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ARTICLE INFO ABSTRACT
Keywords: We consider a parametric non-autonomous (p, ¢)-equation with a singular term and competing
Nonlinear regularity theory nonlinearities, a parametric concave term and a Carathéodory perturbation. We consider the

(p-1)-linear and (p-1)-superlinear perturbations
Minimal solution

Solution multifunction

Truncations and comparisons

cases where the perturbation is (p — 1)-linear and where it is (p — 1)-superlinear (but without
the use of the Ambrosetti-Rabinowitz condition). We prove an existence and multiplicity result
which is global in the parameter 4 > 0 (a bifurcation type result). Also, we show the existence
of a smallest positive solution and show that it is strictly increasing as a function of the
parameter. Finally, we examine the set of positive solutions as a function of the parameter
(solution multifunction). First, we show that the solution set is compact in C(; () and then we
show that the solution multifunction is Vietoris continuous and also Hausdorff continuous as a
multifunction of the parameter.

1. Introduction

Let 2 C RN be a bounded domain with a C2-boundary 2. In this paper, we study the following parametric nonlinear Dirichlet
problem

—4, u(z) — AP u(z) = Au(2) ™" + u(2)* ] + f(z,u(z) in 2,
ulpgo=0,1<7<g<p0<n<1,A>0,u>0.

@

For a € C%(Q) with a(z) > ¢ > 0 for all z € Q and for s € (1, ), we denote by A% the non-autonomous s-Laplace differential
operator defined by

A% = div(a(z)| Dul* > Du) for all u € W, ().
The features of problem (1) are the following:

(i) The presence of two non-autonomous differential operators with different growth, which generates a double phase associated
energy.
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(ii) The problem combines the effects generated by a smooth nonlinearity, a singular reaction, and an unbalanced operator.
(iii) The analysis is developed with respect to the values of the positive parameter associated with the power-type and singular
nonlinear terms.

Since the content of the paper is closely concerned with unbalanced growth, we briefly introduce in what follows the related
background and applications and we recall some pioneering contributions to these fields. Eq. (1) is driven by a differential operator
with unbalanced growth due to the presence of the (p,g)-Laplace type operator. This kind of problem comes from a general
reaction-diffusion system:

u, = div[A(Vu)Vu] + c(x,u), and A(Vu) = |VulP~2 + |Vu|772,

where the function u is a state variable and describes the density or concentration of multicomponent substances, div[A(Vu)Vu]
corresponds to the diffusion with coefficient A(Vu) and c(x,u) is the reaction and relates to source and loss processes. Originally,
the idea to treat such operators comes from Zhikov [1] who introduced such classes to provide models of strongly anisotropic
materials, see also the monograph of Zhikov et al. [2]. We refer to the remarkable works initiated by Marcellini [3,4], where the
author investigated the regularity and existence of solutions of elliptic equations with unbalanced growth conditions. The (p, ¢)-
Laplacian Eq. (1) is also motivated by numerous models arising in mathematical physics. For instance, we can refer to the following
Born-Infeld equation [5] that appears in electromagnetism, electrostatics and electrodynamics as a model based on a modification
of Maxwell’s Lagrangian density:

—div <Ll) = h(u) in Q.
(1-2|Vul*)2

Indeed, by the Taylor formula, we have

1 1" —_ 3N
(I—-x)"2=1+2%+ 3 2y S sy @not

n—1
>t » 31422’x+ (n—l)!-Z"‘lx + ... for|x| < 1.

Taking x = 2|Vu|? and adopting the first order approximation, we obtain problem (1) for p = 2 and ¢ = 4. Furthermore, the nth
order approximation problem is driven by the multi-phase differential operator

@n -3
T

We also refer to the following fourth-order relativistic operator

2
u - div <L3Vu> s
(1—1|Vul®?

which describes large classes of phenomena arising in relativistic quantum mechanics. Again, by Taylor’s formula, we have

2 4—3 2 3x0  21x10
1-— 4 = -
x“(1 —x7) X+ + 3

This shows that the fourth-order relativistic operator can be approximated by the following operator

—Au — Ayu— %Aﬁu —

u— A+ %Agu.

For more details on the physical backgrounds and other applications, we refer to Bahrouni et al. [6](for phenomena associated with
transonic flows) and to Benci et al. [7](for models arising in quantum physics).

Problem (1) is driven by the sum of two such operators with different exponents and weight functions. So, the differential
operator in (1) is not homogeneous. In the reaction (right hand side) of (1) we have the combined effects of a parametric singular
term u — Au~", of a parametric concave term u — Au’"! (recall that = < ¢ < p) and of a perturbation f(x,z). This perturbation
is a Carathéodory function (that is, z — f(z,x) is measurable and x — f(z,x) is continuous) which is either (p — 1)-linear or
(p — 1)-superlinear as x — +oo (the second case corresponds to concave-convex nonlinearities). Our aim is to prove the existence
and multiplicity of positive solutions and we want the result to be global in the parameter 4 > 0. Problems with competition
phenomena, but without singular term, were first studied by Ambrosetti, Brezis, Cerami [8], for semilinear equations driven
by the Laplacian. Their work was extended to p-Laplacian equations by Garcia Azorero, Peral Alonso, Manfredi [9] and Guo,
Zhang [10]. Further generalizations can be found in the works of Leonardi, Papageorgiou [11], Liu, Papageorgiou [12], Marano,
Marino, Papageorgiou [13], Papageorgiou, Réddulescu, Repovs [14] and the references therein. None of the aforementioned works
involves a singular term. Problems with singular terms and concave-convex nonlinearities, were examined recently by Papageorgiou,
Winkert [15] and Gasinski, Papageorgiou [16]. A common feature in these two works, is that the perturbation f(z, x) is nonnegative.
This makes the analysis of problems easier. Also, their hypotheses on f(z,-) near zero are more restrictive. Here, in contrast f(z, x)
can change sign. We consider both the cases of (p — 1)-linear and (p — 1)-superlinear perturbation and our hypotheses on f(z,-) are
more general. We prove an existence and multiplicity result which is global in 4 > 0 (a bifurcation-type theorem).

We also show the existence of a minimal positive solution and determine its monotonicity properties with respect to the
parameter. Finally, we examine the dependence of solution set on the parameter 4 > 0. We prove the continuity properties of this
solution multifunction. Our result in this direction extends the recent works of Zeng, Gasinski, Nguyen, Bai [17] and Papageorgiou,
Scapellato [18] (nonsingular equations) and by Bai, Motreanu, Zeng [19] (singular problems driven by the p-Laplacian). In all these
works, the perturbation f(z,x) is nonnegative and the overall hypotheses are more restrictive.
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2. Mathematical background and hypothesis

The main spaces in the analysis of problem (1), are the Sobolev space WO"” (£2) and the Banach space Cé @) ={uecl :
u|y0 = 0}. On account of the Poincaré inequality, on WOI ?(2) we consider the following equivalent norm
llull = [| Dull,, for all u € W,""(£2).
The space Cé (£) is an ordered Banach space with positive (order) cone C, = {u € C(i () : u(z) > 0 for all z € Q}. This cone has

a nonempty interior given by

intC, ={ueC, :u(z)>0forall z eﬂ,%lm <0},
n

where ou _ (Du, n)gn with n(-) being the outward unit normal on 0.
If u 1 Q - R is a measurable function, then we define
ut(z) = max{u(z),0},u” (z) = max{—u(z),0} for all z € Q.
Both are measurable functions and u = u™ — u™, |u| = u™ + u~. Moreover, if u € Wol”’(.Q), then u* € WOI”’(.Q). Ifu,v: Q - R are

measurable functions such that u(z) < v(z) for a.a. z € 2, then we define

[u.v] = {h € W, (@) : u(z) < h(z) < v(z) for a.a. z € Q},
[w) = (h € W, "(Q) : u(z) < hz) for a.a. z € Q},

int 1 [, v] = {the interior in Co() of [u,v] N CJ(2)}.

If X is a Banach space and ¢ € C!(X,R), then by K, we denote the critical set of ¢(-), that is, K, = {u € X : @' (u) = 0}. Also, if
u : 2 — R is measurable, we write “0 < u” if for all K C Q compact, we have 0 < cx < u(z) for a.a. z € K.

A useful tool in the study of singular boundary value problems, is the so-called “Hardy’s inequality” which we recall next (see,
for example, Papageorgiou, Radulescu, Repovs [20, p. 66]).

Proposition 1. If 2 C R" is a bounded domain with Lipschitz boundary and p € (1, o), then || % I, < cllDull, for all u € Wol’p (£2), some
¢ > 0 and with d(z) = d(z,08) for all z € Q.
Conversely, we have

“ue wh(Q) and % €LM(Q) = ue W, Q)"

Let @ € C%1(Q) with a(z) > ¢ > 0 for all z€ Q and s € (1, ). We consider the following nonlinear eigenvalue problem
— A%(z) = Au(2)*u(z) in 2,ulyq = 0. 2

This problem was studied by Liu, Papageorgiou [21] (see the Appendix of [21]). They proved that (2) has a smallest eigenvalue
i‘f (s) > 0 which has the following variational characterization.

Pas(Du)

lluell

This eigenvalue is isolated in the spectrum of (2) and simple (that is, if 4, 0 are two eigenfunctions corresponding to ifl’ (s) >0,
then 4 = 00 with 6 € R\{0}). The infimum in (3) is realized on the corresponding one dimensional eigenspace. It is clear from
(3) that the elements of this eigenspace, have fixed sign. By i,(s) we denote the positive, L*(£2) normalized (that is, [|2;(s)|l, = 1)
eigenfunction corresponding to i‘f(s). The nonlinear regularity theory of Lieberman [22] and the nonlinear maximum principle of
Pucci, Serrin [23] (pp. 111, 120), imply that 4,(-) € int C,. Using these properties we obtain the following useful inequality (see
Liu, Papageorgiou [21], Proposition 4.2).

i‘f(s) = inf { Tu€ VVOI’S(.Q),M # 0} with p, (Du) = / a(z)|Dul*dx. 3)
Q

Proposition 2. If 0 € L®(Q), 6(z) < A% for a.a. z € Q, 0 % A%(s), then there exists ¢* > 0 such that
| Dull® < /Qa(z)lDul"dz— /Qo(z)|u|3dzfor all ue W,” ().
We mention that 27 (s) > 0 is the only eigenvalue with eigenfunctions of constant sign. We will also encounter a weighted version
of (2). So, let n € L*(£2)\{0}, n(z) > 0 for a.a. z € 2 and consider the following nonlinear eigenvalue problem
—A4%u(z) = In(2)|u(2)|*u(z) in Q,ulyq = 0.

For this problem, we have the same results as for (2). So, there is a smallest eigenvalue ZT (s,n) > 0 which has the same properties
as i’f(s). Moreover, Z‘I’ (s, 1) has the following monotonicity property with respect to the weight #. If 4,7 € L®(2)\{0}, 0 < n(z) < #j(z)
for a.a. z € 2, n # 7}, then

(s 0) < A5Cs.m).
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Let AY : WOI’S(.Q) > W@ = WOI*S(.Q)* (% + Al, = 1) be the nonlinear operator defined by
(A%w), h) = / a(2)| Du|*~2(Du, Dh)gn dz for all u, h € W, ().
Q

This operator has the following properties (see, for example, Gasinski, Papageorgiou [24], p. 279).

Proposition 3. The operator A% : WOI"‘(_Q) — W"*"(.Q) is bounded (that is, maps bounded sets to bounded sets), continuous, strictly
monotone (thus, maximal monotone too) and of type (S),, that is,

“if u”i> uin WOI’S(.Q) and lim sup(A%(u,),u, —u) <0,
n—oo

then u, — u in W,"*().”
Our hypotheses on the weight functions and the exponents are the following:
Hy:a,a € C(@),0<é<a(z),ayz) forall zeRand0<n<l<z<g<p.

We set V() = Ay'(u) + A,*(u) for all u € W,"(). Then on account of Proposition 3, V : W, (@) - W (Q) =
WOI"” (2)* (i + i, = 1) is bounded, continuous, strictly monotone (thus maximal monotone too) and of type (S),.

In the last section, we will study the dependence of the solution set of (1) on the parameter 4 > 0. For this purpose, we will need
some continuity notions from multivalued analysis, which we recall below. For more details we refer to Hu, Papageorgiou [25].

So, let X, Y be Hausdorff topological spaces and S : X — 2¥\{#} a multifunction (set-valued function).

o S(-) is “lower semicontinuous” (Isc for short), if for every U C Y open the set S™(U) = {x € X : S(x)nU # @} is open.
o S(-) is “upper semicontinuous” (usc for short), if for all U C Y open, the set S*(U) = {x € X : S(x) C U} is open.

Suppose Y is a metric space and let d(-,-) be its metric. For A,C C Y nonempty sets, we define

h*(A,C) =sup{d(a,C) : a € A}
=inf{e>0: ACC_.},

where C. = {x € X : d(x,C) < ¢} (the e-enlargement of C) . It is easy to see that
h*(A,C) = sup{d(x,C)-d(x,A) : x € X}.
The “Hausdorff distance” between A and C is defined by
h(A, C) = max{h*(A,C),h*(C, A)}
=inf{e>0: ACC,and C C A_}.
If follows that
h(A,C) = sup{|d(x,C) — d(x, A)| : x € X}.

Let P;(Y) (resp. P,(Y)) denote the family of nonempty, closed (resp. compact) subsets of Y. We know that h(-, ) is a (generalized)
metric on P/(Y) and if Y is complete, then so is (Py(Y),h). Let s : X — 2Y\ (@} be a multifunction (Y a metric space)

o S(-) is “h-lower semicontinuous” (h-lIsc for short), if for all x € X,u — h*(S(x), S(u)) is continuous on X.
» S(-) is “h-upper semicontinuous” (h-usc for short), if for all x € X,u — h*(S(u), S(x)) is continuous on X.

In general we have

“h —lsc => Isc and usc => h —usc”.
If S(-) is P,(Y)-valued, then

“h—lsc < Isc and h — usc = usc”.

A multifunction S(-) which is both Isc and usc, is said to be continuous (or Vietoris continuous). A multifunction S(-) which is
both h-Isc and h-usc, is said to be h-continuous (or Hausdorff continuous). From the previous remarks, we see that a P (Y)-valued
multifunction. S(-) is continuous if and only if it is h-continuous.

If (Y,d) is a metric space and {C,},en C 2Y\ {0}, then we define

liminfC, ={y€Y : y=limy,,y, € C,,n € N}
n—oo

={y€eY : limd(y,C, =0}.
n—oo

We say that S : X — 2¥\{@} is locally compact, if for every x € X, we can find U an open neighborhood of x such that S(U) is
compact in Y.
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Aset DC Wol”’ (£) is said to be downward directed, if given u;,u, € D we can find u € D such that u < u;,u <u,.

Next we introduce our hypotheses on the perturbation f(z,x). As we already mentioned in the introduction, we will present a
unified treatment of both the (p — 1)-linear and of the (p — 1)-superlinear cases.

For the (p — 1)-linear case the hypotheses on the perturbation f(z, x) are the following:

H, : f: 2%xR - R is a Carathéodory function such that

(i) for every p > 0, there exists &, € L®(£2) such that
[f(z,x)| < @a,(2) foraa.ze 2,all0 < x < p;
(ii) there exist functions 7,7 € L*Q such that

27 (p) < n(2) for a.a. z € 2,0 # A5 (p),

< lim sup < #(z) uniformly for a.a. z € Q,

X—+00

n(2) < liminf L&) fzx)
X—+00 xP*I xP*I
(iii) there exist a function # € L*(£2) and § > 0 such that
0(z) < A72(q) for a.a. z € 2,0 2 172(g).

. fzx)
im sup ——=
x—=0t xq_l

< 6(z) uniformly for a.a. z € £,
f(z,x)>0fora.a.ze 2, all 0 < x < 6;
(iv) for every p > 0, there exists .fp > 0, such that for a.a. z € Q, the function

x = f(z,x)+ E’,x”_l

is nondecreasing on [0, p].

Remark 1. Note that hypothesis H, (iii) implies that f(z,0) = 0 for a.a. z € Q. Also since we search for positive solutions and the
above hypotheses concern the positive semiaxis, we may assume without any the loss of generality that f(z,x) =0 for a.a. z € 2,
all x <0.

For the (p — 1)-superlinear case, the hypotheses on the perturbation f(z,x) are the following:
Hj : f: QxR - Risa Carathéodory function such that

() |f(z,x)| € &z)(1 +x""1) for a.a. z € 2, all x >0, with @ € L®(Q), p < r < p* (recall that p* = NN—:J if p< N and p* = +0 if
N <p);
(i) If F(z,x) = [;* f(z, 5)ds, then
lim Fex = +o0 uniformy for a.a. z € Q;

X—+00 xP

and there exists s € ((r — p) max { %, 1 } s p*) such that

~ —pF
0 < f <liminf M uniformly for a.a. z € 2;

X—+00 X
(iii) same as hypothesis H|(iii);
(iv) same as hypothesis H,(iv).
Remark 2. Hypothesis Hj(ii) implies that
i f(z,x)
1m

x—>+400 xp—1

= +oo uniformly for a.a. z € Q.

So, the perturbation f(z,-) is (p — 1)-superlinear. However, we do not employ the Ambrosetti-Rabinowitz (the AR-condition for
short), which is common in the literature when dealing with superlinear problems (see Willem [26], p. 46). Hypothesis H f (i) is
less restrictive and incorporates in our framework superlinear nonlinearities with “slower” growth near +oo which fail to satisfy the
AR-condition (see the examples below).

Example 1. For the sake of simplicity, we drop the z-dependence. Consider the following function

O(xt) ! —(xty-1 ifx <1,
fix) = 0 1 .
nxP~" + ex* if 1 <x,
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with 6 < ifz(q), 7> /Al(f‘ (p), c=n+1-0and r> g, 1 <s < p. This function satisfies hypotheses H;. Also consider the function
7,00 f(x*)yr! ifx<1,
x) =
2 xP'nx +60x~! if 1 <x,

with 6 < /T(l'z(q), and 1 < s < p. This function satisfies hypotheses H 1’ , but fails to satisfy the AR-condition.
3. An auxiliary problem

When dealing with singular equations, the problem that we face is that due to the presence of the singular term, the energy
functional of the problem is not C' and so we cannot use the minimax results of the critical point theory. We have to find a way to
bypass the singularity and deal with C!-functionals. We will be able to do this using the solution of the following auxiliary Dirichlet
problem:

{ =45 u(z) — AP u(z) = Au(z)"™! in @, }

4
o =0,1<7<qg<p,A>0,u>0. “

For this problem, we have the following result.

Proposition 4. If hypotheses H, hold and 4 > 0, then problem (4) has a unique positive solution ii, € int C,, {ii,} 5 is nondecreasing
and i; - 0 in CS(Q) as A — 0F.

Proof. Consider the C!-functional &, : WO1 ?(Q) — R defined by

N 1 1 Ay we ,
6,(u) = ;pal,p(Du) + Epaz,q(Du) = 2|7 for all u € W, (Q).

Evidently, 6(-) is coercive (recall that ¢ < ¢ < p). Also, using the Sobolev embedding theorem, we see that 4(-) is sequentially
weakly lower semicontinuous. So, by the Weierstrass-Tonelli theorem, we can find i, € WOI”’ (£2) such that
8(@,) = inf{o, () : u e W, (Q)}. (5)
Letu €intC, and ¢ € (0, 1). Then
N tP 14 -
G,(tu) = ;Pal,p(DM) + ;paz,q(Du) - ?||“||,
< ¢;t? — ¢pt" for some ¢, ¢, > 0 (recall that 0 <t < 1,g < p).
But 7 < g. So, choosing t € (0, 1) even smaller if necessary, we have
&,(tu) <0,
=6,(i,) < 0 = 6,(0) (see (5)),
=i, #0.
From (5) we have

(8(@). h) = 0 for all h & W,"(<).

= o1 1 (6)
=>(V(a,),h) = / A@,)"" " hdz for all h € WO’”(Q).
Q

Choosing h = -] € Wol’” (£2) in (6) and using hypotheses H,,, we obtain
I | <o,
=i, > 0,4, #0.
Then from (6) we infer that @, is a positive solution of problem (4). By a standard Moser iteration process we show that
i, € L*(2) (see [27]). So, we can apply the nonlinear regularity theory of Lieberman [22] and have that @, € C,\{0}. We have
(see Pucci, Serrin [23], pp. 111, 120)
Ay + A2, <0 in @,
=i, €intC,.
We show that this positive solution of (4) is unique. Suppose 7, € WO] *?(£) is another positive solution of (4). Again we have
0, €int C, and so using Proposition 4.1.22, p. 274, of Papageorgiou, Radulescu, Repovs [20], we have
u

i b
4 e L*(Q) and -* € L¥(Q).
Uy uy
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Using the Diaz-Saa inequality (see Diaz, Saa [28] and also Papageorgiou, Radulescu [29], proof of Proposition 3.5), we have

1 1
0< - — | @ -59)dz <0,
/g [ﬁ‘?‘f ﬁj"] @ =)

A

=i, =0,

This proves the uniqueness of the positive solution of (4).
Next, we show that the family {i,},,, is nondecreasing. Suppose 0 < y < A. We introduce the Carathéodory function #,(z, x)
defined by

+y7—1 q =
£y zn={ YY) if x < 5(2) %)
wii,(2)77! if dy(2) < x.

Let L, (z,x) = I ¢,/(z,5)ds and consider the C!-functional o,, : WOI ?(Q) - R defined by
o, () = iﬂal,p(D“) + épaz,q(Du) - / L, (z,u)dz for all u € Wol’p(Q).
Q
As before, using the Weierstrass-Tonelli theorem, we can find 7, € Wol’” (£2) such that

0, (@,) = inf{c, () : u € W, "(Q)}. @®)

Let u € int C, and choose ¢ € (0, 1) small so that ru < @, (recall that i; € int C, and use Proposition 4.1.22, p. 274, of [20] to see
that such a ¢ € (0, 1) exists). Then as before since = < g < p, by taking ¢ € (0, 1) even small if necessary we can have

o, (tu) <0,
=0, (4,) < 0 =0,(0) (see (8)),
=, #0.
From (8) we have

~ 1,
(a],@,). hy =0 for all h € W," (),

(C)]
= (V(@,), h) = / £,(2.i,)hdz for all h € W7 (Q).
Q
In (9) we choose h = —i, € WO]"’ () and obtain
éllpa,, || <0,
=0, > 0,4, #0.
Also in (9) we use the test function 4 = (&, —u)* € Wol’” (£2). Then
(V@,), @, —a)*) = / witi (@, — ;)" dz (see (7))
Q
< / iy iy, — ;) dz (since w < )
Q
= <V(’24);(’2W - ’2/1)+>,
> (V@) - V@), @, —ia*) <0,
= i, <i,.
So, we have proved that
i, €10,4;1.d, #0. (10)
Then from (10), (7) and (9), we see that @, is a positive solution of (4). Hence &, = %, and we infer that
w <, (see (8)),
= {i1;},50 is nondecreasing.
Finally, we show that i, — 0 in C(} (Q) as 4 — 0*. We have
0<i;<a foral0< A<l
It follows that
é||Dﬁ/1||Z < Acslla, || for all 0 < 4 < 1,some ¢3 > 0 (see (7)),
=, - 0in W, "(Q) as 1 > 0% (11)
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Moreover, from the nonlinear regularity theory of Lieberman [22], we know that there exist « € (0,1) and ¢, > 0 such that

= La Ay — ~larh 1roH =
i, € C() Q) =Cc*@Q)n CO(Q)’ ”ulllc(;v"(_(}) <y forall0< A< 1. (12)
But recall that CS"’(Q) < Cé(.é) compactly (Arzela—Ascoli theorem). So, from (11) and (12), we conclude that

i, > 0in C}(2) as 1 > 0"

The proof is now complete. []

Remark 3. Although we will not need it in the sequel, we mention that we can improve the monotonicity of {i,},,, and assert
that {a,},, is strictly increasing, that is,

“O<y<i=u,—i, €intC,”

We already know that 4, <. Then (see Gasinski, Papageorgiou [30], Proposition 3.4)
a = L
—4,'a, —Aj @, = v,
—r—1 ap - a — .
<AayTh=-A,'a; — Aja; in Q

>, —i, €intC, .

We will use this solution @, € int C, to “neutralize” the singularity.

4. Positive solutions

We introduce the following two sets

L ={41>0 : problem (1) has a positive solution},

S, = set of positive solutions for problem (1).
Using Proposition 4, we see that for y € (0, 1) small, we have
0<i,(z)<ésforall ze Q (13)

(here 6 > 0 is as in hypothesis H, (iii) = Hl’(iii)),
Proposition 5. If hypotheses H, H; hold, then L # @ and for every A€ L, § # S, CintC,.

Proof. Using i@, €intC, from (13), we introduce the Carathéodory function k,(z, x) defined by

ky(zx) = {A(ﬁw(z)"7 + ﬁw(z)f_l) + f(z,x*) if x <@, (2), (14)

Ax7 4+ xf_l) + f(z,x) if ﬁw(z) <X.

We set K;(z,x) = [, k;(z, s)ds and consider the functional v, : Wol"’ () - R defined by
() = %pal,p(D“) + épaz,q(Du) — / K, (z,u)dz for all u € VVOI’I’(.Q).
Q

We know that y; € C I(VVOI‘” (2)) (see Papageorgiou, Smyrlis ([31], Proposition 3)).

Claim 1. For every A > 0, the functional y,(-) satisfies the C-condition.

. 1, . . _ 1,

We consider a sequence {u,},cn C W, P(Q) such that {y,(u,)},ey € R is bounded and (1 +||un||u//’1(un) - 0in W-P'@ = W, P(2)*
as n - oco. We have
e,llAll

L+ lu, |l

(Wl u,), hy < for all h € W, *(2).all n € N, with ¢, — 07 (15)

In (15) we use the test function 4 = —u, € VVOI"’ (£2). From (14) and hypotheses H,,, we have

éllDu;llg <e¢, forallneN,

= u; > 0in W) "(Q) as n - co. (16)



N.S. Papageorgiou et al. Nonlinear Analysis: Real World Applications 81 (2025) 104225

¥
uVI

We will show that {u}},cy C WO1 () is bounded. If this is not true, then we may assume that llet|l = oo. Let y, = TR eN.
Then ||y,|l = 1,y, = 0 for all » € N. So, we may assume that "
Yo ¥ in W"(Q).y, — y in LP(). 17)
From (15), we have
h
[(A (), B + (A (u,), h) —/ k(2 u,)hdz] < % for all h e W "(@).all n €N,
Q Uy
M, + a7
1 v
SIS ) + APy - [
[y [1P~4 wisa,) g ll? 18)
A@H™ + @'
- / %hdz - / F(z,uf)dz| < € ||l
{uw<u,*,') ”un [P~ Q
for all h € W, "), all n € N, with €/, - 0% (see (14), (16)).
Since i@, €intC,, we can find ¢5 > 0 such that cstf <a, (see Guo, Webb [32]). We have
Alh Alh
/ %dz < / %dz
{uy<a,) Uy Q Uy
h
< /1/ al=n udz
Q v uy/
h
< Acq de for some ¢ > 0 (recall i, € intC,)
Q Uy (19)
< /16—6 / |—}ildz
¢ Jo d
< Ac7|| Dh||, for some ¢; > 0 (see Proposition 1, Hardy’s inequality)
Alh
=> +l —1/ _lnldz—>0asn—>oo.
Nz 112=1 S it <a, y
Also
Alh Alh
R S P
Nz 1P~ Jia, <uty ) e 1271 Jia, <ipy iy 20)
1 Alh|
< sz—»OaSnﬁoo.
THEN R
In addition, note that
1 / 1
Aiit "hdz - 0 as n — oo, 21)
N 17T <,y
1 / +y7—1
_ Au)""hdz > 0as n — co. (22)
NPt S, <apy "7
Hypotheses H, (i), (ii) imply that
|£(z,x)| < dg(z)(1 + xP~h)| for a.a. z € Q,all x > 0,with 4, € L¥(Q).
If follows that
fCutb )
{+—"l} c L”/(Q) is bounded. (23)
Mz 1P~ ) pen
If in (18) we choose the test function h =y, —y € I/VO1 ?(R), pass to the limit as n — oo and use (19) — (23), we obtain
lim (A (y,), y, — ¥) = 0 (recall g < p, [l || — o)

=y, — yin Wol"”(_Q),hence ll¥ll = 1,y > 0 (see Proposition 3).
From (23) and hypotheses H,(ii), we see that we may assume that (see Aizicovici, Papageorgiou, Staicu [33], proof of Proposition
16)
fCur() . ’ .
W*yﬁ’ 7,()y"~ 1 in L (Q) with n(2) < ,(z) < #(2) for a.a. z € 2, (25)
u, -

Note that on {y > 0} we have uf(z) —» +co and 2 = {y > 0} U {y = 0} (see (24)). Therefore if in (18) we pass to the limit as
n — oo and use (19) — (22), (24) and (25), we obtain

(A (), hy = /Q 1. (2)y*~ ' hdz for all WOI”’(.Q), 26)

> — 43y(2) = 0.2y in 2,yl9g = 0.
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We know that

(pan.) < X8(p, A7 (p) = 1.

So, from (26) it follows that y = 0 or y is nodal (sign changing).
Both possibilities contradict (24). So, we infer that

{4 },en € W, (€2) is bounded,
=>{u, ey C WOI"’(Q) is bounded (see (16)).
We may assume that
w . 1p . p
u,— win W™, u, — uin L7(Q).
From (15) we have

KV (uy,), u, —u) — /Q k;(z,u,)(u, —w)dz| < €/ for all n € N,with ¢/ - 07.

Note that [, k;(z,u,)(u, —u)dz — 0 (see (14)). Hence
lim (V (u,), (u, —uw)) =0,
n—oo
>u, - uin WOI’H(Q).

Therefore y,(-) satisfies the C-condition and this proves Claim 1.

Claim 2. There exists 1 > 0 such that for all A € (0, 1) we can find p = p(4) > 0 so that
y, () > my >0 for all ||u]| = p.
Given ¢ > 0 and r € (p, p*), on account of hypotheses H, (i), (ii), (iii) we can find c¢g = cg(e, r) > 0 such that
F(z,x) < é[&(z) + €]x? + ¢gx” for a.a. z € Q,all x > 0. 27)

Using (14), we have

1 1 g e
y () = ;ﬂal,p(D“) + Zpazyq(Du) - / A(uw’? + u;/ Nudz

{u<a,, )

-4 '™ =, "dz — /1/ a,”"dz (28)

L=n Jia,<u (@, <u}

- i/ " —iy,)dz — /1/ iy, dz —/ F(z,uM)dz.
T Jay, <u) (@, <u) Q

Using the fact that 4,, € int C, and Hardy’s inequality (see Proposition 1), as before, we show that
- i/ i "u > —Aco|lul| for some ¢ > 0. (29)
{usa, )

Also, we have
-4 W 1dz > —deyollull '~ for some ¢ > 0. (30)
1- n (ﬁw<u}

(see Theorem 13.17 of Hewitt-Stromberg [34, p. 196]),

- /1/ a;,"?dz > —/1/ w™dz > —Acyy ||lul]'~" for some ¢;; > O (as above). 3D

(i, <u} {ity, <u}
In addition we have

- /1/ 7% 'udz > —Acpy||ul| for some ¢}, > 0 (since &, € int C,), (32)
{u<it,, } v

_4 / u'dz > —Acgs|u||” for some ¢j5 > 0, (33)

T Ja, <u)

- /1/ iy, dz > —A/ uy,dz — Acyyllull” for some cyy > 0. B34

(17‘7,<u) (175,<u}

Finally using (27), we see that
—/ F(z,u*)dz > -1 / (0(z) + €)|u|?dz — ¢;5||u||" for some ¢;5 > 0. (35)
Q qJ0

10
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We return to (28) and use (29) — (35). Assuming that ||u|| < 1, we have

. 1 ellalle
v 2elull? + L | p,, o (Dw) - / bluldz - Dol o
q o] A7 ()
— Aeggllull'=" = ¢;5|lull” for some ¢, > 0

(see (3) and note that [|ul| < 1= [Jull” < [lull < [lull'™")

1

. ella |
>¢llull? + ~ [cn— =

VIO

for some ¢;; > 0 (see Proposition 2).

11—
p ] 1Dull] = Acygllull™™ = cys llull”

12 @er

oz llo

Choosing € € <0, ) we obtain

W) 2¢|lullf - 513(/1”’4”1_'7 + |lull") with ¢;g = max{cg,¢;5} > 0

. . L (36)
=[¢ = ey Allull™™"7P + [lull ™)1 lull”.
Let f,(t) = At'="7P + =P for all t > 0. Since 0 < 5 < | < p < r, we see that
By(1) = +oo0 as t — 0" and as 1 » +oo
Note that g, € CI(R+) with R, = (0, o). So, we can find 7, > 0 such that
B;(ty) = 125 B,
=>/3,'1(to) =0,
>(1—n—p ;" 4 (r = pyy P =0, (37)
1
— 1\ T
—A"f():fo(i):(M) +n ]
r—p
Then we have
B (Mptn =)\
r—p rn— +n- =
)= ——— +( 2=/
Pitto) </1(p+n—1)> < r=p )
Since Z=! < 1, we see that
r+n—1
p,(ty) = 0t as A —» 0O%. (38)
Let 4y > 0 such that
tg =1y(4) <1 for all 0 < 4 < 4 (see (37)).
Then on account of (38), we see that we can find 1 € (0, 4y] such that
0 < B,(ty) < £ forall0< A< i (39)
€18
From (36) and (39) it follows that
y,(u) > my; >0 for all |lu]l = p=1y(4) <1
This proves Claim 2.
Hypotheses H, (i), (ii) imply that given ¢ > 0, we can find ¢;9 = ¢;9(¢) > 0 such that
F(z,x) > l(11(z) —e)x? —¢j9 fora.a. ze 2,all x > 0. (40)
p
Then for ¢t > 1, we have
N 14 ~a . » 14 .
w, (i, (p)) SE (41 @ —nD)a(p)Pdz—€ | + ;paz,q(Dm(p))
Q
— M / @+ a;;‘)ﬁ](p)dz
i (p)<i, } “41)

— artn / @ () + iy (p)"dz) + ¢
(@, <y ()}

for some ¢y = cy)(4) > 0 (recall [|&,(p)ll, = 1).

Recalling that @, (p) € int C,., we see that
&= / [n(z) = A2, (pydz > 0.
Q

11
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So choosing € € (0, &), from (41) we see that
Wt (p)) < —cy 1” + eyt — Aeyyt! ™!
for some ¢y, ¢y, c03 >0 (recall r > 1,5 < 1), 42)
=y, (t4,(p)) > —oco (since 1 —n < 1 < g < p).

Then (42) together with Claims 1 and 2, permit the use of the Mountain Pass Theorem. So, we can find u, € WOI"’ @) O0<Ai<i)
such that

u; € K, and y;(0) =0 < my <y, (uy).
Therefore u; # 0 and we have
(V(uy), hy = / k;(z,u;)hdz for all h € W7 (). (43)
Q
In (43) above we use the test function h = (7, —u,;)* € Wol’p(Q). Note that on {u,; < i,} we have f(z,u,(r)) > 0 for a.a. z€ Q
(see (13) and hypothesis H|(iii)). Therefore using (14), we have
(V(uy), (ﬁl,, - u4)+>

= /Q @, + ") + f(zu))@, —uy)*dz

> /Q A" (@, —u;)*dz (44
=(V(@,), (@, —u,)*) (see Proposition 4),
>(Vuy) = V@), @, —uy)*) =0,
>0, <u;.
From (44), (14) and (43), we infer that
u, €S, forall0< A<
=0, C L #0.

Next we show that for A € £, we have § # S, C int C,. To this end, we consider the following parametric purely singular Dirichlet
problem

— A u(z) — Agu(z) = Ou(z)™" in Q,ulyo = 0,u> 0,0 > 0. (45)
From Papageorgiou, Zhang [35] (see the proof of Proposition 3.5), we know that (45) has a unique solution iy € int C,, {iig}gs(
is nondecreasing and i, — 0 in C(;(Q) as § — 07. We choose 0 € (0, 1) small such that
0<iy(z)y<éforall zeQ (46)
(6 > 0 as in hypothesis H,(iii)). Suppose that u € S,. We have
(VW) (@ —w*)

= / @™ +u™ + f(z, 0]y — ) dz
Q

z/ Au™"(fiyg — u)*dz (since f(z,u) >0 on {u <iiy}) see (46) and H,(iii)
: “7)
z/ A" (g — uy*dz
Q
=(V (i@g), @y — w)*),
=>(V(ig) = VW), @y —w*) <0,
>y <u.
From Marino, Winkert [27], we know that u € L®(£). Therefore we have
A+ D+ fzouw) < AT+ (A+ 1)c,4 for some ¢,y > O (see hypothesis H,(ii))
< AiE," + (A + 1)eyy (see (47))
< Aeysd ™"+ (A + 1)cyy for some c,5 (since i, € int C,)
< Acyed ™" for some cyq > 0.
So, we can apply Theorem 1.7 of Giacomoni, Kumar, Sreenadh [36] and infer that u € C,\{0}. Let p = ||ul|, and let éﬂ > 0 be
as postulated by hypothesis H,(iv). Then
- A;l u(z) — AZZ u(z) + fpu(z)"_1 — Au(z)™"
=Au(2)" " + f(z,u(z)) + Eu(z)’1 > 0 in Q.

12
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Then Proposition A2 of Papageorgiou, Radulescu, Zhang [37] implies that u € int C,. Therefore finally we conclude that for all
reL.f+S,CintC,. O

Remark 4. In the above proof, we used twice that if u € int C,, then for some ¢ > 0, ¢d < u and we referred to Guo, Webb [32].
Here we provide a different proof of this fact. By Lemma 14.16 of Gilbarg-Trudinger [38, p. 355], we have that there exists § € (0, 1)
such that d € C%(Q,) with ; = {z € Q : d(z) < ). Since u € int C,, using Proposition 4.1.22, p. 274, of [20], we can find ¢, > 0
such that é]zf <uon Q; On Qﬁ = O\Qy, we have d,ueint L>(2), (L*(£2), being the order cone of L*(L)), so we can find ¢, > 0
such that é,d < u in Q. Therefore if ¢, = min{¢,,é,}, then ¢,d < u on Q. In fact since d belongs in the interior of the order cone of
CY(2y) = {u € C1(Qp) : ulyn=y), then we can find &* > 0 such that u < ¢*d on &, this is, ,d <u < ¢*d on Q.

Proposition 5 remains true if hypotheses H, are replaced by H; (superlinear case).
Proposition 6. If hypotheses H,, H 1/ hold, then L # ¢ and forall A€ L, B # S, CintC,.

Proof. The proof remains the same as that of Proposition 5. The only part that changes is Claim 1 in that proof, where we show
that w,(-) satisfies the C-condition. In this case the proof goes as follows:

Claim. y,(-) satisfies the C-condition.

We consider a sequence {un}n en € VVOI”’ () such that
‘q/,1 (u,)| € M for some M >0, all n €N, (48)
(1 + [luDw) (,) = 0 in W' (@) = W P(n)* as n > oo (49)

From (49) we have
‘(V (u,,) ,h> —/ k; (z,u,,) hdz
Q

In (50) we use the test function 4 = u, € W0] () and obtain

h
< M for all h € WO""(Q), with ¢, — 0%. (50)
1 [Ju |

u; = 0 in W, ""(Q) as n — co. (51)
From (48) and (51), we infer that
Pay.p (Du:) + §pa2,q (Du:lr) - /_QI’KA (z, u;) utdz < M for some M >0, all n e N. (52)
Also, if in (50) we choose the test function 7 = u} Wol"l7 (), then
~ Payp (Du:) ~ Payq (Du:) + L k; (z, u:) u:dz < ¢, for some M, >0, all n e N. (53)
We add (52), (53) and obtain

/ [k; (z.u}) ut — pK; (z,u})] dz < M, for some M, > 0, all n € N( recall ¢ < p),
Q

(54)
:>/ [f (z,u:) u;’ - pF (z,u;) dz] < M,l[”u:“: + 1] for some M, >0, all n € N.
Q
On account of hypotheses H ]’ (i), (ii), we can find ﬁo € (0, ) and ¢y7 > 0 such that
fox® = cy7 < f(2,X)x = pF(z,x) for a.a. z€ @, all x > 0. (55)

Note that we can always assume that r € (p, p*) in hypothesis H' { (i) is close to p*. So, from hypothesis H { (ii), we see that 7 < s.
Then using (55) in (54), we obtain that

{u;}neN < L) C is bounded. (56)
From hypothesis H {(ii), it is clear that we can always assume that s < r < p*. First suppose p # N and recall that if N < p, then
p* = 00. We can find ¢ € (0, 1), such that
1 1-1¢ 1

1_1-t, 1 (57)
r s D

Using the interpolation inequality (see Hu, Papageorgiou [10], p. 82), we have
-1 1
el <l s eyl 5

13
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> ||u:,'||: N o ||u:||" for some c,5 >0, all n € N. (58)

Here we have used (56) and the fact that VVOI”’ Q) o LF(Q) continuously (Sobolev embedding theorem).
In (50) we use the test function 7 = u} € Wol”] (£2) and obtain

Payp (Duf) + Payg (Duf) - / k; (zut)utdz<e, foralln €N,
Q

R ——
= Pay, (Du:) +l’a274 (Du:,') - / L A [uw'? +u;/ ] u:dz
{“ns“v}
A ( +\1-n —1—;1) A ( +\T —‘r)
- —_— - + = - d
/(au,<u;) <1 — (uy) a, . (un) a, V4

__ 1)\ =
—/» . A(uw”+u; )uwdz
{ity, <up '}

- /_Q f(z.uf)ulfdz <g, for all n € N (see (14)),

(59

N 1- T r
> I < cao [flaf |+ ool 7+ 17+ [l + 1]
for some cy9 > 0, all n € N ( see (58) and H|(i)).

By hypotheses H,,, we have 0 < # <1 < 7 < ¢ < p and from (57) and hypothesis H;(ii), we see that tr < p. So, from (59) we see
that

(U}, e < W,7(©2) is bounded . o
Combining (60) and (51), we conclude that
{4} e < W, (£2) is bounded . o

Next, suppose that p = N. Then according to the Sobolev embedding theorem WOl P(Q) & L7(2) continuously for all y € [1, o).
Then let s < r < y and choose t € (0, 1) such that

1 1=t 1
r s y’
R (Gl )
y—s
We see that
y(r=ys)

—>r—s, asy — +oo.
y—s

Hypothesis H/(ii) implies that r — s < p (recall p = N). So, the previous argument remains valid if we choose y > r large so that

tr = @ < p. Then we conclude that (61) holds.
On account of (61), we may assume that

un—'ﬁ» u in Wol’p(Q), u, — uin L"(2) as n - oco. (62)

In (50) we use the test function h =u, —u € Wol’p () and pass to the limit as n — oo. Using (62), we see that

/ ky(z,u,)(u, —u)dz = 0 as n - oo,
Q

:>,,1LI§° (V (u,,) Sy, —u> =0,

Su, - u in W, (Q).

This proves the claim.
The rest of the proof of Proposition 5 can be used unchanged. Only note that in this case on account of the superlinearity of
F(z,-), for any u € int C,, we have

w,(tu) > —c0 as t - o
and so we can apply the Mountain Pass Theorem. []
Next we show that £ is connected (an interval).

Proposition 7. If hypotheses H,, and H, or H| hold, A€ L and 0 <y < 4, then y € L.

14
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Proof. since 1 € £, we can have u; € S, Cint C, (see Propositions 5 and 6). As before, we choose y € (0, 1) small such that
0 < i1, (z) £ min {6,u;(z)} forall z € Q,
with 6 > 0 as in hypothesis H,(iii) = H' 1’ (iii) and recall that u,; € int C,. We introduce the Carathéodory function I}y(z, x) defined by
4 <L7;'7 + E;‘l) +f (z, L_lw) if x <, (2)

IACy(Z, X) =19y (x"’ + xT_l) + f(z,x) ifa,(z) <x <uy(2) (63)
y(u;"+u;’1)+f(z,u,1) if uy(z) < x.

We set K},(t, x) = f; k,(z,s)ds and consider the C! functional v, : I/VOI”’ (£2) - R defined by (see [31])
W, (u) = %pa]’p(Du) + é/’az,q(D“) - / Iey(z, u)dz for all u € I/Vol’p(.Q).
Q

From (63) and hypotheses H,, we see ¥, (-) is coercive. Also using the Sobolev embedding theorem, we see that i, () is
sequentially weakly lower semicontinuous. So, by the Weierstrass-Tonelli theorem, we can find u, € WO] () such that

¥, (v,) = inf {lpy(u) ‘ue VVOI”’(_Q)},
= (9] () ,h) =0 for all h € W, (), 64)
= (V (u,).h) = /chy (z.u,) hdz for all u € W, (<)
In (64) first we use the test function & = (u, —u DT e Wol’” (). Then we have
(V () (=)
:/Q [r (6" + ™) + f (z.u,)] (w, — ;)" dz (see (63))

IA

/Q [4 ()" +ui™") + £ (z.u;)] (u, —uy)" dz (since y < 2)

(V (uy), (uy - ul)Jr) (since u; € S,),

>u, <uy.

Next in (64) we choose the test function 4 = (@, — uy)+ € WO"” (£2). We have
_ +
(v (). (@, —u,)")

_ ——p ool = - +

—/Q [y (uv/” +u; >+f (z,uw)] (”w —uy) dz

Z/Qyﬁ;_l (@, —u,)" dz ( since f (z.4,) >0, see H,(iii ) = H|(ii))

= <V (a,).(a, - uy)+> (see Proposition 4),

:>127 < u,.
So, we have proved that

u, € [it,,u;l. (65)
From (65), (63) and (64), we infer thatu, € S, <intC, andsoy € £. [

An interesting byproduct of the above proof is the following corollary.

Corollary 1. If hypotheses H, and H, or H]’ hold, 0 <y<ieLandu; € S, CintC,, theny € L and we can findu, € S, CintC,,
such that u, <uy.

This corollary says that the solution multifunction £ 5 4 — §, exhibits a kind of a weak monotonicity property. We can improve
this monotonicity.

Proposition 8. If hypotheses H, and H, or Hl1 hold, 0<y<i€Landu, €S, CintS,, theny € L and we can findu, € S, <int C,
such that

uy—u, €intC,.
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Proof. From Corollary 1 we already have that y € £ and there exists u, € S, C int C, such that u, <u,. Let p = ||u;||, and let be
Ep > 0 as postulated by hypothesis H,(iv) = H ; (iv). We have

— ANy pR E Pl _ qu

Aay'u, — Aju, +.§ﬂu7 Auy
7—1 £z p—1 s

Syut+f (z.u,) + gul~!(since y < Aand u, € ) ©6)
- : op-l
< Y+ f (zuy) +&ub
=4 u; — Al +§pu’;_l — A in Q (since u,; € 5)).

Since u, € intC,, we see that 0 < (4 - y)u;“. So, from (66) and Proposition 7 of Papageorgiou, Radulescu, Repovs [39], we
conclude that

u, —u, €intC,.
The proof is now complete. []

Let A* =sup L.
Proposition 9. If hypotheses H, and H, or H| hold, then 4* < co.

Proof. Hypotheses H, or H, imply that there exist A>0and ¢ € (0,1) such that

x4+ f(z,x) > exP™! for a.a. z € @, all x > 0. 67)
Let 4 > 1 and suppose that 4 € £. Then we can find u; € S, C int C,. We consider £ C £ an open subset with C2-boundary
such that Q C Q. Since u; C int C,, we have /1, = ming u; > 0. For € > 0 we set /i = i, +e. Let p = |, ||, and let &, > 0 be as in
hypothesis H,(iv) = H|(iv). Then in £, we have
a N a A 2 e\ P—1 e\~
=4y (m5) = A () + &, ()" — A (sir5)
Sépr?tﬁ_l + y(e) with y(e) - 0" as ¢ - 0
< [-fp + c] rﬁg_l + y(e)
<AV 4 f (zohy) + &0 + y(e)  (see (67))
< f(zouy) + épuﬁ“ — (A= D"+ y(e) ( see hypothesis H(iv) — H|(iv))

(68)

=—Au, — Apu, + &’ — 4w} in Q for e € (0,1) small .

For ¢ € (0, 1) small, we have
0 < e30 < (A= D™ = x(e).

Then from (68) and using Proposition 6 of Papageorgiou, Radulescu, Repovs [39], we infer that for € € (0, 1) small
s <u,(z) for all z € Q,

contradicting the definition of 7. Therefore A* < <o [0

Hence £ is a bounded interval and we have

0,A4%) € £ C(0,A"].

We show that for 4 € (0, 4*) we have multiplicity of positive solutions.

Proposition 10. If hypotheses H, and H, or H| hold and 4 € (0, A*), then problem (1) has at least two positive solutions
Uy, € int C,.
Proof. Let 0 <y < 4 <6 < A*. On account of Proposition 8, we can find uy € S, CintC,, uy € Sy CintC, and u, € S, CintC,,
such that
uy € intc(;(_é)[v},,ug]. (69)
We may assume that
Sy0 [uy.up] = {ug} . (70)

Otherwise, we already have a second positive smooth solution and so we are done. We introduce the Carathéodory function
d,(z,x) defined by

A (u;" + u;‘]) +f (z, uy) if x < u,(2),
d,(z,x) =44 (x‘” + xT‘]) + f(z,x) if u,(2) < x S uy(2), (71)
A (uy” +u;’l) + [ (zup) ifuy(z) <x
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We set D,(z,x) = f d;(z.s)ds and consider the C!-functional o, : WOI"’ (2) - R defined by
o,(u) = Il)paw(Du) + %paz'q(Du) — /Q D,(z,v)dz for all u € I/VOI’p(Q).
Evidently ¢,(-) is coercive (see (71)) and sequentially weakly lower semicontinuous. So, we can find i, € Wol"’ (£2) such that

o, () = inf {O’A(u) ‘ue WOI”’(.Q)},

(72)
=iy € K,, C [u,,ug] nint C,( as in the proof of Proposition 7).
Then from (71) and (72) if follows that
iy =S8;,N|u,,uyl,
0= 8,0 [uy.uy] (73)
=iy =u, (see (70)).
Let d,(z,x) be the Carathéodory function defined by
- 7—1 :
d}(z, 0= A (uy +u, ) +f (z, uy) if x < u,(z) 74)
A (x‘” + xT‘l) + f(z,x) if u,(z) < x.
Let D;(z,x) = [, d;(z,5)ds and consider the C'-functional &, : Wol'” (£2) = R defined by
6,(u) = 1,;”1 (Du) + 1pa, (Du) - / D,(z,u)dz for all u € Wol’”(.Q).
pe q Q
From (71) and (74), we see that (see Papageorgiou, Radulescu, Zhang [37], Proposition A3)
il luy ) = @il ]
=y is a local C&(Q) — minimizer of 6,(-)( see (69) and (73)), (75)

>u, is a local WOI’I'(Q) — minimizer of 6,(-).
Using (71) we can easily check as before that
K;, € |u,) nint C,.

So, we may assume that K 5 is finite or otherwise we already have an infinite set of positive smooth solutions of (1) (see((74))).
Then (75) and Theorem 5.7.6, p. 449, of Papageorgiou, Radulescu, Repovs [20], we can find p € (0, 1) small such that

6, (up) < inf {6,@) @ |lu—up|| = p} = m?. (76)
We know that:
« If hypotheses H, hold, then
6,(ti, (p)) > —o0 as t - +oo( see the proof of Proposition 5). 77)
« If hypotheses H| hold, then for every u € int C, we have
0,(tu) > —oo0 as t — +oo( see hypothesis Hf(ii) and the proof of Proposition 6). (78)

Moreover, reasoning as in the proof of Proposition 6 (if hypotheses H| hold) or as in the proof of Proposition 6 (if hypotheses
H { hold), we show that

6,(-) satisfies the C — condition. (79)

Then (76), (77) (if H, hold) or (78) (if H 1, hold) and (79), permit the use of the Mountain Pass Theorem. So, we can find
ie WOI"’ () such that

a€Ks, C [u]| nintCy,6; (ug) < m} < 6,@).
Therefore @i € int C, is a positive solution (1) 4 € (0, 4) and see (74)), which is distinct from u,. [

To complete our analysis of problem, we need to check the admissibility of the critical parameter A*. To this end, first we show

that S, has a smallest element v} and prove some useful properties of the minimal solution map 4 — u3.

Proposition 11. If hypotheses H, and H, or H| hold and A € L, then

(a) problem (1) has a smallest element u’; €S, CintC,, thatis uj SuforalluesS,;
b) L3i—u € C&(Q) is strictly increasing, that is,
0<A<ih=> ujz —uj] €intC,.
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Proof. (a) We know that S, is downward directed (see Filippakis, Papageorgiou [40] and Bai, Gasinski, Papageorgiou [41]). So,
invoking Theorem 5.109, p.305, of Hu, Papageorgiou [25], we can find a decreasing sequence {u"}neN C S, such that

inf S, = ingun.
ne

We have
(V (un) ,h) = / [A (u;" + uz_l) +f (z,u,,)] hdz for all n € N, (80)
Q
0<u,<u forallneN (81)

In (80) we use the test function h =u, € Wol’p (£2). Using (81) and hypothesis H,(i) or H 1’(i), we obtain

Payp (Du,) + Payrq (Du,) < / (Au}q—” + (A+ 1)cy; ) dz for all n € N, some c3; >0,
Q

¢ ||u,||” < e3p (A ]Ju,]| + 4+ 1) for all n € N, some c3, > 0,
= {un}neN c WO]"’(.Q) is bounded .

We may assume that
= u in WP (@2),u, — u} € L(R) as n — co. (82)

Suppose u’; = 0. Then from (80) with h=u, € Wol"’ (£2), we have

|l < /Q Jul=1dz + A |u,||5 + /Q f(z,u,) u,dz
< Aess ||u,,||11)_" + A |u || +/ f (z,u,) u,dz for some c33 >0, all n € N.
Q

Since u = 0, from (81), (82) and since 7 < p, we see that the right hand side of the above inequality converges to zero as n — oo,
hence (see [42])

u, = 0 in W, (),
=>u, - 0in L®(Q).

So, we can find ny € N such that

0<u,(z)<éforaa. ze, all n>n,. (83)

Fix n > n( otherwise arbitrary and consider the function

Ax)™! if x <u,(z)
)= 84
850 {/lun(z)"] if u,(z) < x. 69

We set G(z,x) = /" g,(z. s)ds and consider the C!-functional w), : WO"” (£2) - R defined by
w;(u) = ;;l’a] p(Du) + épazq(Du) — / G,(z,u)dz for allu e Vlfol’p(!)).
: Q
Evidently, w,(-) is coercive (see (84))) and sequentially weakly lower semicontinuous. So, we can find i, € WO"" (£2) such that

w, {@;} = inf {wl(u) ue WOI"”(.Q)},
= (W (i;). h) =0 for all h € W, "(<), (85)
=>(v(i,).h) = / 8, (z.17) hdz for all h € W, ().
Q

In (85) we choose h = —ii; € WOI”’(_Q). Then

‘|

i <0 (see (84)),

=ii, >0 and since 7 < ¢ < p,ii;, # 0.
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Also in (85) we use h = (ii; —u,)*t € WOL”(Q). Then

(v (@) (32 =)'

=/,1u;-1 (8, —u,)"dz (see (84))
Q

< [ G+ 4 1 () (13- ) 0z

( on account of (83), f(z,u,) >0 for a.e. z € Q)
= <V (u,)» (i, —u,,)+> ( since u, € S,),
>i; <u,,
=i, =i, (see (84), (85) and Proposition 4),
=i, <u, foralln>n,,

which contradicts our hypothesis that uj =0 (see (82)). So, uj #0.
From (80) with h =u, — u; € WOI”’(.Q), we have

(V (u,) u, —u}) = /.Q <A <un ;ul +ut™! (u, —uj)) + f(zu,) (u, —uj)) dz forallneN. (86)

u

From (82) we see that

/u"1 (u,,—uj)dz—>0,/f(z,un) (un—uj)dz—>Oasn—>oo. 87)
Q Q

n
Also we have

is decreasing)

= ol (recall that {u, }n &N

M <g fora.a. zeQ, with g e LP(Q) (see (82)).

In addition we know that
£

U, —u;
—0foraa. ze Q, asn — .

n
A

Hence the Lebesgue dominated convergence theorem, implies that

u

*

un—ujd
n z—>0asn— co. (88)
Q u,

If in (86) we pass to the limit as » - o and use (87), (88), we obtain
lim <V(u ),u —u*) =0,
n—o00 n . n 4 (89)
Su, = u; in I/VO”’(_Q) as n — oo.

In (80) we pass to the limit as n - oo and using the monotone convergence theorem and (89), we obtain

(V (u2),h) = /Q [4) "+ )" )+ s (z,u;)] hdz for all h € W, (<),
=u; €8, CintC,, uj=intS,.
(b) Suppose 4,4, € L with 0 < A; < 4,. Let u’;z € S, C intC, be the minimal solution of problem p,, produced in part (a).
From Proposition 8 we know that there exists u; €5, CintC; such that
u}'z —u, €intC,.

Let uil

€ 5,, €intC, be the minimal solution of p, . We have
* * *
”12 uy, Sujz uA],
. .
Sy —uy, € intC,.

Using the extremal positive solution, we can prove the admissibility of the critical parameter A*.
Proposition 12. If hypotheses H, and H, or H| hold, then 1* € L.

Proof. We consider a sequence {A"}neN C (0, 4*) such that 4, —» (4*)~. From Proposition 11, we know that ujl <ul for all n € N,

Using Proposition 4 and since uj] € int C,, we can find w € (0, 4) small such that &, (z) < min {5, uj] (z)} forall ze 2 (6 >0 as in
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hypothesis H,(iii) = H 1’(iii)). We introduce the Carathéodory functions e, ,(z,x) and ¢, ,(z,x) defined by

Y (ﬁ;," + zz;;‘) + f(z.a,) if x <, (2),

M (XX 4+ fzx) ifa,(2) < x,

, if x <u} (2),
é/h (z,x):{ ey (z,x) if x ull(z) o1)

e, (z, u’;) if uj2(z) < x.

ey (z,x) = (90)

We set E, (z,x) = IS e;,(z,5)ds and Eal (z.x)= [ ¢;,(z,x)ds and consider the C' -functionals ¢, , 9, : WOI"’(Q) — R defined by
1 1

@, W= ;pal,,,(Du)+ 510,,2,‘,(DL4)—/QE1l (z,u)dz,

N 1 1 ~

RO ;Pal,p(D“) + C—Ipaz,q(Du) —/ E), (z,wdz forallu e Wol‘p(.Q).

Q

From (90) and (91), we see that
=P - (92)
[aa, | A o, |

vl
From (91) we see that ¢ A is coercive. Also it is sequentially weakly lower semicontinuous. So, we can find u W € Wol’” () such
that

@y,

2, (u,h) = inf {@Al(u) ‘ue WO”’(Q)}, (93)
=(¢}, (uy,).h) =0 for all h W, ().
1 (94)
(V). h) = / &;,(z,u; )hdz for all h € W, P(£).
Q
In (94) use the test function 4 = (“/11 - u:‘b)+ [S I/I/O]”'. Then
V) (g = )")
=/Q(/11((ujz)_”) + (ujz)r_l) + f(z, sz)(lu, - sz)+dz (see (90), (91))
< [ a0+ )+ g, =)z Gince 4y < )
=<V(u’jz), (uy, — ujz)J’),
Suy, < ujz.
Next in (94) we choose h = (#y, —uy, Y e Wol”’(.Q). We have
(V) @y, —uy )*)
= /Q M@+ + f(2,8,)(@, —u;)tdz (see (90), (91)
> / (@@, —uy y*dz (since f(z,d,) > 0))
Q
2/ w(@," (@, — "/11)+dz (since w < 1))
Q
=(V (@), (@, — uy, ) (see Proposition 4),
=iy, Suy, .
So, we have proved that
uy, € [EW,MZ]. (95)

From (93), we have
@a, ) <0y, (@),
> @), w;) < @, @@,) see (91), (94)

1 _ 1 _ _
= ;/’a],,,(D“w) + Epﬂzqq(D”v/) - /Q E,ll(z,uw)dz
< Pay (D) + pg, o(Dit,) — /Q A,a;;"dz
=(V(a,.7,)) —/ Ay @i, dz
Q
=0 (see Proposition 4).
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We can say that
u; €58, CintC, see (95), ¢, (u; ) <0.
We repeat the same argument with A, replaced by 4, and ujz replaced by uj}. We produce u;, € WO"" (£) such that
u, €S8, CintCy, @, (u;,) <0.
We continue this way and generate a sequence {u, = u; },ey such that
u, =u; €58, CintC.,a, <u, @, (u,) <0forallnel. (96)

Using (96) and reasoning as in Claim 1 in the proof of Proposition 5 (if hypotheses H, hold) and as in the Claim in the proof of
Proposition 6 (f hypotheses H 1’ hold), we show that

{tt, }nen € W, () is bounded.
So, we may assume that

Uy~ u, in WP (@),u, - u, in L'(Q) (- > p). ©7)
From (96), we have

V(u,),h) = / [A, (" + u;’l) + f(z,u,)]hdz for all h € I/Vol‘”(.Q), all heN. (98)
Q
In (98), we use h =u, —u, € WOI”’ (£2). Then an account of (97) we see that

/ (™ + f(zou,))u, —u,)dz = 0 as n — co. (99)
Q

Also note that

/ At (u, — u,)dz
Q

</l*/ i "u, —u,|dz (see (96))

lu, —u,
(334/ dz for some ¢34 > 0 (since &, € int C,).

Using Proposition 1 (Hardy’s inequality), we infer that

{ Un _ Ye } C LP(Q) is bounded. (see (96)),
d neN

> { i } is uniformly integrable.
d neN

Also, we have
(u, —u,)(2)

d(z)
Hence by Vitali’s Theorem (see [25], Theorem 2.147, p.91), we have

/Lj‘*ld“o,
Q d

— 0 for a.a. z€ Q as n € o (see (97)).

(100)
=>4, / u "(u, —u,)dz - 0.
Q
Therefore from (98) with h =u, —u, € WOI’” (£2), using (99), (100), we obtain
lim (V(u,),u, —u,) =0,
=00 (101)

. 1
=>u, - u, in W0 P(Q) as n - .

So, if in (98) we pass to the limit as n — oo, arguing as above and using (101), we obtain
(V(u,), h) = / (A" +u"™"Y + f(z,u,)]hdz for all h € WO""(.Q), i, <u, (see (96)).
Q

We conclude that u, € S;» CintC, and A* e L. [

Summarizing, we can state the following result concerning the positive solutions of problem (1). The result is global in the
parameter A > 0 (bifurcation type theorem).

Theorem 1. If hypotheses H, and H, or Hj hold, then there exists A* > 0 such that
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(a) for all A € (0, A*) problem (1) has at least two positive solutions
ug, 1 € int Cy;

(b) for A= 4* problem (1) has at least one positive solution
u, €intC,;

(c¢) for all » > A* problem (1) has no positive solutions. Moreover, for every A € (0, A*], problem (1) has a smallest positive solution
u; €intC, and

* * * N
V<A< <2 > uy —uy eintC,”.

5. Solution multifunction

In this section, we examine the solution multifunction 4 — S, and determine its continuity properties. Our result extends the
works of [17,18] (for nonsingular equations) and of [19] (singular problems driven by the p-Laplacian).
We start with a basic topological property of the solution set .S;.

Proposition 13. If hypotheses H, and H, or H| hold, then for every A€ L, S, C CO1 () is compact.

s

Proof. Let 4 € L. From Proposition 11 we know that .S, has a smallest element u}

w € (0, 2) small such that

€ int C,. Using Proposition 4, we can find

i, Sujgufor allues,. (102)

We consider the Carathéodory function k ,(z, x) from the proof of Proposition 5 (see (14)), and the corresponding C _functional
v, WOI"Z7 (£2) > R (see the proof of Proposition 5). If hypotheses H, hold, then from Claim 1 in the proof of Proposition 5, we
have that S, C Wol"’ (2) is bounded. Similarly, if hypotheses H| hold using this time the Claim in the proof of Proposition 6. The
boundedness in WO"[’ (), implies that .S§; C L*(£2) and it is bounded (see [27,42]). Using (102) and recalling that @, €intC,, we
have

14" +u™) + £z 0)]
<e35(Ad" + 1) for some c35 > 0

<Acyqd™" for some cyq > 0, all u € S,

Thus we can use Theorem 1.7 of Giacomoni, Kumar, Sreenadh [36] and get « € (0, 1) and c3; > 0 such that

u€ C(;'“(Q), lleell 1o ) < €37 for all u € 5.
0

@

We know that Cé"’(Q) < Cé (£2) compactly (Arzela-Ascoli theorem). Therefore we infer that .S; C C(;(Q) is relatively compact.
We can easily see that .S, C CS(Q) is closed. Therefore S, C Cé(f)) is compact. []

Remark 5. A careful reading of the above proof reveals that for every closed interval [y, 4,] C £, we have that |J{S, : 4 € [4y, 4]}
is relatively compact in C(} (). So the solution multifunction A — S, is locally compact (see [25], p. 275).

In what follows, Pk(Cé(Q)) denotes the family of nonempty and compact subsets of cé(.é).
Proposition 14. If hypotheses H, and H, or H { hold, then the multifunction L3> A — S, € Pk(Cé (Q)) is Isc and h-lsc.

Proof. According to Proposition 5.6, p.274, of Hu, Papageorgiou [25], in order to obtain the lower semicontinuity of the solution
multifunction, it suffices to show that if 4, - 4 € £ in £ € (0, 4], then

S, Climinf, S, . (103)
Let u € S Cint C, and consider the following Dirichlet problem
— Ay v— AP = A, +u) + f(z,u) in Q,ulyp =0,n EN. (104)

Let 4y = inf,cy 4, > 0 and using Proposition 4, choose y € (0, 4) small so that

(105)
=>ia, forallue 5, ,allneN.
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Note that, if A, = sup,cy 4, < 4*, then for every h € WO'"’ (£2) we have

/1,,/ ﬁdz
oul

< AO/ @dz (see (105))
Qu

v

N h . .
< Agesg /Q ld—Aldz for somecyg > 0 (since 4,, € intC,)

< Apesollh|| for some ¢z > 0,
sau e W Q) = WP @)

We know that V(-) is maximal monotone and coercive. Hence, by Corollary 2.8.7, p. 135, of Papageorgiou, Radulescu,
Repovs [20], we have that V(-) is surjective. So, from (104) and since 4,u™" + 4,u""' + f(z,u) € Wofl’” (£2), we see that there
exist v, € Wol’p (£2) which solves (104). In fact the strict monotone city of V(-) implies that the solution v, of (104) is unique. On
(104) we act with v, € Wol’p (£2) and using hypotheses H(, and the local compactness of the solution multifunction, we obtain

E|loall” < eso (14 ||vy]]) for some ¢y >0, all n €N,

= {v,},en € Wol”’(.Q) is bounded.

From this, as before, via the nonlinear regularity theory (see [36]), we produce a; € (0, 1) and ¢4; > 0 such that

< ¢y, forallneN.

0 € G (@D [loal| 1 g

Exploiting the compact embedding of Cé"”(.(}) into C(; (£2), we may assume that

unﬁvecé(fz)asneoo,
ATy AT — 3 (o ) o _ (106)
> -Alv- A=A +u"") + f(z,u) in 2, v]o = 0.

The solution of (106) is unique and clearly u solves (106). Therefore v = u and we have
v, > uin CJ(Q) as n — oo.
Let 1¥ = v, € int C, and consider the following Dirichlet problem

0\~" 0y7~1 0y i
—AZIU—AZZU =1, ((un) + (vn) ) +f (z, vn) in Q, Unld!z =0,neN.

Reasoning as above, for every n € N this problem has a unique solution v! € int C,. Moreover, as in the proof of Proposition 12,
using Vitali’s theorem, we have

/ /lnLy,dz - / ALl az for all h e W, (Q).
e () o
Therefore, we can say that

UL%MGCOI(Q)aSnaoo.

Continuing this way, we generate a sequence {u Cint C,,n € N such that

ﬁ}keNo

Ak — AR = 4, [(u’;*l)_" + (Ufj’l)f_l] + [ (z,0%71) in @,
v’;|ag=0for all k,n e N, (107)

keuinC&(Q)ElSn—»ooforallkeNO.

Un

Claim. For every n € N, the sequence {v c WO] P() is bounded.

ﬁ}keNo

We argue indirectly. So suppose that the assertion of the Claim is not true. We may assume that

HU';“ — oo as k — oo. (108)

=5

]

We set y, = y: k € Ny. Then ||y, = 1|, y, =0 for all k € N,. So, we may assume that

=

Ve y in W@,y — v in L'(42). (109)
From (107), we have

(AB (), ) + szz G )

k—1
= / Ay Ly L) L8% )),, (110)
@ (k=) ot llenl flosll”™

for all h e W, "(), all k € N,
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First assume that hypotheses H, hold. If in (110) weuse h=y, —y € WOl ?(£2), then

lim (A3' (7). 3, —y) =0 (see (108),(109)),
Koo 1 (111)
Sy — yin W, P(Q) (see Proposition 3, so ||y|| = 1,y > 0).

If in (110) we pass to the limit as k — oo and use hypothesis H,(ii) and (111), we obtain
(A5 (). hy = /Q n.(2)y""'hdz  for all h e W, " (),
with 7(z) < n,(z) <#(z) for a.a. z € 2 (see hypothesis H,(ii)). Hence
— 4 y(2) = i ()y(2)P~! in Q, Y|y =0,
=y is nodal or y = 0.

Both possibilities contradict (111).

Now assume that hypotheses H; hold. Then in (110) the left hand side is bounded. On the other hand, looking at the right hand
side, on account of hypothesis H 1’(ii) and Fatou’s lemma, we see that we must have y = 0, again a contradiction to (111).

We conclude that for every n € N {vf}, Ny
we may assume that for all » € N, we have

c Wol”’ () is bounded. Then as before the nonlinear regularity theory implies that

vk > vin C)(Q) as k — . (112)
Passing to the limit as k — oo in (107) and using (112), we obtain

{ A, = Ao, =4, (v,"+ 05N + £ (z,0,) in 2, }

(113)
Uplyo =0

From (107), (110) and the double limit lemma (see Hu-Papageorgiou [25], p. 43), we can find a sequence {k(n)},cy such that
u, = vﬁ(") —uin C(;(Q). (114
But (113) and (114) imply u € liminf,,_,mSAn. Hence
S, € lim int S, ,
n—oo n
=>4 .5, is Isc.

Because its values are compact 4 — .S, is also h-Isc.

Proposition 15. If hypotheses Hy and H, or H| hold, Then £ 3 A — S, € P, (CL(2)) is usc and h-usc.

Proof. We know that the solution multifunction is locally compact. So, according to Proposition 5.13, p.273, of Hu, Papageor-
giou [25], to show the upper semicontinuity of the solution multifunction, it suffices to show that it has a closed graph. So, let
{ﬂn}neN € L be such that 4, - 4y and u, € §; CintC,, such thatu, — u in C(;(.Q). As before, we set A, = inf,cy 4, > 0 and choose
v € (0, 4y) small so that

= * *
MWSM/IO Sujn <uforallneN, alluesln.

We have
(V (u,) . h) = / k; (z.u,) hdz for all h e W, 7(@), all n € N,
Q
=V (), h) = / k;(z.whdz for all h € W7 (Q).
Q

As before, we check that u € [@,) Nnint C, (see (12)) and so u € S,. Therefore 4 — .S, has closed graph and so it is both usc and
h-usc. [

Combining Propositions 14 and 15, we obtain the following theorem for the solution multifunction.

Theorem 2. If hypotheses H, and H, or H| hold, then forall A€ L S, € Pk(Cé (2)) and the multifunction £ > 1 — S, is continuous
and h-continuous.
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