝜀
𝜉𝜀((𝑢1 − 𝑢2)−))∇𝜓𝑑𝑥

+ ∫𝛺
𝑎(|𝑢2|)𝑢2.(1 −

1
𝜀
𝜉𝜀((𝑢1 − 𝑢2)−))𝜓𝑑𝑥

+ ∫𝜕𝛺
𝑏(𝑥)|𝑢2|

𝑝−2𝑢2(1 −
1
𝜀
𝜉𝜀((𝑢1 − 𝑢2)−))𝜓𝑑𝛾. (4.97)

Let us observe that
1
𝜀
𝜉𝜀((𝑢1 − 𝑢2)−(𝑥)) → 𝜒{𝑢1<𝑢2}(𝑥) a.e. on 𝛺 as 𝜀↘ 0

and

𝜒{𝑢1≥𝑢2} = 1 − 𝜒{𝑢1<𝑢2}.

Therefore, if we pass to the limit as 𝜀⟶ 0+ in (4.97), we get

𝜆 ∫
{𝑢1<𝑢2}

𝑓 (𝑥, 𝑢1)𝜓𝑑𝑥 + 𝜆 ∫
{𝑢1≥𝑢2}

𝑓 (𝑥, 𝑢2)𝜓𝑑𝑥 ≤ ∫
{𝑢1<𝑢2}

𝑎(|∇𝑢1|)∇𝑢1.∇𝜓𝑑𝑥 + ∫
{𝑢1≥𝑢2}

𝑎(|∇𝑢2|)∇𝑢2.∇𝜓𝑑𝑥

+ ∫
{𝑢1<𝑢2}

𝑎(|𝑢1|)𝑢1𝜓𝑑𝑥 + ∫
{𝑢1≥𝑢2}

𝑎(|𝑢2|)𝑢2𝜓𝑑𝑥

+ ∫
{𝑥∈𝜕𝛺, 𝑢1<𝑢2}

𝑏(𝑥)|𝑢1|
𝑝−2𝑢1𝜓𝑑𝛾 + ∫

{𝑥∈𝜕𝛺, 𝑢1≥𝑢2}

𝑏(𝑥)|𝑢2|
𝑝−2𝑢2𝜓𝑑𝛾. (4.98)

Recall that 𝑢̂ = min{𝑢1, 𝑢2} ∈ 𝑊 1,𝐺(𝛺) and

𝐷𝑢̂ =

{

𝐷𝑢1(𝑥) a.e. on {𝑢1 < 𝑢2},

𝐷𝑢2(𝑥) a.e. on {𝑢1 ≥ 𝑢2}.

Using this in (4.98), we obtain

𝜆∫𝛺
𝑓 (𝑥, 𝑢̂)𝜓𝑑𝑥 ≤ ∫𝛺

𝑎(|∇𝑢̂|)∇𝑢̂.∇𝜓𝑑𝑥 + ∫𝛺
𝑎(|𝑢̂|)𝑢̂𝜓𝑑𝑥 + ∫𝜕𝛺

𝑏(𝑥)|𝑢̂|𝑝−2𝑢̂𝜓𝑑𝛾. (4.99)

Since 𝐶1
𝑐 (𝛺)+ is dense in 𝑊 1,𝐺(𝛺)+, from (4.99), we conclude that 𝑢̂ = min{𝑢1, 𝑢2} ∈ 𝑊 1,𝐺(𝛺) is an upper solution for problem (P).

Using a similar argument, we can show that if 𝑣1, 𝑣2 ∈ 𝑊 1,𝐺(𝛺) are two lower solutions of problem (P), then 𝑣̂ = max{𝑣1, 𝑣2} ∈
𝑊 1,𝐺(𝛺) is a lower solution of problem (P). □

Proposition 4.4. Under the assumptions of Theorem 1.4, the set 𝑆+ is downward directed (see Definition 2.7) and the set 𝑆− is upward
directed (see Definition 2.7).

Proof. For this purpose, let 𝑢1, 𝑢2 ∈ 𝑆+. Both 𝑢1 and 𝑢2 are also upper solutions for problem (P). So by virtue of Proposition 4.3,
𝑢̂ = min{𝑢1, 𝑢2} ∈ 𝑊 1,𝐺(𝛺) is an upper solution for problem (P).

We consider the Carathéodory function 𝑙+ ∶ 𝛺 × R ⟶ R defined by

𝑙+(𝑥, 𝑠) =

⎧

⎪

⎨

⎪

⎩

0 if 𝑠 < 0

𝜆𝑓 (𝑥, 𝑠) if 0 ≤ 𝑠 ≤ 𝑢̂(𝑥)

𝜆𝑓 (𝑥, 𝑢̂(𝑥)) if 𝑢̂(𝑥) ≤ 𝑠.

(4.100)

We set 𝐿+(𝑥, 𝑠) = ∫ 𝑠0 𝑙+(𝑥, 𝑡)𝑑𝑡 and the 𝐶1-functional + ∶ 𝑊 1,𝐺(𝛺) ⟶ R defined by

+(𝑢) = (𝑢) + 1
𝑝 ∫𝜕𝛺

𝑏(𝑥)|𝑢|𝑝𝑑𝛾 − ∫𝛺
𝐿+(𝑥, 𝑢)𝑑𝑥

for all 𝑤 ∈ 𝑊 1,𝐺(𝛺). From (4.100), we can see that + is coercive. Exploiting Fatou lemma and the compactness embedding
theorem, we prove that + is sequentially weakly lower semicontinuous. Then, using the Weierstrass–Tonelli theorem, we can find
𝑦∗ ∈ 𝑊 1,𝐺(𝛺) such that

+(𝑦∗) = min{+(𝑢) ∶ 𝑢 ∈ 𝑊 1,𝐺(𝛺)}. (4.101)

As before, if 𝑢 ∈ int(𝐶1(𝛺)+) and 𝑡 ∈ (0, 1) small enough such that 𝑡𝑢 ≤ 𝑢̂, we have +(𝑡𝑢) < 0. Due to (4.101), we have
 (𝑦 ) < 0 =  (0). Hence, 𝑦 ≠ 0.
23
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From (4.101), we have (+)′(𝑦∗) = 0, that is,

∫𝛺
𝑎(|∇𝑦∗|)∇𝑦∗.∇𝑣𝑑𝑥 + ∫𝛺

𝑎(|𝑦∗|)𝑦∗𝑣𝑑𝑥 + ∫𝜕𝛺
𝑏(𝑥)|𝑦∗|

𝑝−2𝑦∗𝑣𝑑𝛾 − ∫𝛺
𝑙+(𝑥, 𝑦∗)𝑣𝑑𝑥 = 0 (4.102)

for all 𝑣 ∈ 𝑊 1,𝐺(𝛺).
We act with 𝑣 = 𝑦−∗ ∈ 𝑊 1,𝐺(𝛺) in (4.102), we conclude that 𝑦∗ ≥ 0 and 𝑦∗ ≠ 0. Next, we act with 𝑣 = (𝑦∗ − 𝑢̂)+ ∈ 𝑊 1,𝐺(𝛺) in

4.102), we get

∫𝛺
𝑎(|∇𝑦∗|)∇𝑦∗.∇(𝑦∗ − 𝑢̂)+𝑑𝑥 + ∫𝛺

𝑎(|𝑦∗|)𝑦∗(𝑦∗ − 𝑢̂)+𝑑𝑥

+ ∫𝜕𝛺
𝑏(𝑥)|𝑦∗|

𝑝−2𝑦∗(𝑦∗ − 𝑢̂)+𝑑𝛾

= ∫𝛺
𝑙+(𝑥, 𝑦∗)(𝑦∗ − 𝑢̂)+𝑑𝑥

= 𝜆∫𝛺
𝑓 (𝑥, 𝑢̂)(𝑦∗ − 𝑢̂)+𝑑𝑥

≤ ∫𝛺
𝑎(|∇𝑢̂|)∇𝑢̂.∇(𝑦∗ − 𝑢̂)+𝑑𝑥

+ ∫𝛺
𝑎(|𝑢̂|)𝑢̂(𝑦∗ − 𝑢̂)+𝑑𝑥

+ ∫𝜕𝛺
𝑏(𝑥)|𝑢̂|𝑝−2𝑢̂(𝑦∗ − 𝑢̂)+𝑑𝛾, (𝑢̂ is an ‘‘upper solution’’). (4.103)

It follows, by (4.103), that

∫{𝑦∗≥𝑢̂}

[

𝑎(|∇𝑦∗|)∇𝑦∗ − 𝑎(|∇𝑢̂|)∇𝑢̂
]

.∇(𝑦∗ − 𝑢̂)𝑑𝑥 + ∫{𝑦∗≥𝑢̂}

[

𝑎(|𝑦∗|)𝑦∗ − 𝑎(|𝑢̂|)𝑢̂
]

(𝑦∗ − 𝑢̂)𝑑𝑥 ≤ 0. (4.104)

sing (4.104) and Lemmas 2.3, 2.11, we infer that 𝑦∗ ≤ 𝑢̂ = min{𝑢1, 𝑢2}. Hence, from (4.100), we have that 𝑦∗ ∈ 𝑊 1,𝐺(𝛺) is a
positive solution of problem (P). So, we conclude that 𝑆+ is downward directed. Arguing similarly, we show that 𝑆− is upward
irected. □

Now, we are able to generate extremal constant sign solutions of (P).

roposition 4.5. Under the assumptions (𝑓1) − (𝑓2), (𝑓 ′
3) − (𝑓 ′

4) and (𝑔1) − (𝑔4), the problem (P) has a smallest non-trivial positive solution
∗ ∈ int(𝐶1(𝛺)+) and a biggest non-trivial negative solution 𝑣∗ ∈ −int(𝐶1(𝛺)+).

roof. Recall that 𝑆+ is the set of non-trivial positive solutions of problem (P). From Proposition 4.4, we know that the set 𝑆+ is
ownward directed. Then Lemma 3.10 of Hu–Papageorgiou [39, p. 178] implies that there exists a decreasing sequence {𝑢𝑛}𝑛∈N ⊆ 𝑆+

such that

inf
𝑛∈N

𝑢𝑛 = inf 𝑆+.

rom [26, Theorem 2.13, p. 7] and the fact that {𝑢𝑛}𝑛∈N is a positive decreasing sequence, we can see that {𝑢𝑛}𝑛∈N ⊆ 𝑊 1,𝐺(𝛺) is
bounded. Since 𝑊 1,𝐺(𝛺) is a reflexive space, we can find 𝑢∗ ∈ 𝑊 1,𝐺(𝛺) such that

𝑢𝑛 ⇀ 𝑢∗ in 𝑊 1,𝐺(𝛺),

𝑢𝑛 → 𝑢∗ in 𝐿𝐻 (𝛺) and in 𝐿𝑟(𝜕𝛺), for 1 ≤ 𝑟 < 𝑔−∗ (4.105)
and 𝑢𝑛(𝑥) → 𝑢∗(𝑥) a.a. 𝑥 ∈ 𝛺.

Taking the fact that 𝑢𝑛 ∈ 𝑆+, we get

∫𝛺
𝑎(|∇𝑢𝑛|)∇𝑢𝑛.∇𝑣𝑑𝑥 + ∫𝛺

𝑎(|𝑢𝑛|)𝑢𝑛𝑣𝑑𝑥 + ∫𝜕𝛺
𝑏(𝑥)|𝑢𝑛|

𝑝−2𝑢𝑛𝑣𝑑𝛾 = 𝜆∫𝛺
𝑓 (𝑥, 𝑢𝑛)𝑣𝑑𝑥, (4.106)

for all 𝑣 ∈ 𝑊 1,𝐺(𝛺) and 𝑛 ∈ N.
In (4.106), we act with 𝑣 = 𝑢𝑛 − 𝑢∗, we obtain

∫𝛺
𝑎(|∇𝑢𝑛|)∇𝑢𝑛.∇(𝑢𝑛 − 𝑢∗)𝑑𝑥 + ∫𝛺

𝑎(|𝑢𝑛|)𝑢𝑛(𝑢𝑛 − 𝑢∗)𝑑𝑥

+ ∫𝜕𝛺
𝑏(𝑥)|𝑢𝑛|

𝑝−2𝑢𝑛(𝑢𝑛 − 𝑢∗)𝑑𝛾

= 𝜆∫𝛺
𝑓 (𝑥, 𝑢𝑛)(𝑢𝑛 − 𝑢∗)𝑑𝑥. (4.107)

Note that, from (4.105), we have

lim 𝑓 (𝑥, 𝑢𝑛)(𝑢𝑛 − 𝑢∗)𝑑𝑥 = 0, (4.108)
24
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lim
𝑛→+∞∫𝜕𝛺

𝑏(𝑥)|𝑢𝑛|
𝑝−2𝑢𝑛(𝑢𝑛 − 𝑢∗)𝑑𝛾 = 0. (4.109)

assing to the limit in (4.107) as 𝑛→ +∞ and using (4.108) and (4.109), we get

lim
𝑛→+∞∫𝛺

𝑎(|∇𝑢𝑛|)∇𝑢𝑛.∇(𝑢𝑛 − 𝑢∗) + 𝑎(|𝑢𝑛|)𝑢𝑛(𝑢𝑛 − 𝑢∗)𝑑𝑥 = 0. (4.110)

t follows, by Lemma 2.12, that

𝑢𝑛 ⟶ 𝑢∗ in 𝑊 1,𝐺(𝛺). (4.111)

assing to the limit as 𝑛→ +∞ in (4.106) and using (4.111), we infer that

∫𝛺
𝑎(|∇𝑢∗|)∇𝑢∗.∇𝑣𝑑𝑥 + ∫𝛺

𝑎(|𝑢∗|)𝑢∗𝑣𝑑𝑥 + ∫𝜕𝛺
𝑏(𝑥)|𝑢∗|

𝑝−2𝑢∗𝑣𝑑𝛾 = 𝜆∫𝛺
𝑓 (𝑥, 𝑢∗)𝑣𝑑𝑥, (4.112)

or all 𝑣 ∈ 𝑊 1,𝐺(𝛺).
Furthermore, since 𝑢𝑛 ∈ 𝑆+ for all 𝑛 ≥ 0, from Proposition 4.2, we have

0 ≤ 𝑢̃ ≤ 𝑢𝑛, for all 𝑛 ≥ 0. (4.113)

In light of (4.105) and (4.113), we see that 0 ≤ 𝑢̃ ≤ 𝑢∗. Hence, from Proposition 3.1, we deduce that 𝑢∗ ∈ 𝑆+ and 𝑢∗ = inf 𝑆+.
Similarly, we prove that there exists 𝑣∗ ∈ 𝑆− such that 𝑣 ≤ 𝑣∗ for all 𝑣 ∈ 𝑆−. □

4.2. Critical groups at the origin

As we mentioned in the beginning of the section, we need to compute the critical groups at zero. So, in the next result, we prove
that 𝐶𝑘(𝐽 , 0) = 0 for all 𝑘 ∈ N.

Proposition 4.6. Under the assumptions (𝑓1), (𝑓 ′
3) and (𝑔1) − (𝑔4), we have 𝐶𝑘(𝐽 , 0) = 0 for all 𝑘 ∈ N.

Proof. The critical groups at zero for 𝐽 is defined by

𝐶𝑘(𝐽 , 0) = 𝐻𝑘(𝑈 ∩ 𝐽 0, (𝑈 ∩ 𝐽 0)∖{0})

where 𝑈 is a neighborhood of zero. We can take 𝑈 = 𝐵̄𝜚 = {𝑢 ∈ 𝑊 1,𝐺(𝛺) ∶ ‖𝑢‖ ≤ 𝜚}, with 𝜚 ∈ (0, 1).
Let X be a Banach space and 𝑌2 ⊆ 𝑌1 ⊆ X. From [40, Proposition 4.9 and 4.10, p. 389], if 𝑌1 and 𝑌2 are contractible, then the

singular homology groups for the pair (𝑌1, 𝑌2)

𝐻𝑘(𝑌1, 𝑌2) = 0, for all 𝑘 ≥ 0.

So, to prove our proposition, we just need to show that 𝐵̄𝜚 ∩ 𝐽 0 and (𝐵̄𝜚 ∩ 𝐽 0)∖{0} are contractible. We divide the proof into two
steps.

∙Step 1: We prove that 𝐵̄𝜚 ∩ 𝐽 0 is contractible.
Let 𝑢 ∈ 𝑊 1,𝐺(𝛺) and 0 < 𝑡 ≤ 1, we have

𝐽 (𝑡𝑢) = ∫𝛺
[𝐺(|∇𝑡𝑢|) + 𝐺(|𝑡𝑢|)] 𝑑𝑥 + 1

𝑝 ∫𝜕𝛺
𝑏(𝑥)|𝑡𝑢|𝑝𝑑𝛾 − 𝜆∫𝛺

𝐹 (𝑥, 𝑡𝑢)𝑑𝑥. (4.114)

rom assumptions (𝑓1) and (𝑓 ′
3), we get

𝐹 (𝑥, 𝑠) ≥ 𝑐1𝑄(|𝑠|) − 𝑐0𝐻(|𝑠|) for all 𝑠 ∈ R (4.115)

nd

𝑞+𝐹 (𝑥, 𝑠) − 𝑓 (𝑥, 𝑠)𝑠 ≥ −𝑐3𝐻(|𝑠|) for almost all 𝑥 ∈ 𝛺 and 𝑠 ∈ R. (4.116)

sing (4.114), (4.115) and Lemma 2.3, we find that

𝐽 (𝑡𝑢) ≤ |𝑡|𝑔
−

∫𝛺
[𝐺(|∇𝑢|) + 𝐺(|𝑢|)] 𝑑𝑥 + 1

𝑝
|𝑡|𝑝 ∫𝜕𝛺

𝑏(𝑥)|𝑢|𝑝𝑑𝛾

− 𝑐1𝜆∫𝛺
𝑄(|𝑡𝑢|)𝑑𝑥 + 𝑐0𝜆∫𝛺

𝐻(|𝑡𝑢|)𝑑𝑥

≤ |𝑡|𝑔
−(𝑢) + 1

𝑝
|𝑡|𝑝 ∫𝜕𝛺

𝑏(𝑥)|𝑢|𝑝𝑑𝛾

− 𝑐1𝜆|𝑡|
𝑞+

∫𝛺
𝑄(|𝑢|)𝑑𝑥 + 𝑐0𝜆|𝑡|

ℎ−

∫𝛺
𝐻(|𝑢|)𝑑𝑥.

Since 𝑞− ≤ 𝑞+ < 𝑝 < 𝑔− ≤ 𝑔+ < ℎ− ≤ ℎ+, it is clear that we can find 𝑡∗ ∈ (0, 1) such that

𝐽 (𝑡𝑢) < 0 for all 𝑡 ∈ (0, 𝑡∗). (4.117)
25
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Now, let 𝑢 ∈ 𝑊 1,𝐺(𝛺) such that 0 < ‖𝑢‖ ≤ 1 and 𝐽 (𝑢) = 0, we have
𝑑
𝑑𝑡
𝐽 (𝑡𝑢)

|

|

|

|𝑡=1
= ⟨𝐽 ′(𝑢), 𝑢⟩

= ∫𝛺
𝑎(|∇𝑢|)∇𝑢.∇𝑢𝑑𝑥 + ∫𝛺

𝑎(|𝑢|)𝑢2𝑑𝑥 + ∫𝜕𝛺
𝑏(𝑥)|𝑢|𝑝𝑑𝛾 − 𝜆∫𝛺

𝑓 (𝑥, 𝑢)𝑢𝑑𝑥 − 𝑞+𝐽 (𝑢)

= ∫𝛺
𝑎(|∇𝑢|)∇𝑢.∇𝑢𝑑𝑥 + ∫𝛺

𝑎(|𝑢|)𝑢2𝑑𝑥 + ∫𝜕𝛺
𝑏(𝑥)|𝑢|𝑝𝑑𝛾 − 𝜆∫𝛺

𝑓 (𝑥, 𝑢)𝑢𝑑𝑥

− 𝑞+ ∫𝛺
[𝐺(|∇𝑢|) + 𝐺(|𝑢|)] 𝑑𝑥 −

𝑞+

𝑝 ∫𝜕𝛺
𝑏(𝑥)|𝑢|𝑝𝑑𝛾 + 𝑞+𝜆∫𝛺

𝐹 (𝑥, 𝑢)𝑑𝑥

≥ (𝑔− − 𝑞+)(𝑢) + (1 −
𝑞+

𝑝
)∫𝜕𝛺

𝑏(𝑥)|𝑢|𝑝𝑑𝛾 + 𝜆∫𝛺
𝑞+𝐹 (𝑥, 𝑢) − 𝑓 (𝑥, 𝑢)𝑢𝑑𝑥. (4.118)

xploiting (4.116), (4.118) and continuous embedding result, we get

𝑑
𝑑𝑡
𝐽 (𝑡𝑢)

|

|

|

|𝑡=1
≥ (𝑔− − 𝑞+)(𝑢) − 𝑐3𝜆∫𝛺

𝐻(|𝑢|)𝑑𝑥

≥ (𝑔− − 𝑞+)‖𝑢‖𝑔
+
− 𝑐3𝜆max{‖𝑢‖ℎ

−

(𝐻), ‖𝑢‖
ℎ+
(𝐻)}

≥ (𝑔− − 𝑞+)‖𝑢‖𝑔
+
− 𝑐4𝜆max{‖𝑢‖ℎ

−
, ‖𝑢‖ℎ

+
} (since 𝑊 1,𝐺(𝛺) ↪ 𝐿𝐻 (𝛺)).

Since 𝑞+ < 𝑝 < 𝑔− ≤ 𝑔+ < ℎ− ≤ ℎ+, there exists some 𝜚 ∈ (0, 1) small such that
𝑑
𝑑𝑡
𝐽 (𝑡𝑢)

|

|

|

|𝑡=1
> 0, (4.119)

or all 𝑢 ∈ 𝑊 1,𝐺(𝛺) with 0 < ‖𝑢‖ ≤ 𝜚 and 𝐽 (𝑢) = 0.

Claim.

𝐽 (𝑡𝑢) ≤ 0 for all 𝑡 ∈ [0, 1], (4.120)

for all 𝑢 ∈ 𝑊 1,𝐺(𝛺), with 0 < ‖𝑢‖ ≤ 𝜚 and 𝐽 (𝑢) ≤ 0.

Proof of Claim. Arguing by contradiction, we suppose that there is some 𝑡0 ∈ (0, 1) such that 𝐽 (𝑡0𝑢) > 0. Since 𝐽 is continuous and
𝐽 (𝑢) ≤ 0, by Bolzano’s theorem, we can find 𝑡1 ∈ (𝑡0, 1] such that 𝐽 (𝑡1𝑢) = 0.

Let 𝑡∗ = min{𝑡 ∈ [𝑡0, 1] ∶ 𝐽 (𝑡𝑢) = 0} > 𝑡0 > 0. Then

𝐽 (𝑡𝑢) > 0 for all 𝑡 ∈ [𝑡0, 𝑡∗). (4.121)

Let 𝑣 = 𝑡∗𝑢. We have 0 < ‖𝑣‖ ≤ ‖𝑢‖ ≤ 𝜚 and 𝐽 (𝑣) = 0. Therefore, from (4.119) it follows that
𝑑
𝑑𝑡
𝐽 (𝑡𝑣)

|

|

|

|𝑡=1
> 0. (4.122)

From (4.121), we have

𝐽 (𝑣) = 𝐽 (𝑡∗𝑢) = 0 < 𝐽 (𝑡𝑢) for all 𝑡 ∈ [𝑡0, 𝑡∗)

so,
𝑑
𝑑𝑡
𝐽 (𝑡𝑣)

|

|

|

|𝑡=1
= lim
𝑡→1

𝐽 (𝑡𝑣) − 𝐽 (𝑣)
𝑡 − 1

= lim
𝑡→1

𝐽 (𝑡𝑣)
𝑡 − 1

= lim
𝑡→1

𝐽 (𝑡𝑡∗𝑢)
𝑡 − 1

= 𝑡∗ lim𝑡→1

𝐽 (𝑡𝑡∗𝑢)
𝑡∗𝑡 − 𝑡∗

= 𝑡∗ lim
𝑠→𝑡−∗

𝐽 (𝑠𝑢)
𝑠 − 𝑡∗

(𝑠 = 𝑡∗𝑡)

≤ 0. (4.123)

Comparing (4.122) and (4.123), we get a contradiction. This proves (4.120).
Now, Taking 𝜚 ∈ (0, 1) even smaller if necessary, such that 𝐾𝐽 ∩ 𝐵̄𝜚 = {0}.
Let 𝜑 ∶ [0, 1] × (𝐵̄𝜚 ∩ 𝐽 0) → 𝐵̄𝜚 ∩ 𝐽 0 be a continuous function defined by

𝜑(𝑡, 𝑢) = (1 − 𝑡)𝑢 for all (𝑡, 𝑢) ∈ [0, 1] × (𝐵̄𝜚 ∩ 𝐽 0).

From (4.120) we see that 𝜑(., .) is well-defined. This deformation proves that 𝐵̄𝜚 ∩ 𝐽 0 is contractable in itself.
∙ Step 2: we show that (𝐵̄𝜚 ∩ 𝐽 0)∖{0} is contractible.
Fix 𝑢 ∈ 𝐵̄𝜚 with 𝐽 (𝑢) > 0. We shall prove that there exists a unique 𝑡 ∈ (0, 1) such that

𝐽 (𝑡𝑢) = 0. (4.124)

From (4.117), we have

𝐽 (𝑡𝑢) < 0, for all 𝑡 ∈ (0, 𝑡∗)
26
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Recall that 𝑡 ↦ 𝐽 (𝑡𝑢) is continuous and we have 𝐽 (𝑢)𝐽 (𝑡𝑢) < 0 for all 𝑡 ∈ (0, 𝑡∗). So, the existence of some 𝑡 ∈ (0, 1) follows from
Bolzano’s theorem. Next we prove the uniqueness of 𝑡. Suppose that there are 0 < 𝑡1 < 𝑡2 < 1 such that 𝐽 (𝑡1𝑢) = 𝐽 (𝑡2𝑢) = 0. From
(4.120), we have

𝑘(𝑡) = 𝐽 (𝑡𝑡2𝑢) ≤ 0 for all 𝑡 ∈ [0, 1].

Hence 𝑡1
𝑡2

∈ (0, 1) is a maximizer of 𝑘(.), so, using the same computation in (4.123), we get

𝑑
𝑑𝑡
𝑘(𝑡)

|

|

|

|𝑡= 𝑡1
𝑡2

= 0 ⟹
𝑡1
𝑡2

𝑑
𝑑𝑡
𝐽 (𝑡𝑡2𝑢)

|

|

|

|𝑡= 𝑡1
𝑡2

= 𝑑
𝑑𝑡
𝐽 (𝑡𝑡1𝑢)

|

|

|

|𝑡=1
= 0,

which is contradict with (4.119). Then there exists a unique 𝑡 ∈ (0, 1) such that 𝐽 (𝑡𝑢) = 0.
From the uniqueness of 𝑡 and the fact that 𝐽 (𝑢) > 0, we get

𝐽 (𝑡𝑢) < 0 if 𝑡 ∈ (0, 𝑡) and 𝐽 (𝑡𝑢) > 0 if 𝑡 ∈ (𝑡, 1]. (4.125)

Now, let 𝜑1 ∶ 𝐵̄𝜚∖{0} ⟶ (0, 1] defined by

𝜑1(𝑢) =

{

1 if 𝑢 ∈ 𝐵̄𝜚∖{0}, 𝐽 (𝑢) ≤ 0,

𝑡 if 𝑢 ∈ 𝐵̄𝜚∖{0}, 𝐽 (𝑢) > 0.
(4.126)

We shall prove that 𝜑1(.) is continuous, so, we just need to see the continuity at 𝑢 ∈ 𝐵̄𝜚∖{0} with 𝐽 (𝑢) = 0. Let 𝑢𝑛 ⟶ 𝑢 with 𝐽 (𝑢𝑛) > 0
for all 𝑛 ≥ 1. Arguing by contradiction, suppose that by passing to a subsequence if necessary, we have 𝑡𝑛 ≤ 𝑡 < 1 for all 𝑛 ≥ 1. From
(4.125), we get

𝐽 (𝑡𝑢𝑛) > 0 for all 𝑡 ∈ (𝑡, 1] and all 𝑛 ≥ 1,

which gives us

𝐽 (𝑡𝑢) ≥ 0 for all 𝑡 ∈ (𝑡, 1].

Hence, from (4.120), we have

𝐽 (𝑡𝑢) = 0 for all 𝑡 ∈ (𝑡, 1] (4.127)

It follows, from (4.127), that
𝑑
𝑑𝑡
𝐽 (𝑡𝑢)

|

|

|

|𝑡=1
= 0,

hich is contradiction with (4.119). This proves that 𝜑1(.) is continuous.
Next, we consider the map 𝜑2 ∶ 𝐵̄𝜚∖{0} ⟶ (𝐵̄𝜚 ∩ 𝐽 0)∖{0} defined by

𝜑2(𝑢) =

{

𝑢 if 𝑢 ∈ 𝐵̄𝜚∖{0}, 𝐽 (𝑢) ≤ 0,

𝜑1(𝑢)𝑢 if 𝑢 ∈ 𝐵̄𝜚∖{0}, 𝐽 (𝑢) > 0.
(4.128)

Evidently, 𝜑2(.) is continuous and

𝜑2
|

|(𝐵̄𝜚∩𝐽0)∖{0}
= 𝑖𝑑|(𝐵̄𝜚∩𝐽0)∖{0} .

Therefore, 𝜑2(.) is a retraction of 𝐵̄𝜚∖{0} into (𝐵̄𝜚 ∩𝐽 0)∖{0}. But 𝐵̄𝜚∖{0} is contractible in itself. Hence, (𝐵̄𝜚 ∩𝐽 0)∖{0} is contractible,
too.

From Steps 1 and 2, we see that (𝐵̄𝜚 ∩ 𝐽 0)∖{0} and 𝐵̄𝜚 ∩ 𝐽 0 are contractible, then

𝐶𝑘(𝐽 , 0) = 𝐻𝑘(𝐵̄𝜚 ∩ 𝐽 0, (𝐵̄𝜚 ∩ 𝐽 0)∖{0}) = 0 for all 𝑘 ≥ 0. □

4.3. Proof of Theorem 1.5

Using the extremal constant sign solutions of problem (P), we produce a nodal solution. Precisely, via a suitable truncation
and variational methods coupled with Morse theory, we show that problem (P) admits a solution in [𝑣∗, 𝑢∗] distinct from 0, 𝑣∗, 𝑣∗.
vidently, this is a nodal solution.

Let 𝑢∗ and 𝑣∗ be the two extremal constant sign solutions produced in Proposition 4.5. We introduce the following Carathéodory
unction 𝑓 ∶ 𝛺 × R → R defined by

𝑓 (𝑥, 𝑠) =

⎧

⎪

⎨

⎪

⎩

𝜆𝑓 (𝑥, 𝑣∗(𝑥)) if 𝑠 < 𝑣∗(𝑥),

𝜆𝑓 (𝑥, 𝑠) if 𝑣∗(𝑥) ≤ 𝑠 ≤ 𝑢∗(𝑥),

𝜆𝑓 (𝑥, 𝑢∗(𝑥)) if 𝑢∗(𝑥) < 𝑠.

(4.129)

e also consider the following Carathéodory functions 𝑓± ∶ 𝛺 × R → R defined by

𝑓 (𝑥, 𝑠) = 𝑓 (𝑥,±𝑠±). (4.130)
27
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We set 𝐹 (𝑥, 𝑠) = ∫ 𝑠0 𝑓 (𝑥, 𝑡)𝑑𝑡 and 𝐹±(𝑥, 𝑠) = ∫ 𝑠0 𝑓±(𝑥, 𝑡)𝑑𝑡 and consider the 𝐶1-functional 𝜇, 𝜇± ∶ 𝑊 1,𝐺(𝛺) → R defined by

𝜇(𝑢) = (𝑢) + 1
𝑝 ∫𝜕𝛺

𝑏(𝑥)|𝑢|𝑝𝑑𝛾 − ∫𝛺
𝐹 (𝑥, 𝑢)𝑑𝑥

and

𝜇±(𝑢) = (𝑢) + 1
𝑝 ∫𝜕𝛺

𝑏(𝑥)|𝑢|𝑝𝑑𝛾 − ∫𝛺
𝐹±(𝑥, 𝑢)𝑑𝑥

for all 𝑢 ∈ 𝑊 1,𝐺(𝛺).
From (4.129) and (4.130), we infer that

𝐾𝜇 ⊆ [𝑣∗, 𝑢∗] ∩ 𝐶1(𝛺),

𝐾𝜇+ ⊆ [0, 𝑢∗] ∩ 𝐶1(𝛺)+,

𝐾𝜇− ⊆ [𝑣∗, 0] ∩ (−𝐶1(𝛺)+).

The extremality of the solutions 𝑢∗ and 𝑣∗ implies that

𝐾𝜇 ⊆ [𝑣∗, 𝑢∗] ∩ 𝐶1(𝛺), 𝐾𝜇+ = {0, 𝑢∗} and 𝐾𝜇− = {𝑣∗, 0}. (4.131)

ue to (4.129) and (4.130), we can see that 𝜇+ is coercive and it is sequentially weakly lower semicontinuous. Hence, by the
eierstrass–Tonelli theorem, we can find 𝑢̂∗ ∈ 𝑊 1,𝐺(𝛺) such that

𝜇+(𝑢̂∗) = min{𝜇+(𝑢) ∶ 𝑢 ∈ 𝑊 1,𝐺(𝛺)}. (4.132)

s before, we prove that 𝜇+(𝑢̂∗) < 0 = 𝜇+(0), then 𝑢̂∗ ≠ 0. so 𝑢̂∗ = 𝑢∗ (see (4.131)).
It is clear that

𝜇 ∣𝐶1(𝛺)+
= 𝜇+ ∣𝐶1(𝛺)+

Since 𝑢∗ ∈ int(𝐶1(𝛺)+), it follows that 𝑢∗ is a local 𝐶1(𝛺)-minimizer of 𝜇. Using [26, Theorem 2.14, p. 7], we get

𝑢∗ is a local 𝑊 1,𝐺(𝛺) − minimizer of 𝜇. (4.133)

Similarly, working with the functional 𝜇−, we show that

𝑣∗ is a local 𝑊 1,𝐺(𝛺) − minimizer of 𝜇. (4.134)

ithout lose of generality, we assume that 𝜇(𝑣∗) ≤ 𝜇(𝑢∗). From (4.131), if 𝐾𝜇 is not finite, then we have an infinity of smooth nodal
solutions and so we are done. So, we may assume that 𝐾𝜇 is finite. Then (4.133) and Theorem 5.7.6 of Papageorgiou–Rădulescu–
Repŏvs [7, p. 449], we can find 𝜌 ∈ (0, 1) small enough such that

𝜇(𝑣∗) ≤ 𝜇(𝑢∗) < inf{𝜇(𝑢) ∶ ‖𝑢 − 𝑢∗‖ = 𝜌} = 𝑚. (4.135)

y (4.129), we have that 𝜇 is coercive. These implies that 𝜇 satisfies the 𝐶-condition, see [7, Proposition 5.1.15, p. 369]. This fact
coupled with (4.135) permit the use of the mountain pass theorem. So, there is 𝑦0 ∈ 𝑊 1,𝐺(𝛺) such that

𝑦0 ∈ 𝐾𝜇 ⊆ [𝑣∗, 𝑢∗] ∩ 𝐶1(𝛺) and 𝑚 ≤ 𝜇(𝑦0). (4.136)

rom (4.135) and (4.136), we conclude that 𝑦0 ∉ {𝑣∗, 𝑢∗}.
Using Corollary 6.6.9 of Papageorgiou–Rădulescu–Repovs [7, p. 533], we get that

𝐶1(𝜇, 𝑦0) ≠ 0. (4.137)

rom (4.129), it is clear that 𝜇 ∣[𝑣∗ ,𝑢∗]= 𝐽 ∣[𝑣∗ ,𝑢∗], from the homotopy invariance of critical groups and Proposition 4.6, we infer that

𝐶𝑘(𝜇, 0) = 𝐶𝑘(𝐽 , 0) = 0 for all 𝑘 ≥ 0. (4.138)

omparing (4.137) and (4.138), we conclude that 𝑦0 ≠ 0. Hence, 𝑦0 is a sign changing solution for the problem (P). Combining this
ith the result of Theorem 1.4, we get our result.
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