
S
n
N
a

b

c

d

e

f

g

A

K
N
(
M
S
T

1

p

o

h
R

Nonlinear Anal. RWA 81 (2025) 104225 

A
1

Contents lists available at ScienceDirect

Nonlinear Analysis: Real World Applications

journal homepage: www.elsevier.com/locate/nonrwa

ingular non-autonomous (𝑝, 𝑞)-equations with competing
onlinearities
ikolaos S. Papageorgiou a,b,1, Dongdong Qin c,∗,1, Vicenţiu D. Rădulescu d,b,e,f,g,1

National Technical University, Department of Mathematics, Zografou Campus, Athens 15780, Greece
Department of Mathematics, University of Craiova, Street A.I. Cuza 13, 200585 Craiova, Romania
School of Mathematics and Statistics, HNP-LAMA, Central South University, Changsha 410083, Hunan, People’s Republic of China
Faculty of Applied Mathematics, AGH University of Kraków, al. Mickiewicza 30, 30-059 Kraków, Poland
Simion Stoilow Institute of Mathematics of the Romanian Academy, 21 Calea Griviţei Street, 010702 Bucharest, Romania
Brno University of Technology, Faculty of Electrical Engineering and Communication, Technická 3058/10, Brno 61600, Czech Republic
Department of Mathematics, Zhejiang Normal University, Zhejiang, Jinhua 321004, People’s Republic of China

R T I C L E I N F O

eywords:
onlinear regularity theory
p-1)-linear and (p-1)-superlinear perturbations
inimal solution

olution multifunction
runcations and comparisons

A B S T R A C T

We consider a parametric non-autonomous (𝑝, 𝑞)-equation with a singular term and competing
nonlinearities, a parametric concave term and a Carathéodory perturbation. We consider the
cases where the perturbation is (𝑝 − 1)-linear and where it is (𝑝 − 1)-superlinear (but without
the use of the Ambrosetti–Rabinowitz condition). We prove an existence and multiplicity result
which is global in the parameter 𝜆 > 0 (a bifurcation type result). Also, we show the existence
of a smallest positive solution and show that it is strictly increasing as a function of the
parameter. Finally, we examine the set of positive solutions as a function of the parameter
(solution multifunction). First, we show that the solution set is compact in 𝐶1

0 (�̄�) and then we
show that the solution multifunction is Vietoris continuous and also Hausdorff continuous as a
multifunction of the parameter.

. Introduction

Let 𝛺 ⊆ R𝑁 be a bounded domain with a 𝐶2-boundary 𝜕𝛺. In this paper, we study the following parametric nonlinear Dirichlet
roblem

{

−𝛥𝛼1𝑝 𝑢(𝑧) − 𝛥
𝛼2
𝑞 𝑢(𝑧) = 𝜆[𝑢(𝑧)−𝜂 + 𝑢(𝑧)𝜏−1] + 𝑓 (𝑧, 𝑢(𝑧)) in 𝛺,

𝑢|𝜕𝛺 = 0, 1 < 𝜏 < 𝑞 < 𝑝, 0 < 𝜂 < 1, 𝜆 > 0, 𝑢 > 0.

}

(1)

For 𝛼 ∈ 𝐶0,1(�̄�) with 𝛼(𝑧) ≥ 𝑐 > 0 for all 𝑧 ∈ �̄� and for 𝑠 ∈ (1,∞), we denote by 𝛥𝛼𝑠 the non-autonomous 𝑠-Laplace differential
perator defined by

𝛥𝛼𝑠 𝑢 = div(𝛼(𝑧)|𝐷𝑢|𝑠−2𝐷𝑢) for all 𝑢 ∈ 𝑊 1,𝑠
0 (𝛺).

The features of problem (1) are the following:

(i) The presence of two non-autonomous differential operators with different growth, which generates a double phase associated
energy.
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(ii) The problem combines the effects generated by a smooth nonlinearity, a singular reaction, and an unbalanced operator.
(iii) The analysis is developed with respect to the values of the positive parameter associated with the power-type and singular

nonlinear terms.

Since the content of the paper is closely concerned with unbalanced growth, we briefly introduce in what follows the related
ackground and applications and we recall some pioneering contributions to these fields. Eq. (1) is driven by a differential operator
ith unbalanced growth due to the presence of the (𝑝, 𝑞)-Laplace type operator. This kind of problem comes from a general

reaction–diffusion system:

𝑢𝑡 = div[𝐴(∇𝑢)∇𝑢] + 𝑐(𝑥, 𝑢), and 𝐴(∇𝑢) = |∇𝑢|𝑝−2 + |∇𝑢|𝑞−2,

here the function 𝑢 is a state variable and describes the density or concentration of multicomponent substances, div[𝐴(∇𝑢)∇𝑢]
corresponds to the diffusion with coefficient 𝐴(∇𝑢) and 𝑐(𝑥, 𝑢) is the reaction and relates to source and loss processes. Originally,
the idea to treat such operators comes from Zhikov [1] who introduced such classes to provide models of strongly anisotropic
materials, see also the monograph of Zhikov et al. [2]. We refer to the remarkable works initiated by Marcellini [3,4], where the
author investigated the regularity and existence of solutions of elliptic equations with unbalanced growth conditions. The (𝑝, 𝑞)-
Laplacian Eq. (1) is also motivated by numerous models arising in mathematical physics. For instance, we can refer to the following
Born–Infeld equation [5] that appears in electromagnetism, electrostatics and electrodynamics as a model based on a modification
of Maxwell’s Lagrangian density:

−div
(

∇𝑢

(1 − 2|∇𝑢|2)
1
2

)

= ℎ(𝑢) in 𝛺.

Indeed, by the Taylor formula, we have

(1 − 𝑥)−
1
2 = 1 + 𝑥

2
+ 3

2 ⋅ 22
𝑥2 + 5!!

3! ⋅ 23
𝑥3 +⋯ +

(2𝑛 − 3)!!
(𝑛 − 1)! ⋅ 2𝑛−1

𝑥𝑛−1 +⋯ for |𝑥| < 1.

aking 𝑥 = 2|∇𝑢|2 and adopting the first order approximation, we obtain problem (1) for 𝑝 = 2 and 𝑞 = 4. Furthermore, the 𝑛th
rder approximation problem is driven by the multi-phase differential operator

−𝛥𝑢 − 𝛥4𝑢 −
3
2
𝛥6𝑢 −⋯ −

(2𝑛 − 3)!!
(𝑛 − 1)!

𝛥2𝑛𝑢.

e also refer to the following fourth-order relativistic operator

𝑢 ↦ div
(

|∇𝑢|2

(1 − |∇𝑢|4)
3
4

∇𝑢

)

,

which describes large classes of phenomena arising in relativistic quantum mechanics. Again, by Taylor’s formula, we have

𝑥2(1 − 𝑥4)−
3
4 = 𝑥2 + 3𝑥6

4
+ 21𝑥10

32
+⋯ .

This shows that the fourth-order relativistic operator can be approximated by the following operator

𝑢 ↦ 𝛥4𝑢 +
3
4
𝛥8𝑢.

or more details on the physical backgrounds and other applications, we refer to Bahrouni et al. [6](for phenomena associated with
ransonic flows) and to Benci et al. [7](for models arising in quantum physics).

Problem (1) is driven by the sum of two such operators with different exponents and weight functions. So, the differential
perator in (1) is not homogeneous. In the reaction (right hand side) of (1) we have the combined effects of a parametric singular
erm 𝑢 → 𝜆𝑢−𝜂 , of a parametric concave term 𝑢 → 𝜆𝑢𝜏−1 (recall that 𝜏 < 𝑞 < 𝑝) and of a perturbation 𝑓 (𝑥, 𝑧). This perturbation

is a Carathéodory function (that is, 𝑧 → 𝑓 (𝑧, 𝑥) is measurable and 𝑥 → 𝑓 (𝑧, 𝑥) is continuous) which is either (𝑝 − 1)-linear or
(𝑝 − 1)-superlinear as 𝑥 → +∞ (the second case corresponds to concave-convex nonlinearities). Our aim is to prove the existence
nd multiplicity of positive solutions and we want the result to be global in the parameter 𝜆 > 0. Problems with competition

phenomena, but without singular term, were first studied by Ambrosetti, Brezis, Cerami [8], for semilinear equations driven
by the Laplacian. Their work was extended to 𝑝-Laplacian equations by Garcia Azorero, Peral Alonso, Manfredi [9] and Guo,
hang [10]. Further generalizations can be found in the works of Leonardi, Papageorgiou [11], Liu, Papageorgiou [12], Marano,
arino, Papageorgiou [13], Papageorgiou, Rădulescu, Repovs [14] and the references therein. None of the aforementioned works

nvolves a singular term. Problems with singular terms and concave-convex nonlinearities, were examined recently by Papageorgiou,
inkert [15] and Gasinski, Papageorgiou [16]. A common feature in these two works, is that the perturbation 𝑓 (𝑧, 𝑥) is nonnegative.

his makes the analysis of problems easier. Also, their hypotheses on 𝑓 (𝑧, ⋅) near zero are more restrictive. Here, in contrast 𝑓 (𝑧, 𝑥)
an change sign. We consider both the cases of (𝑝 − 1)-linear and (𝑝 − 1)-superlinear perturbation and our hypotheses on 𝑓 (𝑧, ⋅) are
ore general. We prove an existence and multiplicity result which is global in 𝜆 > 0 (a bifurcation-type theorem).

We also show the existence of a minimal positive solution and determine its monotonicity properties with respect to the
arameter. Finally, we examine the dependence of solution set on the parameter 𝜆 > 0. We prove the continuity properties of this
olution multifunction. Our result in this direction extends the recent works of Zeng, Gasinski, Nguyen, Bai [17] and Papageorgiou,
capellato [18] (nonsingular equations) and by Bai, Motreanu, Zeng [19] (singular problems driven by the 𝑝-Laplacian). In all these

works, the perturbation 𝑓 (𝑧, 𝑥) is nonnegative and the overall hypotheses are more restrictive.
2 
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2. Mathematical background and hypothesis

The main spaces in the analysis of problem (1), are the Sobolev space 𝑊 1,𝑝
0 (𝛺) and the Banach space 𝐶1

0 (�̄�) = {𝑢 ∈ 𝐶1(�̄�) ∶
|𝜕𝛺 = 0}. On account of the Poincaré inequality, on 𝑊 1,𝑝

0 (𝛺) we consider the following equivalent norm

‖𝑢‖ = ‖𝐷𝑢‖𝑝 for all 𝑢 ∈ 𝑊 1,𝑝
0 (𝛺).

The space 𝐶1
0 (�̄�) is an ordered Banach space with positive (order) cone 𝐶+ = {𝑢 ∈ 𝐶1

0 (�̄�) ∶ 𝑢(𝑧) ≥ 0 for all 𝑧 ∈ �̄�}. This cone has
nonempty interior given by

int 𝐶+ = {𝑢 ∈ 𝐶+ ∶ 𝑢(𝑧) > 0 for all 𝑧 ∈ 𝛺, 𝜕𝑢
𝜕𝑛

|𝜕𝛺 < 0},

where 𝜕𝑢
𝜕𝑛

= (𝐷𝑢, 𝑛)R𝑁 with 𝑛(⋅) being the outward unit normal on 𝜕𝛺.
If 𝑢 ∶ 𝛺 → R is a measurable function, then we define

𝑢+(𝑧) = max{𝑢(𝑧), 0}, 𝑢−(𝑧) = max{−𝑢(𝑧), 0} for all 𝑧 ∈ 𝛺.

oth are measurable functions and 𝑢 = 𝑢+ − 𝑢−, |𝑢| = 𝑢+ + 𝑢−. Moreover, if 𝑢 ∈ 𝑊 1,𝑝
0 (𝛺), then 𝑢± ∈ 𝑊 1,𝑝

0 (𝛺). If 𝑢, 𝑣 ∶ 𝛺 → R are
easurable functions such that 𝑢(𝑧) ≤ 𝑣(𝑧) for a.a. 𝑧 ∈ 𝛺, then we define

[𝑢, 𝑣] = {ℎ ∈ 𝑊 1,𝑝
0 (𝛺) ∶ 𝑢(𝑧) ≤ ℎ(𝑧) ≤ 𝑣(𝑧) for a.a. 𝑧 ∈ 𝛺},

[𝑢) = {ℎ ∈ 𝑊 1,𝑝
0 (𝛺) ∶ 𝑢(𝑧) ≤ ℎ(𝑧) for a.a. 𝑧 ∈ 𝛺},

int𝐶1
0 (�̄�)[𝑢, 𝑣] = {the interior in 𝐶1

0 (�̄�) of [𝑢, 𝑣] ∩ 𝐶1
0 (�̄�)}.

If 𝑋 is a Banach space and 𝜑 ∈ 𝐶1(𝑋,R), then by 𝐾𝜑 we denote the critical set of 𝜑(⋅), that is, 𝐾𝜑 = {𝑢 ∈ 𝑋 ∶ 𝜑′(𝑢) = 0}. Also, if
∶ 𝛺 → R is measurable, we write ‘‘0 ≺ 𝑢’’ if for all 𝐾 ⊆ 𝛺 compact, we have 0 < 𝑐𝐾 ≤ 𝑢(𝑧) for a.a. 𝑧 ∈ 𝐾.

A useful tool in the study of singular boundary value problems, is the so-called ‘‘Hardy’s inequality’’ which we recall next (see,
or example, Papageorgiou, Rădulescu, Repovs [20, p. 66]).

roposition 1. If 𝛺 ⊆ R𝑁 is a bounded domain with Lipschitz boundary and 𝑝 ∈ (1,∞), then ‖

𝑢
𝑑
‖𝑝 ≤ 𝑐‖𝐷𝑢‖𝑝 for all 𝑢 ∈ 𝑊 1,𝑝

0 (𝛺), some
𝑐 > 0 and with 𝑑(𝑧) = 𝑑(𝑧, 𝜕𝛺) for all 𝑧 ∈ 𝛺.

Conversely, we have

‘‘𝑢 ∈ 𝑊 1,𝑝(𝛺) and 𝑢
𝑑

∈ 𝐿𝑝(𝛺) ⇒ 𝑢 ∈ 𝑊 1,𝑝
0 (𝛺)’’.

Let 𝛼 ∈ 𝐶0,1(�̄�) with 𝛼(𝑧) ≥ 𝑐 > 0 for all 𝑧 ∈ �̄� and 𝑠 ∈ (1,∞). We consider the following nonlinear eigenvalue problem

− 𝛥𝛼𝑠 𝑢(𝑧) = �̂�|𝑢(𝑧)|𝑠−2𝑢(𝑧) in 𝛺, 𝑢|𝜕𝛺 = 0. (2)

This problem was studied by Liu, Papageorgiou [21] (see the Appendix of [21]). They proved that (2) has a smallest eigenvalue
̂𝛼
1 (𝑠) > 0 which has the following variational characterization.

�̂�𝛼1 (𝑠) = inf
{𝜌𝛼,𝑠(𝐷𝑢)

‖𝑢‖𝑠𝑠
∶ 𝑢 ∈ 𝑊 1,𝑠

0 (𝛺), 𝑢 ≠ 0
}

with 𝜌𝛼,𝑠(𝐷𝑢) = ∫𝛺
𝛼(𝑧)|𝐷𝑢|𝑠d𝑥. (3)

This eigenvalue is isolated in the spectrum of (2) and simple (that is, if �̂�, �̂� are two eigenfunctions corresponding to �̂�𝛼1 (𝑠) > 0,
hen �̂� = 𝜃�̂� with 𝜃 ∈ R∖{0}). The infimum in (3) is realized on the corresponding one dimensional eigenspace. It is clear from
3) that the elements of this eigenspace, have fixed sign. By �̂�1(𝑠) we denote the positive, 𝐿𝑠(𝛺) normalized (that is, ‖�̂�1(𝑠)‖𝑠 = 1)
igenfunction corresponding to �̂�𝛼1 (𝑠). The nonlinear regularity theory of Lieberman [22] and the nonlinear maximum principle of
ucci, Serrin [23] (pp. 111, 120), imply that �̂�1(⋅) ∈ int 𝐶+. Using these properties we obtain the following useful inequality (see
iu, Papageorgiou [21], Proposition 4.2).

roposition 2. If 𝜃 ∈ 𝐿∞(𝛺), 𝜃(𝑧) ≤ �̂�𝛼1 for a.a. 𝑧 ∈ 𝛺, 𝜃 ≢ �̂�𝛼1 (𝑠), then there exists 𝑐
∗ > 0 such that

𝑐∗‖𝐷𝑢‖𝑠𝑠 ≤ ∫𝛺
𝛼(𝑧)|𝐷𝑢|𝑠d𝑧 − ∫𝛺

𝜃(𝑧)|𝑢|𝑠d𝑧 for all 𝑢 ∈ 𝑊 1,𝑠
0 (𝛺).

We mention that �̂�𝛼1 (𝑠) > 0 is the only eigenvalue with eigenfunctions of constant sign. We will also encounter a weighted version
f (2). So, let 𝜂 ∈ 𝐿∞(𝛺)∖{0}, 𝜂(𝑧) ≥ 0 for a.a. 𝑧 ∈ 𝛺 and consider the following nonlinear eigenvalue problem

−𝛥𝛼𝑠 𝑢(𝑧) = �̃�𝜂(𝑧)|𝑢(𝑧)|𝑠−2𝑢(𝑧) in 𝛺, 𝑢|𝜕𝛺 = 0.

For this problem, we have the same results as for (2). So, there is a smallest eigenvalue �̃�𝛼1 (𝑠, 𝜂) > 0 which has the same properties
as �̂�𝛼1 (𝑠). Moreover, �̃�𝛼1 (𝑠, 𝜂) has the following monotonicity property with respect to the weight 𝜂. If 𝜂, �̃� ∈ 𝐿∞(𝛺)∖{0}, 0 ≤ 𝜂(𝑧) ≤ �̃�(𝑧)
or a.a. 𝑧 ∈ 𝛺, 𝜂 ≠ �̃�, then

�̃�𝛼(𝑠, �̃�) < �̃�𝛼(𝑠, 𝜂).
1 1
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Let 𝐴𝛼𝑠 ∶ 𝑊 1,𝑠
0 (𝛺) → 𝑊 −1,𝑠′ (𝛺) = 𝑊 1,𝑠

0 (𝛺)∗ ( 1𝑠 +
1
𝑠′ = 1) be the nonlinear operator defined by

⟨𝐴𝛼𝑠 (𝑢), ℎ⟩ = ∫𝛺
𝛼(𝑧)|𝐷𝑢|𝑠−2(𝐷𝑢,𝐷ℎ)R𝑁 d𝑧 for all 𝑢, ℎ ∈ 𝑊 1,𝑠

0 (𝛺).

This operator has the following properties (see, for example, Gasinski, Papageorgiou [24], p. 279).

Proposition 3. The operator 𝐴𝛼𝑠 ∶ 𝑊 1,𝑠
0 (𝛺) → 𝑊 −1,𝑠′ (𝛺) is bounded (that is, maps bounded sets to bounded sets), continuous, strictly

monotone (thus, maximal monotone too) and of type (𝑆)+, that is,

‘‘if 𝑢𝑛
𝑤
←←←←←←←←→ 𝑢 in 𝑊 1,𝑠

0 (𝛺) and lim sup
𝑛→∞

⟨𝐴𝛼𝑠 (𝑢𝑛), 𝑢𝑛 − 𝑢⟩ ≤ 0,

then 𝑢𝑛 → 𝑢 in 𝑊 1,𝑠
0 (𝛺).’’

Our hypotheses on the weight functions and the exponents are the following:

𝐻0 ∶ 𝛼1, 𝛼2 ∈ 𝐶0,1(�̄�), 0 < 𝑐 ≤ 𝛼1(𝑧), 𝛼2(𝑧) for all 𝑧 ∈ �̄� and 0 < 𝜂 < 1 < 𝜏 < 𝑞 < 𝑝.

We set 𝑉 (𝑢) = 𝐴𝛼1𝑝 (𝑢) + 𝐴𝛼2𝑝 (𝑢) for all 𝑢 ∈ 𝑊 1,𝑝
0 (𝛺). Then on account of Proposition 3, 𝑉 ∶ 𝑊 1,𝑝

0 (𝛺) → 𝑊 −1,𝑝′ (𝛺) =
𝑊 1,𝑝

0 (𝛺)∗
(

1
𝑝 +

1
𝑝′ = 1

)

is bounded, continuous, strictly monotone (thus maximal monotone too) and of type (𝑆)+.
In the last section, we will study the dependence of the solution set of (1) on the parameter 𝜆 > 0. For this purpose, we will need

ome continuity notions from multivalued analysis, which we recall below. For more details we refer to Hu, Papageorgiou [25].
So, let 𝑋, 𝑌 be Hausdorff topological spaces and 𝑆 ∶ 𝑋 → 2𝑌 ∖{∅} a multifunction (set-valued function).

∙ 𝑆(⋅) is ‘‘lower semicontinuous’’ (lsc for short), if for every 𝑈 ⊆ 𝑌 open the set 𝑆−(𝑈 ) = {𝑥 ∈ 𝑋 ∶ 𝑆(𝑥) ∩ 𝑈 ≠ ∅} is open.
∙ 𝑆(⋅) is ‘‘upper semicontinuous’’ (usc for short), if for all 𝑈 ⊆ 𝑌 open, the set 𝑆+(𝑈 ) = {𝑥 ∈ 𝑋 ∶ 𝑆(𝑥) ⊆ 𝑈} is open.

Suppose 𝑌 is a metric space and let 𝑑(⋅, ⋅) be its metric. For 𝐴,𝐶 ⊆ 𝑌 nonempty sets, we define

ℎ∗(𝐴,𝐶) = sup{𝑑(𝑎, 𝐶) ∶ 𝑎 ∈ 𝐴}

= inf{𝜖 > 0 ∶ 𝐴 ⊆ 𝐶𝜖},

where 𝐶𝜖 = {𝑥 ∈ 𝑋 ∶ 𝑑(𝑥, 𝐶) < 𝜖} (the 𝜖-enlargement of 𝐶) . It is easy to see that

ℎ∗(𝐴,𝐶) = sup{𝑑(𝑥, 𝐶) ⋅ 𝑑(𝑥,𝐴) ∶ 𝑥 ∈ 𝑋}.

The ‘‘Hausdorff distance’’ between 𝐴 and 𝐶 is defined by

ℎ(𝐴,𝐶) = max{ℎ∗(𝐴,𝐶), ℎ∗(𝐶,𝐴)}

= inf{𝜖 > 0 ∶ 𝐴 ⊆ 𝐶𝜖 and 𝐶 ⊆ 𝐴𝜖}.

If follows that

ℎ(𝐴,𝐶) = sup{|𝑑(𝑥, 𝐶) − 𝑑(𝑥,𝐴)| ∶ 𝑥 ∈ 𝑋}.

Let 𝑃𝑓 (𝑌 ) (resp. 𝑃𝑘(𝑌 )) denote the family of nonempty, closed (resp. compact) subsets of 𝑌 . We know that ℎ(⋅, ⋅) is a (generalized)
metric on 𝑃𝑓 (𝑌 ) and if 𝑌 is complete, then so is (𝑃𝑓 (𝑌 ), ℎ). Let 𝑠 ∶ 𝑋 → 2𝑌 ∖{∅} be a multifunction (𝑌 a metric space)

∙ 𝑆(⋅) is ‘‘h-lower semicontinuous’’ (h-lsc for short), if for all 𝑥 ∈ 𝑋, 𝑢→ ℎ∗(𝑆(𝑥), 𝑆(𝑢)) is continuous on 𝑋.
∙ 𝑆(⋅) is ‘‘h-upper semicontinuous’’ (h-usc for short), if for all 𝑥 ∈ 𝑋, 𝑢→ ℎ∗(𝑆(𝑢), 𝑆(𝑥)) is continuous on 𝑋.

In general we have

‘‘ℎ − 𝑙𝑠𝑐 ⟹ 𝑙𝑠𝑐 and 𝑢𝑠𝑐 ⟹ ℎ − 𝑢𝑠𝑐’’.

If 𝑆(⋅) is 𝑃𝑘(𝑌 )-valued, then

‘‘ℎ − 𝑙𝑠𝑐 ⟺ 𝑙𝑠𝑐 and ℎ − 𝑢𝑠𝑐 ⟹ 𝑢𝑠𝑐’’.

A multifunction 𝑆(⋅) which is both lsc and usc, is said to be continuous (or Vietoris continuous). A multifunction 𝑆(⋅) which is
both h-lsc and h-usc, is said to be h-continuous (or Hausdorff continuous). From the previous remarks, we see that a 𝑃𝑘(𝑌 )-valued
multifunction. 𝑆(⋅) is continuous if and only if it is h-continuous.

If (𝑌 , 𝑑) is a metric space and {𝐶𝑛}𝑛∈N ⊆ 2𝑌 ∖{∅}, then we define

lim inf
𝑛→∞

𝐶𝑛 = {𝑦 ∈ 𝑌 ∶ 𝑦 = lim 𝑦𝑛, 𝑦𝑛 ∈ 𝐶𝑛, 𝑛 ∈ N}

= {𝑦 ∈ 𝑌 ∶ lim
𝑛→∞

𝑑(𝑦, 𝐶𝑛) = 0}.

We say that 𝑆 ∶ 𝑋 → 2𝑌 ∖{∅} is locally compact, if for every 𝑥 ∈ 𝑋, we can find 𝑈 an open neighborhood of 𝑥 such that 𝑆(𝑈 ) is
compact in 𝑌 .
4 
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A set 𝐷 ⊆ 𝑊 1,𝑝
0 (𝛺) is said to be downward directed, if given 𝑢1, 𝑢2 ∈ 𝐷 we can find 𝑢 ∈ 𝐷 such that 𝑢 ≤ 𝑢1, 𝑢 ≤ 𝑢2.

Next we introduce our hypotheses on the perturbation 𝑓 (𝑧, 𝑥). As we already mentioned in the introduction, we will present a
unified treatment of both the (𝑝 − 1)-linear and of the (𝑝 − 1)-superlinear cases.

For the (𝑝 − 1)-linear case the hypotheses on the perturbation 𝑓 (𝑧, 𝑥) are the following:
𝐻1 ∶ 𝑓 ∶ 𝛺 × R → R is a Carathéodory function such that

(i) for every 𝜌 > 0, there exists �̂�𝜌 ∈ 𝐿∞(𝛺) such that

|𝑓 (𝑧, 𝑥)| ≤ �̂�𝜌(𝑧) for a.a. 𝑧 ∈ 𝛺, all 0 ≤ 𝑥 ≤ 𝜌;

(ii) there exist functions 𝜂, �̂� ∈ 𝐿∞𝛺 such that

�̂�𝛼11 (𝑝) ≤ 𝜂(𝑧) for a.a. 𝑧 ∈ 𝛺, 𝜂 ≢ �̂�𝛼1 (𝜌),

𝜂(𝑧) ≤ lim inf
𝑥→+∞

𝑓 (𝑧, 𝑥)
𝑥𝑝−1

≤ lim sup
𝑥→+∞

𝑓 (𝑧, 𝑥)
𝑥𝑝−1

≤ �̂�(𝑧) uniformly for a.a. 𝑧 ∈ 𝛺,

(iii) there exist a function 𝜃 ∈ 𝐿∞(𝛺) and 𝛿 > 0 such that

𝜃(𝑧) ≤ �̂�𝛼21 (𝑞) for a.a. 𝑧 ∈ 𝛺, 𝜃 ≢ �̂�𝛼21 (𝑞).

lim sup
𝑥→0+

𝑓 (𝑧, 𝑥)
𝑥𝑞−1

≤ 𝜃(𝑧) uniformly for a.a. 𝑧 ∈ 𝛺,

𝑓 (𝑧, 𝑥) ≥ 0 for a.a. 𝑧 ∈ 𝛺, all 0 ≤ 𝑥 ≤ 𝛿;

(iv) for every 𝜌 > 0, there exists 𝜉𝜌 > 0, such that for a.a. 𝑧 ∈ 𝛺, the function

𝑥 → 𝑓 (𝑧, 𝑥) + 𝜉𝜌𝑥𝑝−1

is nondecreasing on [0, 𝜌].

Remark 1. Note that hypothesis 𝐻1(𝑖𝑖𝑖) implies that 𝑓 (𝑧, 0) = 0 for a.a. 𝑧 ∈ 𝛺. Also since we search for positive solutions and the
above hypotheses concern the positive semiaxis, we may assume without any the loss of generality that 𝑓 (𝑧, 𝑥) = 0 for a.a. 𝑧 ∈ 𝛺,
all 𝑥 ≤ 0.

For the (𝑝 − 1)-superlinear case, the hypotheses on the perturbation 𝑓 (𝑧, 𝑥) are the following:
𝐻 ′

1 ∶ 𝑓 ∶ 𝛺 × R → R is a Carathéodory function such that

(i) |𝑓 (𝑧, 𝑥)| ≤ �̂�(𝑧)(1 + 𝑥𝑟−1) for a.a. 𝑧 ∈ 𝛺, all 𝑥 ≥ 0, with �̂� ∈ 𝐿∞(𝛺), 𝑝 < 𝑟 < 𝑝∗ (recall that 𝑝∗ = 𝑁𝑝
𝑁−𝑝 if 𝑝 < 𝑁 and 𝑝∗ = +∞ if

𝑁 ≤ 𝑝);
(ii) If 𝐹 (𝑧, 𝑥) = ∫ 𝑥0 𝑓 (𝑧, 𝑠)d𝑠, then

lim
𝑥→+∞

𝐹 (𝑧, 𝑥)
𝑥𝑝

= +∞ uniformy for a.a. 𝑧 ∈ 𝛺;

and there exists 𝑠 ∈
(

(𝑟 − 𝑝) max
{

𝑁
𝑃 , 1

}

, 𝑝∗
)

such that

0 < 𝛽 ≤ lim inf
𝑥→+∞

𝑓 (𝑧, 𝑥)𝑥 − 𝑝𝐹 (𝑧, 𝑥)
𝑥𝑠

uniformly for a.a. 𝑧 ∈ 𝛺;

(iii) same as hypothesis 𝐻1(𝑖𝑖𝑖);
(iv) same as hypothesis 𝐻1(𝑖𝑣).

Remark 2. Hypothesis 𝐻 ′
1(𝑖𝑖) implies that

lim
𝑥→+∞

𝑓 (𝑧, 𝑥)
𝑥𝑝−1

= +∞ uniformly for a.a. 𝑧 ∈ 𝛺.

So, the perturbation 𝑓 (𝑧, ⋅) is (𝑝 − 1)-superlinear. However, we do not employ the Ambrosetti–Rabinowitz (the AR-condition for
short), which is common in the literature when dealing with superlinear problems (see Willem [26], p. 46). Hypothesis 𝐻 ′

1(𝑖𝑖) is
less restrictive and incorporates in our framework superlinear nonlinearities with ‘‘slower’’ growth near +∞ which fail to satisfy the
AR-condition (see the examples below).

Example 1. For the sake of simplicity, we drop the z-dependence. Consider the following function

𝑓1(𝑥) =

{

𝜃(𝑥+)𝑞−1 − (𝑥+)𝑟−1 if 𝑥 ≤ 1,
𝑝−1 𝑠−1
𝜂𝑥 + 𝑐𝑥 if 1 < 𝑥,

5 
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with 𝜃 < �̂�𝛼21 (𝑞), 𝜂 > �̂�𝛼11 (𝑝), 𝑐 = 𝜂 + 1 − 𝜃 and 𝑟 > 𝑞, 1 < 𝑠 < 𝑝. This function satisfies hypotheses 𝐻1. Also consider the function

𝑓2(𝑥) =

{

𝜃(𝑥+)𝑝−1 if 𝑥 ≤ 1,
𝑥𝑝−1 ln 𝑥 + 𝜃𝑥𝑠−1 if 1 < 𝑥,

with 𝜃 < �̂�𝛼21 (𝑞), and 1 < 𝑠 ≤ 𝑝. This function satisfies hypotheses 𝐻 ′
1, but fails to satisfy the AR-condition.

3. An auxiliary problem

When dealing with singular equations, the problem that we face is that due to the presence of the singular term, the energy
functional of the problem is not 𝐶1 and so we cannot use the minimax results of the critical point theory. We have to find a way to
bypass the singularity and deal with 𝐶1-functionals. We will be able to do this using the solution of the following auxiliary Dirichlet
roblem:

{

−𝛥𝛼1𝑝 𝑢(𝑧) − 𝛥
𝛼2
𝑞 𝑢(𝑧) = 𝜆𝑢(𝑧)𝜏−1 in 𝛺,

𝑢|𝜕𝛺 = 0, 1 < 𝜏 < 𝑞 < 𝑝, 𝜆 > 0, 𝑢 > 0.

}

(4)

For this problem, we have the following result.

Proposition 4. If hypotheses 𝐻0 hold and 𝜆 > 0, then problem (4) has a unique positive solution �̄�𝜆 ∈ int 𝐶+, {�̄�𝜆}𝜆>0 is nondecreasing
nd �̄�𝜆 → 0 in 𝐶1

0 (�̄�) as 𝜆 → 0+.

roof. Consider the 𝐶1-functional �̂�𝜆 ∶ 𝑊
1,𝑝
0 (𝛺) → R defined by

�̂�𝜆(𝑢) =
1
𝑝
𝜌𝛼1 ,𝑝(𝐷𝑢) +

1
𝑞
𝜌𝛼2 ,𝑞(𝐷𝑢) −

𝜆
𝜏
‖𝑢+‖𝜏𝜏 for all 𝑢 ∈ 𝑊 1,𝑝

0 (𝛺).

Evidently, �̂�(⋅) is coercive (recall that 𝜏 < 𝑞 < 𝑝). Also, using the Sobolev embedding theorem, we see that �̂�(⋅) is sequentially
weakly lower semicontinuous. So, by the Weierstrass–Tonelli theorem, we can find �̄�𝜆 ∈ 𝑊 1,𝑝

0 (𝛺) such that

�̂�(�̄�𝜆) = inf{𝜎𝜆(𝑢) ∶ 𝑢 ∈ 𝑊 1,𝑝
0 (𝛺)}. (5)

Let 𝑢 ∈ int 𝐶+ and 𝑡 ∈ (0, 1). Then

�̂�𝜆(𝑡𝑢) =
𝑡𝑝

𝜌
𝑝𝛼1 ,𝑝(𝐷𝑢) +

𝑡𝑞

𝜌
𝑝𝛼2 ,𝑞(𝐷𝑢) −

𝑡𝜏

𝜏
‖𝑢‖𝜏𝜏

≤ 𝑐1𝑡
𝑞 − 𝑐2𝑡𝜏 for some 𝑐1, 𝑐2 > 0 (recall that 0 < 𝑡 < 1, 𝑞 < 𝑝).

But 𝜏 < 𝑞. So, choosing 𝑡 ∈ (0, 1) even smaller if necessary, we have

�̂�𝜆(𝑡𝑢) < 0,

⇒ �̂�𝜆(�̄�𝜆) < 0 = �̂�𝜆(0) (see (5)),
⇒ �̄�𝜆 ≠ 0.

From (5) we have

⟨�̂�′𝜆(�̄�𝜆), ℎ⟩ = 0 for all ℎ ∈ 𝑊 1,𝑝
0 (𝛺),

⇒ ⟨𝑉 (�̄�𝜆), ℎ⟩ = ∫𝛺
𝜆(�̄�′𝜆)

𝜏−1ℎd𝑧 for all ℎ ∈ 𝑊 1,𝑝
0 (𝛺).

(6)

Choosing ℎ = −�̄�−𝜆 ∈ 𝑊 1,𝑝
0 (𝛺) in (6) and using hypotheses 𝐻0, we obtain

𝑐‖𝐷�̄�−𝜆 ‖
𝑝
𝑝 ≤ 0,

⇒ �̄�𝜆 ≥ 0, �̄�𝜆 ≠ 0.

Then from (6) we infer that �̄�𝜆 is a positive solution of problem (4). By a standard Moser iteration process we show that
�̄�𝜆 ∈ 𝐿∞(𝛺) (see [27]). So, we can apply the nonlinear regularity theory of Lieberman [22] and have that �̄�𝜆 ∈ 𝐶+∖{0}. We have
(see Pucci, Serrin [23], pp. 111, 120)

𝛥𝛼1𝑝 �̄�𝜆 + 𝛥
𝛼2
𝑞 �̄�𝜆 ≤ 0 in 𝛺,

⇒ �̄�𝜆 ∈ int 𝐶+.

We show that this positive solution of (4) is unique. Suppose �̄�𝜆 ∈ 𝑊 1,𝑝
0 (𝛺) is another positive solution of (4). Again we have

̄𝜆 ∈ int 𝐶+ and so using Proposition 4.1.22, p. 274, of Papageorgiou, Rădulescu, Repovs [20], we have
�̄�𝜆 ∈ 𝐿∞(𝛺) and

�̄�𝜆 ∈ 𝐿∞(𝛺).

�̄�𝜆 �̄�𝜆

6 
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Using the Diaz-Saa inequality (see Diaz, Saa [28] and also Papageorgiou, Rădulescu [29], proof of Proposition 3.5), we have

0 ≤ ∫𝛺

[

1
�̄�𝑞−𝜏𝜆

− 1
�̄�𝑞−𝜏𝜆

]

(�̄�𝜏𝜆 − �̄�
𝜏
𝜆)d𝑧 ≤ 0,

⇒ �̄�𝜆 = �̄�𝜆.

his proves the uniqueness of the positive solution of (4).
Next, we show that the family {�̄�𝜆}𝜆>0 is nondecreasing. Suppose 0 < 𝜓 < 𝜆. We introduce the Carathéodory function 𝓁𝑝(𝑧, 𝑥)

efined by

𝓁𝜓 (𝑧, 𝑥) =

{

𝜓(𝑥+)𝜏−1 if 𝑥 ≤ �̄�𝜆(𝑧),
𝜓�̄�𝜆(𝑧)𝜏−1 if �̄�𝜆(𝑧) < 𝑥.

(7)

Let 𝐿𝜓 (𝑧, 𝑥) = ∫ 𝑥0 𝓁𝜓 (𝑧, 𝑠)d𝑠 and consider the 𝐶1-functional 𝜎𝜓 ∶ 𝑊 1,𝑝
0 (𝛺) → R defined by

𝜎𝜓 (𝑢) =
1
𝑝
𝜌𝛼1 ,𝑝(𝐷𝑢) +

1
𝑞
𝜌𝛼2 ,𝑞(𝐷𝑢) − ∫𝛺

𝐿𝜓 (𝑧, 𝑢)d𝑧 for all 𝑢 ∈ 𝑊 1,𝑝
0 (𝛺).

As before, using the Weierstrass–Tonelli theorem, we can find �̃�𝜓 ∈ 𝑊 1,𝑝
0 (𝛺) such that

𝜎𝜓 (�̃�𝜓 ) = inf{𝜎𝜓 (𝑢) ∶ 𝑢 ∈ 𝑊 1,𝑝
0 (𝛺)}. (8)

Let 𝑢 ∈ int 𝐶+ and choose 𝑡 ∈ (0, 1) small so that 𝑡𝑢 ≤ �̄�𝜆 (recall that �̄�𝜆 ∈ int 𝐶+ and use Proposition 4.1.22, p. 274, of [20] to see
hat such a 𝑡 ∈ (0, 1) exists). Then as before since 𝜏 < 𝑞 < 𝑝, by taking 𝑡 ∈ (0, 1) even small if necessary we can have

𝜎𝜓 (𝑡𝑢) < 0,

⇒ 𝜎𝜓 (�̃�𝜓 ) < 0 = 𝜎𝜓 (0) (see (8)),
⇒ �̃�𝜓 ≠ 0.

From (8) we have

⟨𝜎′𝜓 (�̃�𝜓 ), ℎ⟩ = 0 for all ℎ ∈ 𝑊 1,𝑝
0 (𝛺),

⇒ ⟨𝑉 (�̃�𝜓 ), ℎ⟩ = ∫𝛺
𝓁𝜓 (𝑧, �̃�𝜓 )ℎd𝑧 for all ℎ ∈ 𝑊 1,𝑝

0 (𝛺).
(9)

In (9) we choose ℎ = −�̃�𝜓 ∈ 𝑊 1,𝑝
0 (𝛺) and obtain

𝑐‖𝐷�̃�𝜓‖
𝑝
𝑝 ≤ 0,

⇒ �̃�𝜓 ≥ 0, �̃�𝜓 ≠ 0.

Also in (9) we use the test function ℎ = (�̃�𝜓 − 𝑢𝜆)+ ∈ 𝑊 1,𝑝
0 (𝛺). Then

⟨𝑉 (�̃�𝜓 ), (�̃�𝜓 − �̄�𝜆)+⟩ = ∫𝛺
𝜓�̄�𝜏−1𝜆 (�̃�𝜓 − �̄�𝜆)+d𝑧 (see (7))

≤ ∫𝛺
𝜆�̄�𝜏−1𝜆 (�̃�𝜓 − �̄�𝜆)+d𝑧 (since 𝜓 < 𝜆)

= ⟨𝑉 (�̄�𝜆), (�̃�𝜓 − �̄�𝜆)+⟩,

⇒ ⟨𝑉 (�̃�𝜓 ) − 𝑉 (�̄�𝜆), (�̃�𝜓 − �̄�𝜆)+⟩ ≤ 0,

⇒ �̃�𝜓 ≤ �̄�𝜆.

So, we have proved that

�̃�𝜓 ∈ [0, �̄�𝜆], �̃�𝜓 ≠ 0. (10)

Then from (10), (7) and (9), we see that �̃�𝜓 is a positive solution of (4). Hence �̃�𝜓 = �̄�𝜓 and we infer that

�̄�𝜓 ≤ �̄�𝜆 (see (8)),
⇒ {�̄�𝜆}𝜆>0 is nondecreasing.

Finally, we show that �̄�𝜆 → 0 in 𝐶1
0 (�̄�) as 𝜆 → 0+. We have

0 ≤ �̄�𝜆 ≤ �̄�1 for all 0 < 𝜆 ≤ 1.

It follows that

𝑐‖𝐷�̄�𝜆‖
𝑝
𝑝 ≤ 𝜆𝑐3‖�̄�𝜆‖ for all 0 < 𝜆 ≤ 1, some 𝑐3 > 0 (see (7)),

1,𝑝 +
⇒ �̄�𝜆 → 0 in 𝑊0 (𝛺) as 𝜆→ 0 . (11)

7 
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Moreover, from the nonlinear regularity theory of Lieberman [22], we know that there exist 𝛼 ∈ (0, 1) and 𝑐4 > 0 such that

�̄�𝜆 ∈ 𝐶1,𝛼
0 (�̄�) = 𝐶1,𝛼(�̄�) ∩ 𝐶1

0 (�̄�), ‖�̄�𝜆‖𝐶1,𝛼
0 (�̄�) ≤ 𝑐4 for all 0 < 𝜆 ≤ 1. (12)

But recall that 𝐶1,𝛼
0 (�̄�) ↪ 𝐶1

0 (�̄�) compactly (Arzela–Ascoli theorem). So, from (11) and (12), we conclude that

�̄�𝜆 → 0 in 𝐶1
0 (�̄�) as 𝜆→ 0+.

he proof is now complete. □

emark 3. Although we will not need it in the sequel, we mention that we can improve the monotonicity of {�̄�𝜆}𝜆>0 and assert
that {�̄�𝜆}𝜆>0 is strictly increasing, that is,

‘‘0 < 𝜓 < 𝜆⟹ �̄�𝜆 − �̄�𝜓 ∈ int 𝐶+’’.

We already know that �̄�𝜓 ≤ �̄�𝜆. Then (see Gasinski, Papageorgiou [30], Proposition 3.4)

−𝛥𝛼1𝑝 �̄�𝜓 − 𝛥𝛼2𝑞 �̄�𝜓 = 𝜓�̄�𝜏−1𝜓

≤ 𝜆�̄�𝜏−1𝜆 = −𝛥𝛼1𝑝 �̄�𝜆 − 𝛥
𝛼2
𝑞 �̄�𝜆 in 𝛺

⇒ �̄�𝜆 − �̄�𝜓 ∈ int 𝐶+ .

We will use this solution �̄�𝜆 ∈ int 𝐶+ to ‘‘neutralize’’ the singularity.

. Positive solutions

We introduce the following two sets

 = {𝜆 > 0 ∶ problem (1) has a positive solution},

𝑆𝜆 = set of positive solutions for problem (1).

Using Proposition 4, we see that for 𝜓 ∈ (0, 1) small, we have

0 ≤ �̄�𝜓 (𝑧) ≤ 𝛿 for all 𝑧 ∈ �̄� (13)

here 𝛿 > 0 is as in hypothesis 𝐻1(𝑖𝑖𝑖) = 𝐻 ′
1(𝑖𝑖𝑖)),

Proposition 5. If hypotheses 𝐻0,𝐻1 hold, then  ≠ ∅ and for every 𝜆 ∈ , ∅ ≠ 𝑆𝜆 ⊆ int 𝐶+.

Proof. Using �̄�𝜓 ∈ int 𝐶+ from (13), we introduce the Carathéodory function 𝑘𝜆(𝑧, 𝑥) defined by

𝑘𝜆(𝑧, 𝑥) =

{

𝜆(�̄�𝜓 (𝑧)−𝜂 + �̄�𝜓 (𝑧)𝜏−1) + 𝑓 (𝑧, 𝑥+) if 𝑥 < �̄�𝜓 (𝑧),
𝜆(𝑥−𝜂 + 𝑥𝜏−1) + 𝑓 (𝑧, 𝑥) if �̄�𝜓 (𝑧) < 𝑥.

(14)

We set 𝐾𝜆(𝑧, 𝑥) = ∫ 𝑥0 𝑘𝜆(𝑧, 𝑠)d𝑠 and consider the functional 𝜓𝜆 ∶ 𝑊
1,𝑝
0 (𝛺) → R defined by

𝜓𝜆(𝑢) =
1
𝑝
𝜌𝛼1 ,𝑝(𝐷𝑢) +

1
𝑞
𝜌𝛼2 ,𝑞(𝐷𝑢) − ∫𝛺

𝐾𝜆(𝑧, 𝑢)d𝑧 for all 𝑢 ∈ 𝑊 1,𝑝
0 (𝛺).

We know that 𝜓𝜆 ∈ 𝐶1(𝑊 1,𝑝
0 (𝛺)) (see Papageorgiou, Smyrlis ([31], Proposition 3)).

laim 1. For every 𝜆 > 0, the functional 𝜓𝜆(⋅) satisfies the 𝐶-condition.

We consider a sequence {𝑢𝑛}𝑛∈N ⊆ 𝑊
1,𝑝
0 (𝛺) such that {𝜓𝜆(𝑢𝑛)}𝑛∈N ⊆ R is bounded and (1+‖𝑢𝑛‖𝜓 ′

𝜆(𝑢𝑛) → 0 in 𝑊 −1,𝑝′(𝛺) = 𝑊 1,𝑝
0 (𝛺)∗

as 𝑛→ ∞. We have

⟨𝜓 ′
𝜆(𝑢𝑛), ℎ⟩ ≤

𝜖𝑛‖ℎ‖
1 + ‖𝑢𝑛‖

for all ℎ ∈ 𝑊 1,𝑝
0 (𝛺), all 𝑛 ∈ N,with 𝜖𝑛 → 0+. (15)

In (15) we use the test function ℎ = −𝑢−𝑛 ∈ 𝑊 1,𝑝
0 (𝛺). From (14) and hypotheses 𝐻0, we have

𝑐‖𝐷𝑢−𝑛 ‖
𝑝
𝑝 ≤ 𝜖𝑛 for all 𝑛 ∈ N,

⇒ 𝑢− → 0 in 𝑊 1,𝑝(𝛺) as 𝑛→ ∞. (16)
𝑛 0

8 



N.S. Papageorgiou et al.

I

Nonlinear Analysis: Real World Applications 81 (2025) 104225 
We will show that {𝑢+𝑛 }𝑛∈N ⊆ 𝑊
1,𝑝
0 (𝛺) is bounded. If this is not true, then we may assume that ‖𝑢+𝑛 ‖ → ∞. Let 𝑦𝑛 =

𝑢+𝑛
‖𝑢+𝑛 ‖

𝑛 ∈ N.
Then ‖𝑦𝑛‖ = 1, 𝑦𝑛 ≥ 0 for all 𝑛 ∈ N. So, we may assume that

𝑦𝑛
𝑤
←←←←←←←←→ 𝑦 in 𝑊 1,𝑝

0 (𝛺), 𝑦𝑛 → 𝑦 in 𝐿𝑝(𝛺). (17)

From (15), we have

|⟨𝐴𝛼1𝑝 (𝑢𝑛), ℎ⟩ + ⟨𝐴𝛼2𝑝 (𝑢𝑛), ℎ⟩ − ∫𝛺
𝑘𝜆(𝑧, 𝑢𝑛)ℎd𝑧| ≤

𝜖𝑛‖ℎ‖
1 + ‖𝑢𝑛‖

for all ℎ ∈ 𝑊 1,𝑝
0 (𝛺), all 𝑛 ∈ N,

⇒|⟨𝐴𝛼1𝑝 (𝑦𝑛), ℎ⟩ +
1

‖𝑢+𝑛 ‖𝑝−𝑞
⟨𝐴𝛼2𝑞 (𝑦𝑛), ℎ⟩ − ∫{𝑢+𝑛 ≤�̄�𝜓 }

𝜆[�̄�−𝜂𝜓 + �̄�𝜏−1𝜓 ]

‖𝑢+𝑛 ‖𝑝−1
ℎd𝑧

− ∫{�̄�𝜓<𝑢+𝑛 }

𝜆[(𝑢+𝑛 )
−𝜂 + (𝑢+𝑛 )

𝜏−1]
‖𝑢+𝑛 ‖𝑝−1

ℎd𝑧 − ∫𝛺
𝐹 (𝑧, 𝑢+𝑛 )d𝑧| ≤ 𝜖′𝑛‖ℎ‖

(18)

for all ℎ ∈ 𝑊 1,𝑝
0 (𝛺), all 𝑛 ∈ N, with 𝜖′𝑛 → 0+ (see (14), (16)).

Since �̄�𝜓 ∈ int 𝐶+, we can find 𝑐5 > 0 such that 𝑐5𝑑 ≤ �̄�𝜓 (see Guo, Webb [32]). We have

∫{𝑢+𝑛 ≤�̄�𝜓 }
𝜆|ℎ|
�̄�𝜂𝜓

d𝑧 ≤ ∫𝛺
𝜆|ℎ|
�̄�𝜂𝜓

d𝑧

≤ 𝜆∫𝛺
�̄�1−𝜂𝜓

|ℎ|
�̄�𝜓

d𝑧

≤ 𝜆𝑐6 ∫𝛺
|ℎ|
�̄�𝜓

d𝑧 for some 𝑐6 > 0 (recall �̄�𝜓 ∈ int 𝐶+)

≤ 𝜆
𝑐6
𝑐5 ∫𝛺

|ℎ|
𝑑

d𝑧

≤ 𝜆𝑐7‖𝐷ℎ‖𝑝 for some 𝑐7 > 0 (see Proposition 1, Hardy’s inequality)

⇒
1

‖𝑢+𝑛 ‖𝑝−1 ∫{𝑢+𝑛 ≤�̄�𝜓 }
𝜆|ℎ|
�̄�𝑛𝜓

d𝑧→ 0 as 𝑛→ ∞.

(19)

Also
1

‖𝑢+𝑛 ‖𝑝−1 ∫{�̄�𝜓<𝑢+𝑛 }
𝜆|ℎ|
(𝑢+𝑛 )𝜂

d𝑧 ≤ 1
‖𝑢+𝑛 ‖𝑝−1 ∫{�̄�𝜓<𝑢+𝑛 }

𝜆|ℎ|
�̄�𝜂𝜓

d𝑧

≤ 1
‖𝑢+𝑛 ‖𝑝−1 ∫𝛺

𝜆|ℎ|
�̄�𝜂𝜓

d𝑧→ 0 as 𝑛 → ∞.
(20)

In addition, note that
1

‖𝑢+𝑛 ‖𝑝−1 ∫{𝑢+𝑛 ≤�̄�𝜓 }
𝜆�̄�𝜏−1𝜓 ℎd𝑧→ 0 as 𝑛→ ∞, (21)

1
‖𝑢+𝑛 ‖𝑝−1 ∫{�̄�𝜓<𝑢+𝑛 }

𝜆(𝑢+𝑛 )
𝜏−1
𝜓 ℎd𝑧→ 0 as 𝑛→ ∞. (22)

Hypotheses 𝐻1(𝑖), (𝑖𝑖) imply that

|𝑓 (𝑧, 𝑥)| ≤ �̂�0(𝑧)(1 + 𝑥𝑝−1)| for a.a. 𝑧 ∈ 𝛺, all 𝑥 ≥ 0,with �̂�0 ∈ 𝐿∞(𝛺).

f follows that
{𝑓 (⋅, 𝑢+𝑛 (⋅))

‖𝑢+𝑛 ‖𝑝−1

}

𝑛∈N
⊆ 𝐿𝑝

′
(𝛺) is bounded. (23)

If in (18) we choose the test function ℎ = 𝑦𝑛 − 𝑦 ∈ 𝑊 1,𝑝
0 (𝛺), pass to the limit as 𝑛→ ∞ and use (19) → (23), we obtain

lim
𝑛→∞

⟨𝐴𝛼1𝑝 (𝑦𝑛), 𝑦𝑛 − 𝑦⟩ = 0 (recall 𝑞 < 𝑝, ‖𝑢+𝑛 ‖ → ∞)

⇒𝑦𝑛 → 𝑦 in 𝑊 1,𝑝
0 (𝛺),hence ‖𝑦‖ = 1, 𝑦 ≥ 0 (see Proposition 3).

(24)

From (23) and hypotheses 𝐻1(𝑖𝑖), we see that we may assume that (see Aizicovici, Papageorgiou, Staicu [33], proof of Proposition
16)

𝑓 (⋅, 𝑢+𝑛 (⋅))
‖𝑢+𝑛 ‖𝑝−1

𝑤
←←←←←←←←→ 𝜂∗(⋅)𝑦𝑝−1 in 𝐿𝑝

′
(𝛺) with 𝜂(𝑧) ≤ 𝜂∗(𝑧) ≤ �̂�(𝑧) for a.a. 𝑧 ∈ 𝛺, (25)

Note that on {𝑦 > 0} we have 𝑢+𝑛 (𝑧) → +∞ and 𝛺 = {𝑦 > 0} ∪ {𝑦 = 0} (see (24)). Therefore if in (18) we pass to the limit as
𝑛→ ∞ and use (19) → (22), (24) and (25), we obtain

⟨𝐴𝛼1𝑝 (𝑦), ℎ⟩ = ∫𝛺
𝜂∗(𝑧)𝑦𝑝−1ℎd𝑧 for all 𝑊 1,𝑝

0 (𝛺),

𝛼 𝑝−1
(26)
⇒ − 𝛥𝑝𝑦(𝑧) = 𝜂∗(𝑧)𝑦(𝑧) in 𝛺, 𝑦|𝜕𝛺 = 0.
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We know that

�̃�𝛼1 (𝑝, 𝜂∗) < �̃�
𝛼
1 (𝑝, �̂�

𝛼1
1 (𝑝)) = 1.

o, from (26) it follows that 𝑦 = 0 or 𝑦 is nodal (sign changing).
Both possibilities contradict (24). So, we infer that

{𝑢+𝑛 }𝑛∈N ⊆ 𝑊
1,𝑝
0 (𝛺) is bounded,

⇒{𝑢𝑛}𝑛∈N ⊆ 𝑊
1,𝑝
0 (𝛺) is bounded (see (16)).

We may assume that

𝑢𝑛
𝑤
←←←←←←←←→ 𝑢 in 𝑊 1,𝑝

0 , 𝑢𝑛 → 𝑢 in 𝐿𝑝(𝛺).

From (15) we have

|⟨𝑉 (𝑢𝑛), 𝑢𝑛 − 𝑢⟩ − ∫𝛺
𝑘𝜆(𝑧, 𝑢𝑛)(𝑢𝑛 − 𝑢)d𝑧| ≤ 𝜖′′𝑛 for all 𝑛 ∈ N,with 𝜖′′𝑛 → 0+.

Note that ∫𝛺 𝑘𝜆(𝑧, 𝑢𝑛)(𝑢𝑛 − 𝑢)d𝑧→ 0 (see (14)). Hence

lim
𝑛→∞

⟨𝑉 (𝑢𝑛), (𝑢𝑛 − 𝑢)⟩ = 0,

⇒𝑢𝑛 → 𝑢 in 𝑊 1,𝑝
0 (𝛺).

Therefore 𝜓𝜆(⋅) satisfies the 𝐶-condition and this proves Claim 1.

Claim 2. There exists �̃� > 0 such that for all 𝜆 ∈ (0, �̃�) we can find 𝜌 = 𝜌(𝜆) > 0 so that

𝜓𝜆(𝑢) ≥ 𝑚𝜆 > 0 for all ‖𝑢‖ = 𝜌.

Given 𝜖 > 0 and 𝑟 ∈ (𝑝, 𝑝∗), on account of hypotheses 𝐻1(𝑖), (𝑖𝑖), (𝑖𝑖𝑖) we can find 𝑐8 = 𝑐8(𝜖, 𝑟) > 0 such that

𝐹 (𝑧, 𝑥) ≤ 1
𝑞
[𝜃(𝑧) + 𝜖]𝑥𝑞 + 𝑐8𝑥𝑟 for a.a. 𝑧 ∈ 𝛺, all 𝑥 ≥ 0. (27)

sing (14), we have

𝜓𝜆(𝑢) =
1
𝑝
𝜌𝛼1 ,𝑝(𝐷𝑢) +

1
𝑞
𝜌𝛼2 ,𝑞(𝐷𝑢) − ∫{𝑢≤�̄�𝜓 }

𝜆(�̄�−𝜂𝜓 + �̄�𝜏−1𝜓 )𝑢d𝑧

− 𝜆
1 − 𝜂 ∫{�̄�𝜓<𝑢}

(𝑢1−𝜂 − �̄�1−𝜂𝜓 )d𝑧 − 𝜆∫{�̄�𝜓<𝑢}
�̄�1−𝜂𝜓 d𝑧

− 𝜆
𝜏 ∫{�̄�𝜓<𝑢}

(𝑢𝜏 − �̄�𝜏𝜓 )d𝑧 − 𝜆∫{�̄�𝜓<𝑢}
�̄�𝜏𝜓d𝑧 − ∫𝛺

𝐹 (𝑧, 𝑢+)d𝑧.

(28)

Using the fact that �̄�𝜓 ∈ int 𝐶+ and Hardy’s inequality (see Proposition 1), as before, we show that

− 𝜆∫{𝑢≤�̄�𝜓 }
�̄�−𝜂𝜓 𝑢 ≥ −𝜆𝑐9‖𝑢‖ for some 𝑐9 > 0. (29)

Also, we have

− 𝜆
1 − 𝜂 ∫{�̄�𝜓<𝑢}

𝑢1−𝜂d𝑧 ≥ −𝜆𝑐10‖𝑢‖1−𝜂 for some 𝑐10 > 0. (30)

(see Theorem 13.17 of Hewitt-Stromberg [34, p. 196]),

− 𝜆∫{�̄�𝜓<𝑢}
�̄�1−𝜂𝜓 d𝑧 ≥ −𝜆∫{�̄�𝜓<𝑢}

𝑢1−𝜂d𝑧 ≥ −𝜆𝑐11‖𝑢‖1−𝜂 for some 𝑐11 > 0 (as above). (31)

In addition we have

− 𝜆∫{𝑢≤�̄�𝜓 }
�̄�𝜏−1𝜓 𝑢d𝑧 ≥ −𝜆𝑐12‖𝑢‖ for some 𝑐12 > 0 (since �̄�𝜓 ∈ int 𝐶+), (32)

− 𝜆
𝜏 ∫{�̄�𝜓<𝑢}

𝑢𝜏d𝑧 ≥ −𝜆𝑐13‖𝑢‖𝜏 for some 𝑐13 > 0, (33)

− 𝜆∫{�̄�𝜏𝜓<𝑢}
�̄�𝜏𝜓d𝑧 ≥ −𝜆∫{�̄�𝜏𝜓<𝑢}

𝑢𝜏𝜓d𝑧 − 𝜆𝑐14‖𝑢‖
𝜏 for some 𝑐14 > 0. (34)

Finally using (27), we see that

− 𝐹 (𝑧, 𝑢+)d𝑧 ≥ −1 (𝜃(𝑧) + 𝜖)|𝑢|𝑞d𝑧 − 𝑐15‖𝑢‖𝑟 for some 𝑐15 > 0. (35)
∫𝛺 𝑞 ∫𝛺
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We return to (28) and use (29) → (35). Assuming that ‖𝑢‖ ≤ 1, we have

𝜓𝜆(𝑢) ≥𝑐‖𝑢‖𝑝 +
1
𝑞

[

𝑝𝛼2 ,𝑞(𝐷𝑢) − ∫𝛺
𝜃(𝑧)|𝑢|𝑞d𝑧 −

𝜖‖𝛼2‖∞
�̂�𝛼21 (𝑞)

‖𝐷𝑢‖𝑞𝑞

]

− 𝜆𝑐16‖𝑢‖
1−𝜂 − 𝑐15‖𝑢‖𝑟 for some 𝑐16 > 0

(see (3) and note that ‖𝑢‖ ≤ 1 ⇒ ‖𝑢‖𝜏 ≤ ‖𝑢‖ ≤ ‖𝑢‖1−𝜂)

≥𝑐‖𝑢‖𝑝 + 1
𝑞

[

𝑐17 −
𝜖‖𝛼2‖∞
�̂�𝛼21 (𝑞)

]

‖𝐷𝑢‖𝑞𝑞 − 𝜆𝑐16‖𝑢‖
1−𝜂 − 𝑐15‖𝑢‖𝑟

for some 𝑐17 > 0 (see Proposition 2).

Choosing 𝜖 ∈
(

0,
�̂�𝛼21 (𝑞)𝑐17
‖𝛼2‖∞

)

we obtain

𝜓𝜆(𝑢) ≥𝑐‖𝑢‖𝑝 − 𝑐18(𝜆‖𝑢‖1−𝜂 + ‖𝑢‖𝑟) with 𝑐18 = max{𝑐16, 𝑐15} > 0

=[𝑐 − 𝑐18(𝜆‖𝑢‖1−𝜂−𝑝 + ‖𝑢‖𝑟−𝑝)]‖𝑢‖𝑝.
(36)

Let 𝛽𝜆(𝑡) = 𝜆𝑡1−𝜂−𝑝 + 𝑡𝑟−𝑝 for all 𝑡 > 0. Since 0 < 𝜂 < 1 < 𝑝 < 𝑟, we see that

𝛽𝜆(𝑡) → +∞ as 𝑡 → 0+ and as 𝑡→ +∞

Note that 𝛽𝜆 ∈ 𝐶1(R+) with R+ = (0,∞). So, we can find 𝑡0 > 0 such that

𝛽𝜆(𝑡0) = inf
𝑡>0

𝛽𝜆(𝑡),

⇒𝛽′𝜆(𝑡0) = 0,

⇒(1 − 𝜂 − 𝑝)𝜆𝑡−(𝑝+𝜂)0 + (𝑟 − 𝑝)𝑡𝑟−𝑝−10 = 0,

⇒𝑡0 = 𝑡0(𝜆) =
(

𝜆(𝑝 + 𝜂 − 1)
𝑟 − 𝑝

)
1

𝑟+𝜂−1
.

(37)

Then we have

𝛽𝜆(𝑡0) = 𝜆
(

𝑟 − 𝑝
𝜆(𝑝 + 𝜂 − 1)

)
𝑝+𝜂−1
𝑟+𝜂−1

+
(

𝜆(𝑝 + 𝜂 − 1)
𝑟 − 𝑝

)
𝑟−𝑝
𝑟+𝜂−1

ince 𝑝+𝜂−1
𝑟+𝜂−1 < 1, we see that

𝛽𝜆(𝑡0) → 0+ as 𝜆 → 0+. (38)

Let 𝜆0 > 0 such that

𝑡0 = 𝑡0(𝜆) ≤ 1 for all 0 < 𝜆 ≤ 𝜆0 (see (37)).

Then on account of (38), we see that we can find �̃� ∈ (0, 𝜆0] such that

0 < 𝛽𝜆(𝑡0) <
𝑐
𝑐18

for all 0 < 𝜆 < �̃�. (39)

From (36) and (39) it follows that

𝜓𝜆(𝑢) ≥ 𝑚𝜆 > 0 for all ‖𝑢‖ = 𝜌 = 𝑡0(𝜆) ≤ 1.

his proves Claim 2.
Hypotheses 𝐻1(𝑖), (𝑖𝑖) imply that given 𝜖 > 0, we can find 𝑐19 = 𝑐19(𝜖) > 0 such that

𝐹 (𝑧, 𝑥) ≥ 1
𝑝
(𝜂(𝑧) − 𝜖)𝑥𝑝 − 𝑐19 for a.a. 𝑧 ∈ 𝛺, all 𝑥 ≥ 0. (40)

Then for 𝑡 > 1, we have

𝜓𝜆(𝑡�̂�1(𝑝)) ≤
𝑡𝑞

𝑞

(

∫𝛺
[𝜆1

𝛼1 (𝑝) − 𝜂(𝑧)]�̂�1(𝑝)𝑝d𝑧 − 𝜖
)

+ 𝑡𝑞

𝑞
𝜌𝛼2 ,𝑞(𝐷�̂�1(𝑝))

− 𝜆𝑡∫{�̂�1(𝑝)≤�̄�𝜓 }
(�̄�−𝜂𝜓 + �̄�𝜏−1𝜓 )�̂�1(𝑝)d𝑧

− 𝜆𝑡1−𝜂 ∫{�̄�𝜓<�̂�1(𝑝)}
(𝑢1(𝑝)1−𝜂 + �̂�1(𝑝)𝜏d𝑧) + 𝑐20

for some 𝑐20 = 𝑐20(𝜆) > 0 (recall ‖�̂�1(𝑝)‖𝑝 = 1).

(41)

Recalling that �̂�1(𝑝) ∈ int 𝐶+, we see that

𝜉 = [𝜂(𝑧) − �̂�𝛼1(𝑝)]�̂�1(𝑝)𝑝d𝑧 > 0.
∫𝛺 1
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So choosing 𝜖 ∈ (0, 𝜉), from (41) we see that

𝜓𝜆(𝑡�̂�1(𝑝)) ≤ −𝑐21𝑡𝑝 + 𝑐22𝑡𝑞 − 𝜆𝑐23𝑡1−𝜂

for some 𝑐21, 𝑐22, 𝑐23 > 0 (recall 𝑡 > 1, 𝜂 < 1),

⇒𝜓𝜆(𝑡�̂�1(𝑝)) → −∞ (since 1 − 𝜂 < 1 < 𝑞 < 𝑝).

(42)

Then (42) together with Claims 1 and 2, permit the use of the Mountain Pass Theorem. So, we can find 𝑢𝜆 ∈ 𝑊 1,𝑝
0 (𝛺) (0 < 𝜆 < �̃�)

such that

𝑢𝜆 ∈ 𝐾𝜓𝜆 and 𝜓𝜆(0) = 0 < 𝑚𝜆 ≤ 𝜓𝜆(𝑢𝜆).

Therefore 𝑢𝜆 ≠ 0 and we have

⟨𝑉 (𝑢𝜆), ℎ⟩ = ∫𝛺
𝑘𝜆(𝑧, 𝑢𝜆)ℎd𝑧 for all ℎ ∈ 𝑊 1,𝑝

0 (𝛺). (43)

In (43) above we use the test function ℎ = (�̄�𝜓 − 𝑢𝜆)+ ∈ 𝑊 1,𝑝
0 (𝛺). Note that on {𝑢𝜆 ≤ �̄�𝜓} we have 𝑓 (𝑧, 𝑢𝜆(𝜏)) ≥ 0 for a.a. 𝑧 ∈ 𝛺

(see (13) and hypothesis 𝐻1(𝑖𝑖𝑖)). Therefore using (14), we have

⟨𝑉 (𝑢𝜆), (�̄�𝜓 − 𝑢𝜆)+⟩

=∫𝛺
(𝜆(�̄�−𝜂𝜓 + �̄�𝜏−1𝜓 ) + 𝑓 (𝑧, 𝑢𝜆))(�̄�𝜓 − 𝑢𝜆)+d𝑧

≥∫𝛺
𝜆�̄�−𝜂𝜓 (�̄�𝜓 − 𝑢𝜆)+d𝑧

=⟨𝑉 (�̄�𝜓 ), (�̄�𝜓 − 𝑢𝜆)+⟩ (see Proposition 4),
⇒⟨𝑉 (𝑢𝜆) − 𝑉 (�̄�𝜓 ), (�̄�𝜓 − 𝑢𝜆)+⟩ ≥ 0,

⇒�̄�𝜓 ≤ 𝑢𝜆.

(44)

From (44), (14) and (43), we infer that

𝑢𝜆 ∈ 𝑆𝜆 for all 0 < 𝜆 < �̃�,
=(0, �̃�) ⊆  ≠ ∅.

Next we show that for 𝜆 ∈ , we have ∅ ≠ 𝑆𝜆 ⊆ int 𝐶+. To this end, we consider the following parametric purely singular Dirichlet
problem

− 𝛥𝛼1𝑝 𝑢(𝑧) − 𝛥
𝛼2
𝑞 𝑢(𝑧) = 𝜃𝑢(𝑧)−𝜂 in 𝛺, 𝑢|𝜕𝛺 = 0, 𝑢 > 0, 𝜃 > 0. (45)

From Papageorgiou, Zhang [35] (see the proof of Proposition 3.5), we know that (45) has a unique solution �̃�𝜃 ∈ int 𝐶+, {�̃�𝜃}𝜃>0
is nondecreasing and �̃�𝜃 → 0 in 𝐶1

0 (�̄�) as 𝜃 → 0+. We choose 𝜃 ∈ (0, 1) small such that

0 ≤ �̃�𝜃(𝑧) ≤ 𝛿 for all 𝑧 ∈ �̄� (46)

(𝛿 > 0 as in hypothesis 𝐻1(𝑖𝑖𝑖)). Suppose that 𝑢 ∈ 𝑆𝜆. We have

⟨𝑉 (𝑢), (�̃�𝜃 − 𝑢)+⟩

=∫𝛺
[𝜆(𝑢−𝜂 + 𝑢𝜏−1) + 𝑓 (𝑧, 𝑢)](�̃�𝜃 − 𝑢)+d𝑧

≥∫𝛺
𝜆𝑢−𝜂(�̃�𝜃 − 𝑢)+d𝑧 (since 𝑓 (𝑧, 𝑢) ≥ 0 on {𝑢 ≤ �̃�𝜃}) see (46) and 𝐻1(𝑖𝑖𝑖)

≥∫𝛺
𝜆�̃�−𝜂𝜃 (�̃�𝜃 − 𝑢)+d𝑧

=⟨𝑉 (�̃�𝜃), (�̃�𝜃 − 𝑢)+⟩,

⇒⟨𝑉 (�̃�𝜃) − 𝑉 (𝑢), (�̃�𝜃 − 𝑢)+⟩ ≤ 0,

⇒�̃�𝜃 ≤ 𝑢.

(47)

From Marino, Winkert [27], we know that 𝑢 ∈ 𝐿∞(𝛺). Therefore we have
|𝜆(𝑢−𝜂 + 𝑢𝜏−1) + 𝑓 (𝑧, 𝑢)| ≤ 𝜆𝑢−𝜂 + (𝜆 + 1)𝑐24 for some 𝑐24 > 0 (see hypothesis 𝐻1(𝑖𝑖))

≤ 𝜆�̃�−𝜂𝜃 + (𝜆 + 1)𝑐24 (see (47))
≤ 𝜆𝑐25𝑑

−𝜂 + (𝜆 + 1)𝑐24 for some 𝑐25 (since �̃�𝜃 ∈ int 𝐶+)

≤ 𝜆𝑐26𝑑
−𝜂 for some 𝑐26 > 0.

So, we can apply Theorem 1.7 of Giacomoni, Kumar, Sreenadh [36] and infer that 𝑢 ∈ 𝐶+∖{0}. Let 𝜌 = ‖𝑢‖∞ and let 𝜉𝜌 > 0 be
as postulated by hypothesis 𝐻1(𝑖𝑣). Then

− 𝛥𝛼1𝑝 𝑢(𝑧) − 𝛥
𝛼2
𝑞 𝑢(𝑧) + 𝜉𝜌𝑢(𝑧)𝑝−1 − 𝜆𝑢(𝑧)−𝜂

𝜏−1 𝑝−1
=𝜆𝑢(𝑧) + 𝑓 (𝑧, 𝑢(𝑧)) + 𝜉𝑢(𝑧) ≥ 0 in 𝛺.

12 
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Then Proposition A2 of Papageorgiou, Rădulescu, Zhang [37] implies that 𝑢 ∈ int 𝐶+. Therefore finally we conclude that for all
𝜆 ∈ , ∅ ≠ 𝑆𝜆 ⊆ int 𝐶+. □

Remark 4. In the above proof, we used twice that if 𝑢 ∈ int 𝐶+, then for some 𝑐 > 0, 𝑐𝑑 ≤ 𝑢 and we referred to Guo, Webb [32].
ere we provide a different proof of this fact. By Lemma 14.16 of Gilbarg-Trudinger [38, p. 355], we have that there exists 𝛽 ∈ (0, 1)

such that 𝑑 ∈ 𝐶2(�̄�𝛽 ) with 𝛺𝛽 = {𝑧 ∈ 𝛺 ∶ 𝑑(𝑧) < 𝛽}. Since 𝑢 ∈ int 𝐶+, using Proposition 4.1.22, p. 274, of [20], we can find 𝑐1 > 0
uch that 𝑐1𝑑 ≤ 𝑢 on 𝛺𝛽 . On �̂�𝛽 = 𝛺∖𝛺𝛽 , we have 𝑑, 𝑢 ∈ int 𝐿∞(𝛺)+ (𝐿∞(𝛺)+ being the order cone of 𝐿∞(𝛺)), so we can find 𝑐2 > 0
uch that 𝑐2𝑑 ≤ 𝑢 in �̂�𝛽 . Therefore if 𝑐∗ = min{𝑐1, 𝑐2}, then 𝑐∗𝑑 ≤ 𝑢 on �̄�. In fact since 𝑑 belongs in the interior of the order cone of
̂1(�̄�𝛽 ) = {𝑢 ∈ 𝐶1(�̄�𝛽 ) ∶ 𝑢|𝜕𝛺=0}, then we can find 𝑐∗ > 0 such that 𝑢 ≤ 𝑐∗𝑑 on �̄�, this is, 𝑐∗𝑑 ≤ 𝑢 ≤ 𝑐∗𝑑 on �̄�.

Proposition 5 remains true if hypotheses 𝐻1 are replaced by 𝐻 ′
1 (superlinear case).

roposition 6. If hypotheses 𝐻0, 𝐻 ′
1 hold, then  ≠ 𝜙 and for all 𝜆 ∈ , ∅ ≠ 𝑆𝜆 ⊆ int 𝐶+.

Proof. The proof remains the same as that of Proposition 5. The only part that changes is Claim 1 in that proof, where we show
that 𝜓𝜆(⋅) satisfies the C-condition. In this case the proof goes as follows:

Claim. 𝜓𝜆(⋅) satisfies the C-condition.

We consider a sequence
{

𝑢𝑛
}

𝑛∈N ⊆ 𝑊
1,𝑝
0 (𝛺) such that

|

|

|

𝜓𝜆
(

𝑢𝑛
)

|

|

|

⩽𝑀 for some 𝑀 > 0, all 𝑛 ∈ N, (48)

(1 + ‖

‖

𝑢𝑛‖‖)𝜓
′
𝜆
(

𝑢𝑛
)

→ 0 in 𝑊 −1,𝑝′ (𝛺) = 𝑊 1,𝑝
0 (𝑛)∗ as 𝑛→ ∞. (49)

From (49) we have
|

|

|

|

⟨

𝑉
(

𝑢𝑛
)

, ℎ
⟩

− ∫𝛺
𝑘𝜆

(

𝑧, 𝑢𝑛
)

ℎd𝑧
|

|

|

|

⩽
𝜀𝑛‖ℎ‖

1 + ‖

‖

𝑢𝑛‖‖
for all ℎ ∈ 𝑊 1,𝑝

0 (𝛺), with 𝜀𝑛 → 0+. (50)

n (50) we use the test function ℎ = 𝑢−𝑛 ∈ 𝑊 1,𝑝
0 (𝛺) and obtain

𝑢−𝑛 → 0 in 𝑊 1,𝑝
0 (𝛺) as 𝑛→ ∞. (51)

rom (48) and (51), we infer that

𝜌𝛼1 ,𝑝
(

𝐷𝑢+𝑛
)

+
𝑝
𝑞
𝜌𝛼2 ,𝑞

(

𝐷𝑢+𝑛
)

− ∫𝛺
𝑝𝐾𝜆

(

𝑧, 𝑢+𝑛
)

𝑢+𝑛 d𝑧 ⩽ �̂� for some �̂� > 0, all 𝑛 ∈ N. (52)

lso, if in (50) we choose the test function ℎ = 𝑢+𝑛 ∈ 𝑊 1,𝑝
0 (𝛺), then

− 𝜌𝛼1 ,𝑝
(

𝐷𝑢+𝑛
)

− 𝜌𝛼2 ,𝑞
(

𝐷𝑢+𝑛
)

+ ∫𝛺
𝑘𝜆

(

𝑧, 𝑢+𝑛
)

𝑢+𝑛 d𝑧 ⩽ 𝜖𝑛 for some 𝑀0 > 0, all 𝑛 ∈ N. (53)

We add (52), (53) and obtain

∫𝛺

[

𝑘𝜆
(

𝑧, 𝑢+𝑛
)

𝑢+𝑛 − 𝑝𝐾𝜆
(

𝑧, 𝑢+𝑛
)]

d𝑧 ⩽𝑀0 for some 𝑀0 > 0, all 𝑛 ∈ N( recall 𝑞 < 𝑝),

⇒∫𝛺

[

𝑓
(

𝑧, 𝑢+𝑛
)

𝑢+𝑛 − 𝑝𝐹
(

𝑧, 𝑢𝑟𝑛
)

d𝑧
]

⩽𝑀𝜆[‖‖𝑢
+
𝑛
‖

‖

𝜏
𝜏 + 1] for some 𝑀𝜆 > 0, all 𝑛 ∈ N.

(54)

n account of hypotheses 𝐻 ′
1(𝑖), (𝑖𝑖), we can find 𝛽0 ∈ (0, 𝛽) and 𝑐27 > 0 such that

𝛽0𝑥
𝑠 − 𝑐27 ⩽ 𝑓 (𝑧, 𝑥)𝑥 − 𝑝𝐹 (𝑧, 𝑥) for a.a. 𝑧 ∈ 𝛺, all 𝑥 ⩾ 0. (55)

Note that we can always assume that 𝑟 ∈ (𝑝, 𝑝∗) in hypothesis 𝐻 ′
1(𝑖) is close to 𝑝∗. So, from hypothesis 𝐻 ′

1(𝑖𝑖), we see that 𝜏 < 𝑠.
hen using (55) in (54), we obtain that

{

𝑢+𝑛
}

𝑛∈N ≤ 𝐿𝑠(𝛺) ⊆ is bounded. (56)

From hypothesis 𝐻 ′
1(𝑖𝑖), it is clear that we can always assume that 𝑠 < 𝑟 < 𝑝∗. First suppose 𝑝 ≠ 𝑁 and recall that if 𝑁 < 𝑝, then

∗ = ∞. We can find 𝑡 ∈ (0, 1), such that
1
𝑟
= 1 − 𝑡

𝑠
+ 1
𝑝∗
. (57)

Using the interpolation inequality (see Hu, Papageorgiou [10], p. 82), we have

‖𝑢+‖ ⩽ ‖𝑢+‖
1− 1

𝑡
‖𝑢+‖

1
𝑡 ,
‖ 𝑛 ‖𝑟 ‖ 𝑛 ‖𝑠 ‖ 𝑛 ‖𝑝∗
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⇒ ‖

‖

𝑢+𝑛 ‖‖
𝑟
𝑟 ⩽ 𝑐28 ‖‖𝑢

+
𝑛
‖

‖

𝑡𝑟 for some 𝑐28 > 0, all 𝑛 ∈ N. (58)

Here we have used (56) and the fact that 𝑊 1,𝑝
0 (𝛺) ↪ 𝐿𝑝∗ (𝛺) continuously (Sobolev embedding theorem).

In (50) we use the test function ℎ = 𝑢+𝑛 ∈ 𝑊 1,𝑝
0 (𝛺) and obtain

𝜌𝛼1 ,𝑝
(

𝐷𝑢+𝑛
)

+ 𝜌𝛼2 ,𝑞
(

𝐷𝑢+𝑛
)

− ∫𝛺
𝑘𝜆

(

𝑧, 𝑢+𝑛
)

𝑢+𝑛 d𝑧 ⩽ 𝜖𝑛 for all 𝑛 ∈ N,

⇒ 𝜌𝑎1,𝑝
(

𝐷𝑢+𝑛
)

+ 𝜌𝑎2,𝑞
(

𝐷𝑢+𝑛
)

− ∫{𝑢+𝑛 ⩽�̄�𝜓
}

𝜆
[

�̄�−𝜂𝜓 + �̄�𝜏−1𝜓

]

𝑢+𝑛 d𝑧

− ∫{�̄�𝜓<𝑢+𝑛 }

(

𝜆
1 − 𝜂

(

(𝑢+𝑛 )
1−𝜂 − �̄�1−𝜂𝜓

)

+ 𝜆
𝜏

(

(𝑢+𝑛 )
𝜏 − �̄�𝜏𝜓

)

)

d𝑧

− ∫{�̄�𝜓<𝑢+𝑛 }
𝜆
(

�̄�−𝜂𝜓 + �̄�𝜏−1𝜓

)

�̄�𝜓d𝑧

− ∫𝛺
𝑓
(

𝑧, 𝑢+𝑛
)

𝑢+𝑛 d𝑧 ≤ 𝜀𝑛 for all 𝑛 ∈ N (see (14)),

⇒ 𝑐 ‖
‖

𝑢+𝑛 ‖‖
𝑝 ⩽ 𝑐29

[

‖

‖

𝑢+𝑛 ‖‖ + ‖

‖

𝑢𝑛‖‖
1−𝜂 + ‖

‖

𝑢+𝑛 ‖‖
𝜏 + ‖

‖

𝑢+𝑛 ‖‖
𝑡𝑟 + 1

]

for some 𝑐29 > 0, all 𝑛 ∈ N
(

see (58) and 𝐻 ′
1(𝑖)

)

.

(59)

By hypotheses 𝐻0, we have 0 < 𝜂 < 1 < 𝜏 < 𝑞 < 𝑝 and from (57) and hypothesis 𝐻 ′
1(𝑖𝑖), we see that 𝑡𝑟 < 𝑝. So, from (59) we see

hat
{

𝑢+𝑛
}

𝑛∈N ⩽ 𝑊 1,𝑝
0 (𝛺) is bounded . (60)

Combining (60) and (51), we conclude that
{

𝑢𝑛
}

𝑛∈N ≤ 𝑊 1,𝑝
0 (𝛺) is bounded . (61)

Next, suppose that 𝑝 = 𝑁 . Then according to the Sobolev embedding theorem 𝑊 1,𝑝
0 (𝛺) ↪ 𝐿𝛾 (𝛺) continuously for all 𝛾 ∈ [1,∞).

hen let 𝑠 < 𝑟 < 𝛾 and choose 𝑡 ∈ (0, 1) such that
1
𝑟
= 1 − 𝑡

𝑠
+ 𝑡
𝛾
,

⇒𝑡𝑟 =
𝛾(𝑟 − 𝑠)
𝛾 − 𝑠

.

We see that
𝛾(𝑟 − 𝑠)
𝛾 − 𝑠

→ 𝑟 − 𝑠, as 𝛾 → +∞.

Hypothesis 𝐻 ′
1(𝑖𝑖) implies that 𝑟 − 𝑠 < 𝑝 (recall 𝑝 = 𝑁). So, the previous argument remains valid if we choose 𝛾 > 𝑟 large so that

𝑡𝑟 = 𝛾(𝑟−𝑠)
𝛾−𝑠 < 𝑝. Then we conclude that (61) holds.

On account of (61), we may assume that

𝑢𝑛
𝑤
←←←←←←←←→ 𝑢 in 𝑊 1,𝑝

0 (𝛺), 𝑢𝑛 → 𝑢 in 𝐿𝑟(𝛺) as 𝑛→ ∞. (62)

In (50) we use the test function ℎ = 𝑢𝑛 − 𝑢 ∈ 𝑊 1,𝑝
0 (𝛺) and pass to the limit as 𝑛→ ∞. Using (62), we see that

∫𝛺
𝑘𝜆(𝑧, 𝑢𝑛)(𝑢𝑛 − 𝑢)d𝑧→ 0 as 𝑛→ ∞,

⇒ lim
𝑛→∞

⟨

𝑉
(

𝑢𝑛
)

, 𝑢𝑛 − 𝑢
⟩

= 0,

⇒𝑢𝑛 → 𝑢 in 𝑊 1,𝑝
0 (𝛺).

This proves the claim.
The rest of the proof of Proposition 5 can be used unchanged. Only note that in this case on account of the superlinearity of

𝐹 (𝑧, ⋅), for any 𝑢 ∈ int 𝐶+, we have

𝜓𝜆(𝑡𝑢) → −∞ as 𝑡 → ∞

and so we can apply the Mountain Pass Theorem. □

Next we show that  is connected (an interval).

′
Proposition 7. If hypotheses 𝐻0 and 𝐻1 or 𝐻1 hold, 𝜆 ∈  and 0 < 𝛾 < 𝜆, then 𝛾 ∈ .
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Proof. since 𝜆 ∈ , we can have 𝑢𝜆 ∈ 𝑆𝜆 ⊆ int 𝐶+ (see Propositions 5 and 6). As before, we choose 𝜓 ∈ (0, 1) small such that

0 ≤ �̄�𝜓 (𝑧) ≤ min
{

𝛿, 𝑢𝜆(𝑧)
}

for all 𝑧 ∈ �̄�,

with 𝛿 > 0 as in hypothesis 𝐻1(𝑖𝑖𝑖) = 𝐻 ′
1(𝑖𝑖𝑖) and recall that 𝑢𝜆 ∈ int 𝐶+. We introduce the Carathéodory function �̂�𝛾 (𝑧, 𝑥) defined by

�̂�𝛾 (𝑧, 𝑥) =

⎧

⎪

⎨

⎪

⎩

𝛾
(

�̄�−𝜂𝜓 + �̄�𝜏−1𝜓

)

+ 𝑓
(

𝑧, �̄�𝜓
)

if 𝑥 < �̄�𝛾 (𝑧).

𝛾
(

𝑥−𝜂 + 𝑥𝜏−1
)

+ 𝑓 (𝑧, 𝑥) if �̄�𝜓 (𝑧) ≤ 𝑥 ≤ 𝑢𝜆(𝑧)
𝛾
(

𝑢−𝜂𝜆 + 𝑢𝜏−1𝜆
)

+ 𝑓
(

𝑧, 𝑢𝜆
)

if 𝑢𝜆(𝑧) < 𝑥.

(63)

We set �̂�𝛾 (𝑡, 𝑥) = ∫ 𝑥0 𝑘𝛾 (𝑧, 𝑠)d𝑠 and consider the 𝐶1 functional �̂�𝛾 ∶ 𝑊
1,𝑝
0 (𝛺) → R defined by (see [31])

�̂�𝛾 (𝑢) =
1
𝑝
𝜌𝑎1 ,𝑝(𝐷𝑢) +

1
𝑞
𝜌𝑎2 ,𝑞(𝐷𝑢) − ∫𝛺

�̂�𝛾 (𝑧, 𝑢)d𝑧 for all 𝑢 ∈ 𝑊 1,𝑝
0 (𝛺).

From (63) and hypotheses 𝐻0, we see �̂�𝛾 (⋅) is coercive. Also using the Sobolev embedding theorem, we see that �̂�𝛾 (⋅) is
sequentially weakly lower semicontinuous. So, by the Weierstrass–Tonelli theorem, we can find 𝑢𝛾 ∈ 𝑊 1,𝑝

0 (𝛺) such that

�̂�𝛾
(

𝑣𝛾
)

= inf
{

�̂�𝛾 (𝑢) ∶ 𝑢 ∈ 𝑊 1,𝑝
0 (𝛺)

}

,

⇒
⟨

�̂� ′
𝛾
(

𝑢𝛾
)

, ℎ
⟩

= 0 for all ℎ ∈ 𝑊 1,𝑝
0 (𝛺),

⇒
⟨

𝑉
(

𝑢𝛾
)

, ℎ
⟩

= ∫𝛺
�̂�𝛾

(

𝑧, 𝑢𝛾
)

ℎd𝑧 for all 𝑢 ∈ 𝑊 1,𝑝
0 (𝛺).

(64)

In (64) first we use the test function ℎ = (𝑢𝛾 − 𝑢𝜆)+ ∈ 𝑊 1,𝑝
0 (𝛺). Then we have

⟨

𝑉
(

𝑢𝛾
)

,
(

𝑢𝛾 − 𝑢𝜆
)+

⟩

=∫𝛺

[

𝛾
(

𝑢−𝜂𝜆 + 𝑢𝜏−1𝜆
)

+ 𝑓
(

𝑧, 𝑢𝜆
)] (

𝑢𝛾 − 𝑢𝜆
)+ d𝑧 (see (63))

≤∫𝛺

[

𝜆
(

𝑢−𝜂𝜆 + 𝑢𝜏−1𝜆
)

+ 𝑓
(

𝑧, 𝑢𝜆
)] (

𝑢𝛾 − 𝑢𝜆
)+ d𝑧 (since 𝛾 < 𝜆)

=⟨𝑉
(

𝑢𝜆
)

,
(

𝑢𝛾 − 𝑢𝜆
)+

⟩ (since 𝑢𝜆 ∈ 𝑆𝜆),

⇒𝑢𝛾 ⩽ 𝑢𝜆.

Next in (64) we choose the test function ℎ = (�̄�𝜓 − 𝑢𝛾 )+ ∈ 𝑊 1,𝑝
0 (𝛺). We have

⟨

𝑉
(

𝑢𝛾
)

,
(

�̄�𝜓 − 𝑢𝛾
)+

⟩

=∫𝛺

[

𝛾
(

�̄�−𝜂𝜓 + �̄�𝜏−1𝜓

)

+ 𝑓
(

𝑧, �̄�𝜓
)

]

(

�̄�𝜓 − 𝑢𝛾
)+ d𝑧

≥∫𝛺
𝛾�̄�𝜏−1𝛾

(

�̄�𝜓 − 𝑢𝛾
)+ d𝑧

(

since 𝑓
(

𝑧, �̄�𝜓
)

⩾ 0, see 𝐻1( iii ) = 𝐻 ′
1(𝑖𝑖𝑖)

)

=
⟨

𝑉
(

�̄�𝜓
)

,
(

�̄�𝜓 − 𝑢𝛾
)+

⟩

(see Proposition 4) ,

⇒�̄�𝛾 ≤ 𝑢𝛾 .

So, we have proved that

𝑢𝛾 ∈ [�̄�𝛾 , 𝑢𝜆]. (65)

From (65), (63) and (64), we infer that 𝑢𝛾 ∈ 𝑆𝛾 ≤ int 𝐶+ and so 𝛾 ∈ . □

An interesting byproduct of the above proof is the following corollary.

Corollary 1. If hypotheses 𝐻0 and 𝐻1 or 𝐻 ′
1 hold, 0 < 𝛾 < 𝜆 ∈  and 𝑢𝜆 ∈ 𝑆𝜆 ⊆ int 𝐶+, then 𝛾 ∈  and we can find 𝑢𝛾 ∈ 𝑆𝛾 ⊆ int 𝐶+,

such that 𝑢𝛾 ≤ 𝑢𝜆.

This corollary says that the solution multifunction  ∋ 𝜆 → 𝑆𝜆 exhibits a kind of a weak monotonicity property. We can improve
this monotonicity.

Proposition 8. If hypotheses 𝐻0 and 𝐻1 or 𝐻1
1 hold, 0 < 𝛾 < 𝜆 ∈  and 𝑢𝜆 ∈ 𝑆𝜆 ⊆ int 𝑆+, then 𝛾 ∈  and we can find 𝑢𝛾 ∈ 𝑆𝛾 ≤ int 𝐶+

such that
𝑢𝜆 − 𝑢𝛾 ∈ int 𝐶+.
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Proof. From Corollary 1 we already have that 𝛾 ∈  and there exists 𝑢𝛾 ∈ 𝑆𝛾 ⊆ int 𝐶+ such that 𝑢𝛾 ≤ 𝑢𝜆. Let 𝜌 = ‖

‖

𝑢𝜆‖‖∞ and let be
𝜉𝜌 > 0 as postulated by hypothesis 𝐻1(𝑖𝑣) = 𝐻 ′

1(𝑖𝑣). We have

− 𝛥𝑎1𝑝 𝑢𝛾 − 𝛥
𝑎2
𝑞 𝑢𝛾 + 𝜉𝜌𝑢𝑝−1𝛾 − 𝜆𝑢−𝜂𝛾

≤ 𝛾𝑢𝜏−1𝛾 + 𝑓
(

𝑧, 𝑢𝛾
)

+ 𝜉𝜌𝑢𝑝−1𝛾 ( since 𝛾 < 𝜆 and 𝑢𝛾 ∈ 𝑆𝛾 )

≤ 𝜆𝑢𝜏−1𝜆 + 𝑓
(

𝑧, 𝑢𝜆
)

+ 𝜉𝜌𝑢
𝑝−1
𝜆

= −𝛥𝑎1𝑝 𝑢𝜆 − 𝛥
𝑎2
𝑞 𝑢𝜆 + 𝜉𝜌𝑢

𝑝−1
𝜆 − 𝜆𝑢𝜂𝜆 in 𝛺 ( since 𝑢𝜆 ∈ 𝑆𝜆).

(66)

Since 𝑢𝛾 ∈ int 𝐶+, we see that 0 ≺ (𝜆 − 𝛾)𝑢𝜏−1𝛾 . So, from (66) and Proposition 7 of Papageorgiou, Rădulescu, Repovs [39], we
conclude that

𝑢𝜆 − 𝑢𝛾 ∈ int 𝐶+.

The proof is now complete. □

Let 𝜆∗ = sup.

Proposition 9. If hypotheses 𝐻0 and 𝐻1 or 𝐻 ′
1 hold, then 𝜆

∗ <∞.

Proof. Hypotheses 𝐻1 or 𝐻 ′
1 imply that there exist �̂� > 0 and 𝑐 ∈ (0, 1) such that

�̂�𝑥𝜏−1 + 𝑓 (𝑧, 𝑥) ≥ 𝑐𝑥𝑝−1 for a.a. 𝑧 ∈ 𝛺, all 𝑥 ≥ 0. (67)

Let 𝜆 > �̂� and suppose that 𝜆 ∈ . Then we can find 𝑢𝜆 ∈ 𝑆𝜆 ⊆ int 𝐶+. We consider �̂� ⊆ 𝛺 an open subset with 𝐶2-boundary
such that ̄̂𝛺 ⊆ 𝛺. Since 𝑢𝜆 ⊆ int 𝐶+, we have �̂�𝜆 = min�̄� 𝑢𝜆 > 0. For 𝜖 > 0 we set �̂�𝜖𝜆 = �̂�𝜆 + 𝜖. Let 𝜌 = ‖

‖

�̂�𝜆‖‖∞ and let 𝜉𝜌 > 0 be as in
hypothesis 𝐻1(𝑖𝑣) = 𝐻 ′

1(𝑖𝑣). Then in �̂�, we have

− 𝛥𝑎1𝑝
(

�̂�𝜀𝜆
)

− 𝛥𝑎2𝑞
(

�̂�𝜀𝜆
)

+ 𝜉𝑝
(

�̂�𝜀𝜆
)𝑝−1 − 𝜆

(

�̂�𝜀𝜆
)−𝜂

≤𝜉𝜌�̂�
𝑝−1
𝜆 + 𝜒(𝜖) with 𝜒(𝜖) → 0+ as 𝜖 → 0+

≤
[

𝜉𝜌 + 𝑐
]

�̂�𝑝−1𝜆 + 𝜒(𝜖)

≤�̂��̂�𝜏−1𝜆 + 𝑓
(

𝑧, �̂�𝜆
)

+ 𝜉𝜌�̂�
𝑝−1
𝜆 + 𝜒(𝜀) ( see (67))

≤𝜆𝑢𝜏−1𝜆 + 𝑓 (𝑧, 𝑢𝜆) + 𝜉𝜌𝑢
𝑝−1
𝜆 − (𝜆 − �̂�)�̂�𝜏−1 + 𝜒(𝜖) ( see hypothesis 𝐻1(𝑖𝑣) −𝐻 ′

1(𝑖𝑣))

= − 𝛥𝑎1𝑝 𝑢𝜆 − 𝛥
𝑎2
𝑞 𝑢𝜆 + 𝜉𝜌𝑢

𝑝−1
𝜆 − 𝜆𝑣−𝜂𝜆 in �̂� for 𝜖 ∈ (0, 1) small .

(68)

For 𝜖 ∈ (0, 1) small, we have

0 < 𝑐30 ⩽ (𝜆 − �̂�)�̂�𝜏−1𝜆 − 𝜒(𝜀).

Then from (68) and using Proposition 6 of Papageorgiou, Rădulescu, Repovs [39], we infer that for 𝜖 ∈ (0, 1) small

�̂�𝜀𝜆 < 𝑢𝜆(𝑧) for all 𝑧 ∈ �̂�,

ontradicting the definition of �̂�𝜆. Therefore 𝜆∗ ≤ �̂� <∞. □

Hence  is a bounded interval and we have

(0, 𝜆∗) ⊆  ⊆ (0, 𝜆∗].

We show that for 𝜆 ∈ (0, 𝜆∗) we have multiplicity of positive solutions.

roposition 10. If hypotheses 𝐻0 and 𝐻1 or 𝐻 ′
1 hold and 𝜆 ∈ (0, 𝜆∗), then problem (1) has at least two positive solutions

𝑢0, �̂� ∈ int 𝐶+.

roof. Let 0 < 𝛾 < 𝜆 < 𝜃 < 𝜆∗. On account of Proposition 8, we can find 𝑢𝜃 ∈ 𝑆𝜃 ⊆ int 𝐶+, 𝑢0 ∈ 𝑆𝜃 ⊆ int 𝐶+ and 𝑢𝛾 ∈ 𝑆𝛾 ⊆ int 𝐶+,
uch that

𝑢0 ∈ int𝐶1
0 (�̄�)[𝑣𝛾 , 𝑢𝜃]. (69)

We may assume that

𝑆𝜆 ∩
[

𝑢𝛾 , 𝑢𝜃
]

=
{

𝑢0
}

. (70)

Otherwise, we already have a second positive smooth solution and so we are done. We introduce the Carathéodory function
𝜆(𝑧, 𝑥) defined by

𝑑𝜆(𝑧, 𝑥) =

⎧

⎪

⎨

⎪

𝜆
(

𝑢−𝜂𝛾 + 𝑢𝜏−1𝛾

)

+ 𝑓
(

𝑧, 𝑢𝛾
)

if 𝑥 < 𝑢𝛾 (𝑧),

𝜆
(

𝑥−𝜂 + 𝑥𝜏−1
)

+ 𝑓 (𝑧, 𝑥) if 𝑢𝛾 (𝑧) ⩽ 𝑥 ⩽ 𝑢𝜆(𝑧),
( −𝜂 𝜏−1) ( )

(71)
⎩𝜆 𝑢𝜃 + 𝑢𝜃 + 𝑓 𝑧, 𝑢𝜃 if 𝑢𝜆(𝑧) < 𝑥.
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We set 𝐷𝜆(𝑧, 𝑥) = ∫ 𝑥0 𝑑𝜆(𝑧, 𝑠)d𝑠 and consider the 𝐶1-functional 𝜎𝜆 ∶ 𝑊
1,𝑝
0 (𝛺) → R defined by

𝜎𝜆(𝑢) =
1
𝑝
𝜌𝛼1,𝑝 (𝐷𝑢) +

1
𝑞
𝜌𝛼2 ,𝑞(𝐷𝑢) − ∫𝛺

𝐷𝜆(𝑧, 𝑣)d𝑧 for all 𝑢 ∈ 𝑊 1,𝑝
0 (𝛺).

Evidently 𝜎𝜆(⋅) is coercive (see (71)) and sequentially weakly lower semicontinuous. So, we can find �̃�0 ∈ 𝑊 1,𝑝
0 (𝛺) such that

𝜎𝜆
(

�̃�0
)

= inf
{

𝜎𝜆(𝑢) ∶ 𝑢 ∈ 𝑊 1,𝑝
0 (𝛺)

}

,

⇒�̃�0 ∈ 𝐾𝜎𝜆 ⊆ [𝑢𝛾 , 𝑢𝜃] ∩ int 𝐶+( as in the proof of Proposition 7).
(72)

Then from (71) and (72) if follows that
�̃�0 = 𝑆𝜆 ∩

[

𝑢𝛾 , 𝑢𝜃
]

,

⇒�̃�0 = 𝑢0 ( see (70)).
(73)

Let 𝑑𝜆(𝑧, 𝑥) be the Carathéodory function defined by

𝑑𝜆(𝑧, 𝑥) =

⎧

⎪

⎨

⎪

⎩

𝜆
(

𝑢−𝜂𝛾 + 𝑢𝜏−1𝛾

)

+ 𝑓
(

𝑧, 𝑢𝛾
)

if 𝑥 ⩽ 𝑢𝛾 (𝑧)

𝜆
(

𝑥−𝜂 + 𝑥𝜏−1
)

+ 𝑓 (𝑧, 𝑥) if 𝑢𝛾 (𝑧) < 𝑥.
(74)

Let �̂�𝜆(𝑧, 𝑥) = ∫ 𝑥0 𝑑𝜆(𝑧, 𝑠)𝑑𝑠 and consider the 𝐶1-functional �̂�𝜆 ∶ 𝑊
1,𝑝
0 (𝛺) → R defined by

�̂�𝜆(𝑢) =
1
𝑝
𝜌𝛼1,𝑝 (𝐷𝑢) +

1
𝑞
𝜌𝑎2,𝑞 (𝐷𝑢) − ∫𝛺

�̂�𝜆(𝑧, 𝑢)d𝑧 for all 𝑢 ∈ 𝑊 1,𝑝
0 (𝛺).

From (71) and (74), we see that (see Papageorgiou, Rădulescu, Zhang [37], Proposition A3)

𝜎𝜆||[𝑢𝛾 ,𝑢𝜃
] = �̂�𝜆||[𝑢𝛾 ,𝑢𝜃

] ,

⇒𝑢0 is a local 𝐶1
0 (�̄�) − minimizer of �̂�𝜆(⋅)( see (69) and (73)),

⇒𝑢0 is a local 𝑊 1,𝑝
0 (𝛺) − minimizer of �̂�𝜆(⋅).

(75)

Using (71) we can easily check as before that

𝐾𝛿𝜆 ⊆
[

𝑢𝛾
)

∩ int 𝐶+.

So, we may assume that 𝐾𝛿𝜆 is finite or otherwise we already have an infinite set of positive smooth solutions of (1) (see((74))).
hen (75) and Theorem 5.7.6, p. 449, of Papageorgiou, Rădulescu, Repovs [20], we can find 𝜌 ∈ (0, 1) small such that

�̂�𝜆(𝑢0) < inf
{

�̂�𝜆(𝑢) ∶ ‖

‖

𝑢 − 𝑢0‖‖ = 𝜌
}

= 𝑚∗
𝜆. (76)

We know that:

∙ If hypotheses 𝐻1 hold, then

�̂�𝜆(𝑡�̂�, (𝜌)) → −∞ as 𝑡 → +∞( see the proof of Proposition 5). (77)

∙ If hypotheses 𝐻 ′
1 hold, then for every 𝑢 ∈ int 𝐶+ we have

𝜎𝜆(𝑡𝑢) → −∞ as 𝑡 → +∞( see hypothesis 𝐻 ′
1(𝑖𝑖) and the proof of Proposition 6). (78)

Moreover, reasoning as in the proof of Proposition 6 (if hypotheses 𝐻 ′
1 hold) or as in the proof of Proposition 6 (if hypotheses

′
1 hold), we show that

�̂�𝜆(⋅) satisfies the 𝐶 − condition. (79)

Then (76), (77) (if 𝐻1 hold) or (78) (if 𝐻 ′
1 hold) and (79), permit the use of the Mountain Pass Theorem. So, we can find

�̂� ∈ 𝑊 1,𝑝
0 (𝛺) such that

�̂� ∈ 𝐾�̂�𝜆 ⊆
[

𝑢𝛾
]

∩ int 𝐶+, �̂�𝜆
(

𝑢0
)

< 𝑚∗
𝜆 ≤ �̂�𝜆(�̂�).

Therefore �̂� ∈ int 𝐶+ is a positive solution (1) 𝜆 ∈ (0, 𝜆) and see (74)), which is distinct from 𝑢0. □

To complete our analysis of problem, we need to check the admissibility of the critical parameter 𝜆∗. To this end, first we show
hat 𝑆𝜆 has a smallest element 𝑢∗𝜆 and prove some useful properties of the minimal solution map 𝜆 → 𝑢∗𝜆.

roposition 11. If hypotheses 𝐻0 and 𝐻1 or 𝐻 ′
1 hold and 𝜆 ∈ , then

(a) problem (1) has a smallest element 𝑢∗𝜆 ∈ 𝑆𝜆 ⊆ int 𝐶+, that is 𝑢∗𝜆 ≤ 𝑢 for all 𝑢 ∈ 𝑆𝜆;
(b)  ∋ 𝜆→ 𝑢∗𝜆 ∈ 𝐶1

0 (�̄�) is strictly increasing, that is,
∗ ∗
0 < 𝜆1 < 𝜆2 ⇒ 𝑢𝜆2 − 𝑢𝜆1 ∈ int 𝐶+.
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Proof. (a) We know that 𝑆𝜆 is downward directed (see Filippakis, Papageorgiou [40] and Bai, Gasinski, Papageorgiou [41]). So,
invoking Theorem 5.109, p.305, of Hu, Papageorgiou [25], we can find a decreasing sequence

{

𝑢𝑛
}

𝑛∈N ⊆ 𝑆𝜆 such that

inf 𝑆𝜆 = inf
𝑛∈N

𝑢𝑛.

We have
⟨

𝑉
(

𝑢𝑛
)

, ℎ
⟩

= ∫𝛺

[

𝜆
(

𝑢−𝜂𝑛 + 𝑢𝜏−1𝑛
)

+ 𝑓
(

𝑧, 𝑢𝑛
)]

ℎd𝑧 for all 𝑛 ∈ N, (80)

0 ≤ 𝑢𝑛 ≤ 𝑢1 for all 𝑛 ∈ N. (81)

In (80) we use the test function ℎ = 𝑢𝑛 ∈ 𝑊 1,𝑝
0 (𝛺). Using (81) and hypothesis 𝐻1(𝑖) or 𝐻 ′

1(𝑖), we obtain

𝜌𝑎1 ,𝑝
(

𝐷𝑢𝑛
)

+ 𝜌𝑎2 ,𝑞
(

𝐷𝑢𝑛
)

≤ ∫𝛺

(

𝜆𝑢1−𝜂𝑛 + (𝜆 + 1)𝑐31
)

d𝑧 for all 𝑛 ∈ N, some 𝑐31 > 0,

⇒𝑐 ‖
‖

𝑢𝑛‖‖
𝑝 ≤ 𝑐32

(

𝜆 ‖
‖

𝑢𝑛‖‖ + 𝜆 + 1
)

for all 𝑛 ∈ N, some 𝑐32 > 0,

⇒
{

𝑢𝑛
}

𝑛∈N ⊆ 𝑊
1,𝑝
0 (𝛺) is bounded .

We may assume that

𝑢𝑛
𝑤
←←←←←←←←→ 𝑢∗𝜆 in 𝑊 1,𝑝

0 (𝛺), 𝑢𝑛 → 𝑢∗𝜆 ∈ 𝐿𝑝(𝛺) as 𝑛 → ∞. (82)

Suppose 𝑢∗𝜆 = 0. Then from (80) with ℎ = 𝑢𝑛 ∈ 𝑊 1,𝑝
0 (𝛺), we have

𝑐 ‖
‖

𝑢𝑛‖‖
𝑝 ≤ ∫𝛺

𝜆𝑢1−𝜂𝑛 d𝑧 + 𝜆 ‖
‖

𝑢𝑛‖‖
𝜏
𝜏 + ∫𝛺

𝑓
(

𝑧, 𝑢𝑛
)

𝑢𝑛d𝑧

≤ 𝜆𝑐33 ‖‖𝑢𝑛‖‖
1−𝜂
𝑝 + 𝜆 ‖

‖

𝑢𝑛‖‖
𝜏
𝜏 + ∫𝛺

𝑓
(

𝑧, 𝑢𝑛
)

𝑢𝑛d𝑧 for some 𝑐33 > 0, all 𝑛 ∈ N.

Since 𝑢∗𝜆 = 0, from (81), (82) and since 𝜏 < 𝑝, we see that the right hand side of the above inequality converges to zero as 𝑛→ ∞,
ence (see [42])

𝑢𝑛 → 0 in 𝑊 1,𝑝
0 (𝛺),

⇒𝑢𝑛 → 0 in 𝐿∞(𝛺).

So, we can find 𝑛0 ∈ N such that

0 ≤ 𝑢𝑛(𝑧) ≤ 𝛿 for a.a. 𝑧 ∈ 𝛺, all 𝑛 ≥ 𝑛0. (83)

Fix 𝑛 ≥ 𝑛0 otherwise arbitrary and consider the function

𝑔𝜆(𝑧, 𝑥) =

{

𝜆(𝑥)𝜏−1 if 𝑥 ⩽ 𝑢𝑛(𝑧)
𝜆𝑢𝑛(𝑧)𝜏−1 if 𝑢𝑛(𝑧) < 𝑥.

(84)

We set 𝐺𝜆(𝑧, 𝑥) = ∫ 𝑥0 𝑔𝜆(𝑧, 𝑠)d𝑠 and consider the 𝐶1-functional 𝑤𝜆 ∶ 𝑊
1,𝑝
0 (𝛺) → R defined by

𝑤𝜆(𝑢) =
1
𝑝
𝜌𝑎1,𝑝 (𝐷𝑢) +

1
𝑞
𝜌𝛼2𝑞(𝐷𝑢) − ∫𝛺

𝐺𝜆(𝑧, 𝑢)d𝑧 for all 𝑢 ∈ 𝑊 1,𝑝
0 (𝛺).

Evidently, 𝑤𝜆(⋅) is coercive (see (84))) and sequentially weakly lower semicontinuous. So, we can find �̃�𝜆 ∈ 𝑊 1,𝑝
0 (𝛺) such that

𝑤𝜆
{

�̃�𝜆
}

= inf
{

𝑤𝜆(𝑢) ∶ 𝑢 ∈ 𝑊 1,𝑝
0 (𝛺)

}

,

⇒
⟨

𝑤′
𝜆(�̃�𝜆), ℎ

⟩

= 0 for all ℎ ∈ 𝑊 1,𝑝
0 (𝛺),

⇒
⟨

𝑣
(

�̃�𝜆
)

, ℎ
⟩

= ∫𝛺
𝑔𝜆

(

𝑧, 𝑢𝜆
)

ℎd𝑧 for all ℎ ∈ 𝑊 1,𝑝
0 (𝛺).

(85)

In (85) we choose ℎ = −�̃�−𝜆 ∈ 𝑊 1,𝑝
0 (𝛺). Then

𝑐 ‖‖
‖

�̃�−𝜆
‖

‖

‖

𝑝
⩽ 0 ( see (84)),
⇒�̃�𝜆 ≥ 0 and since 𝜏 < 𝑞 < 𝑝, �̃�𝜆 ≠ 0.
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Also in (85) we use ℎ = (�̃�𝜆 − 𝑢𝑛)+ ∈ 𝑊 1,𝑝
0 (𝛺). Then

⟨

𝑉
(

�̃�𝜆
)

,
(

�̃�𝜆 − 𝑢𝑛
)′
⟩

=∫𝛺
𝜆𝑢𝜏−1𝑛

(

�̃�𝜆 − 𝑢𝑛
)+ d𝑧 ( see (84))

≤∫𝛺

(

𝜆
(

𝑢−𝜂𝑛 + 𝑢𝜏−1𝑛
)

+ 𝑓
(

𝑧, 𝑢𝑛
)) (

�̃�𝜆 − 𝑢𝑛
)+ d𝑧

( on account of (83), 𝑓 (𝑧, 𝑢𝑛) ≥ 0 for a.e. 𝑧 ∈ 𝛺)

=
⟨

𝑉
(

𝑢𝑛
)

,
(

�̃�𝜆 − 𝑢𝑛
)+

⟩

( since 𝑢𝑛 ∈ 𝑆𝜆),

⇒�̃�𝜆 ≤ 𝑢𝑛,

⇒�̃�𝜆 = �̄�𝜆 (see (84), (85) and Proposition 4),
⇒�̄�𝜆 ≤ 𝑢𝑛 for all 𝑛 ≥ 𝑛0,

which contradicts our hypothesis that 𝑢∗𝜆 = 0 (see (82)). So, 𝑢∗𝜆 ≠ 0.
From (80) with ℎ = 𝑢𝑛 − 𝑢∗𝜆 ∈ 𝑊 1,𝑝

0 (𝛺), we have

⟨

𝑉
(

𝑢𝑛
)

, 𝑢𝑛 − 𝑢∗𝜆
⟩

= ∫𝛺

(

𝜆
( 𝑢𝑛 − 𝑢∗𝜆

𝑢𝜂𝑛
+ 𝑢𝜏−1𝑛

(

𝑢𝑛 − 𝑢∗𝜆
)

)

+ 𝑓 (𝑧, 𝑢𝑛)
(

𝑢𝑛 − 𝑢∗𝜆
)

)

d𝑧 for all 𝑛 ∈ N. (86)

From (82) we see that

∫𝛺
𝑢𝜏−1𝑛

(

𝑢𝑛 − 𝑢∗𝜆
)

d𝑧→ 0,∫𝛺
𝑓 (𝑧, 𝑢𝑛)

(

𝑢𝑛 − 𝑢∗𝜆
)

d𝑧→ 0 as 𝑛→ ∞. (87)

Also we have

0 ⩽
|

|

|

|

|

𝑢𝑛 − 𝑢∗𝜆
𝑢𝜂𝑛

|

|

|

|

|

=
𝑢𝑛 − 𝑢∗𝜆
𝑢𝜂𝑛

(recall that
{

𝑢𝑛
}

𝑛∈N is decreasing)

≤ 𝑢1−𝜂𝑛 ≤ 𝑔 for a.a. 𝑧 ∈ 𝛺, with 𝑔 ∈ 𝐿𝑝(𝛺) (see (82)).

In addition we know that
𝑢𝑛 − 𝑢∗𝜆
𝑢𝜂𝜆

→ 0 for a.a. 𝑧 ∈ 𝛺, as 𝑛→ ∞.

Hence the Lebesgue dominated convergence theorem, implies that

∫𝛺

𝑢𝑛 − 𝑢∗𝜆
𝑢𝜂𝑛

d𝑧→ 0 as 𝑛→ ∞. (88)

If in (86) we pass to the limit as 𝑛→ ∞ and use (87), (88), we obtain

lim
𝑛→∞

⟨

𝑉
(

𝑢𝑛
)

, 𝑢𝑛 − 𝑢∗𝜆
⟩

= 0,

⇒𝑢𝑛 → 𝑢∗𝜆 in 𝑊 1,𝑝
0 (𝛺) as 𝑛→ ∞.

(89)

In (80) we pass to the limit as 𝑛→ ∞ and using the monotone convergence theorem and (89), we obtain
⟨

𝑉
(

𝑢∗𝜆
)

, ℎ
⟩

= ∫𝛺

[

𝜆
(

𝑢∗𝜆
)−𝜂 +

(

𝑢∗𝜆
)𝜏−1

)

+ 𝑓
(

𝑧, 𝑢∗𝜆
)

]

ℎd𝑧 for all ℎ ∈ 𝑊 1,𝑝
0 (𝛺),

⇒𝑢∗𝜆 ∈ 𝑆𝜆 ⊆ int 𝐶+, 𝑢∗𝜆 = int 𝑆𝜆.

(b) Suppose 𝜆1, 𝜆2 ∈  with 0 < 𝜆1 < 𝜆2. Let 𝑢∗𝜆2 ∈ 𝑆𝜆2 ⊆ int 𝐶+ be the minimal solution of problem 𝜌𝜆2 produced in part (a).
rom Proposition 8 we know that there exists 𝑢𝜆1 ∈ 𝑆𝜆1 ⊆ int 𝐶1 such that

𝑢∗𝜆2 − 𝑢𝜆1 ∈ int 𝐶+.

Let 𝑢∗𝜆1 ∈ 𝑆𝜆1 ⊆ int 𝐶+ be the minimal solution of 𝜌𝜆1 . We have

𝑢∗𝜆2 − 𝑢𝜆1 ≤ 𝑢∗𝜆2 − 𝑢
∗
𝜆1
,

⇒𝑢∗𝜆2 − 𝑢𝜆1 ∈ int 𝐶+.
□

Using the extremal positive solution, we can prove the admissibility of the critical parameter 𝜆∗.

roposition 12. If hypotheses 𝐻0 and 𝐻1 or 𝐻 ′
1 hold, then 𝜆

∗ ∈ .

Proof. We consider a sequence
{

𝜆𝑛
}

𝑛∈N ⊆ (0, 𝜆∗) such that 𝜆𝑛 → (𝜆∗)−. From Proposition 11, we know that 𝑢∗𝜆1 ≤ 𝑢∗𝜆𝑛 for all 𝑛 ∈ N0.

Using Proposition 4 and since 𝑢∗ ∈ int 𝐶 , we can find 𝜓 ∈ (0, 𝜆 ) small such that �̄� (𝑧) ≤ min
{

𝛿, 𝑢∗ (𝑧)
}

for all 𝑧 ∈ �̄� (𝛿 > 0 as in
𝜆1 + 1 𝜓 𝜆1
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hypothesis 𝐻1(𝑖𝑖𝑖) = 𝐻 ′
1(𝑖𝑖𝑖)). We introduce the Carathéodory functions 𝑒𝜆1 (𝑧, 𝑥) and 𝑒𝜆1 (𝑧, 𝑥) defined by

𝑒𝜆1 (𝑧, 𝑥) =

⎧

⎪

⎨

⎪

⎩

𝜆1
(

�̄�−𝜂𝜓 + �̄�𝜏−1𝜓

)

+ 𝑓 (𝑧, �̄�𝜓 ) if 𝑥 ≤ �̄�𝜓 (𝑧),

𝜆1
(

𝑥−𝜂 + 𝑥𝜏−1
)

+ 𝑓 (𝑧, 𝑥) if �̄�𝜓 (𝑧) < 𝑥,
(90)

𝑒𝜆1 (𝑧, 𝑥) =

{

𝑒𝜆1 (𝑧, 𝑥) if 𝑥 ⩽ 𝑢∗𝜆1 (𝑧),
𝑒𝜆2

(

𝑧, 𝑢∗𝜆
)

if 𝑢∗𝜆2 (𝑧) < 𝑥.
(91)

We set 𝐸𝜆1 (𝑧, 𝑥) = ∫ 𝑥0 𝑒𝜆1 (𝑧, 𝑠)d𝑠 and �̂�𝜆1 (𝑧, 𝑥) = ∫ 𝑥0 𝑒𝜆1 (𝑧, 𝑥)d𝑠 and consider the 𝐶1 -functionals 𝜑𝜆1 , �̂�𝜆1 ∶ 𝑊 1,𝑝
0 (𝛺) → R defined by

𝜑𝜆1 (𝑢) =
1
𝑝
𝜌𝑎1 ,𝑝(𝐷𝑢) +

1
𝑞
𝜌𝑎2 ,𝑞(𝐷𝑢) − ∫𝛺

𝐸𝜆1 (𝑧, 𝑢) d𝑧,

�̂�𝜆1 (𝑢) =
1
𝑝
𝜌𝑎1 ,𝑝(𝐷𝑢) +

1
𝑞
𝜌𝑎2 ,𝑞(𝐷𝑢) − ∫𝛺

�̂�𝜆1 (𝑧, 𝑢)d𝑧 for all 𝑢 ∈ 𝑊 1,𝑝
0 (𝛺).

From (90) and (91), we see that

𝜑𝜆1
|

|

|

[

�̄�𝜓 ,𝑢∗𝜆2

] = �̂�𝜆1
|

|

|

[

�̄�𝜓 ,𝑢∗𝜆2

] . (92)

From (91) we see that �̂�𝜆1 is coercive. Also it is sequentially weakly lower semicontinuous. So, we can find 𝑢𝜆1 ∈ 𝑊 1,𝑝
0 (𝛺) such

that

�̂�𝜆1
(

𝑢𝜆1
)

= inf
{

�̂�𝜆1 (𝑢) ∶ 𝑢 ∈ 𝑊 1,𝑝
0 (𝛺)

}

, (93)

⇒⟨𝜑′
𝜆1
(𝑢𝜆1 ), ℎ⟩ = 0 for all ℎ ∈ 𝑊 1,𝑝

0 (𝛺),

⇒⟨𝑉 (𝑢𝜆1 ), ℎ⟩ = ∫𝛺
𝑒𝜆1 (𝑧, 𝑢𝜆1 )ℎd𝑧 for all ℎ ∈ 𝑊 1,𝑝

0 (𝛺).
(94)

In (94) use the test function ℎ = (𝑢𝜆1 − 𝑢
∗
𝜆2
)+ ∈ 𝑊 1,𝑝

0 . Then

⟨𝑉 (𝑢𝜆1 ), (𝑢𝜆1 − 𝑢
∗
𝜆2
)+⟩

=∫𝛺
(𝜆1((𝑢∗𝜆2 )

−𝜂) + (𝑢∗𝜆2 )
𝜏−1) + 𝑓 (𝑧, 𝑢∗𝜆2 )(𝑢𝜆1 − 𝑢

∗
𝜆2
)+d𝑧 (see (90), (91))

≤∫𝛺
(𝜆2((𝑢∗𝜆2 )

−𝜂) + (𝑢∗𝜆2 )
𝜏−1) + 𝑓 (𝑧, 𝑢∗𝜆2 )(𝑢𝜆1 − 𝑢

∗
𝜆2
)+d𝑧 (since 𝜆1 < 𝜆2)

=⟨𝑉 (𝑢∗𝜆2 ), (𝑢𝜆1 − 𝑢
∗
𝜆2
)+⟩,

⇒𝑢𝜆1 ≤ 𝑢∗𝜆2 .

Next in (94) we choose ℎ = (�̄�𝜓 − 𝑢𝜆1 )
+ ∈ 𝑊 1,𝑝

0 (𝛺). We have

⟨𝑉 (𝑢𝜆1 ), (�̄�𝜓 − 𝑢𝜆1 )
+
⟩

=∫𝛺
𝜆1(�̄�−𝜂𝜓 + �̄�𝜏−1𝜓 ) + 𝑓 (𝑧, �̄�𝜓 )(�̄�𝜓 − 𝑢𝜆1 )

+d𝑧 (see (90), (91))

≥∫𝛺
(𝜆1(�̄�−𝜂𝜓 (�̄�𝜓 − 𝑢𝜆1 )

+d𝑧 (since 𝑓 (𝑧, �̄�𝜓 ) ≥ 0)))

≥∫𝛺
𝜓(�̄�−𝜂𝜓 (�̄�𝜓 − 𝑢𝜆1 )

+d𝑧 (since 𝜓 < 𝜆1))

=⟨𝑉 (�̄�𝜓 ), (�̄�𝜓 − 𝑢𝜆1 )
+
⟩ (see Proposition 4),

⇒�̄�𝜓 ≤ 𝑢𝜆1 .

So, we have proved that

𝑢𝜆1 ∈ [�̄�𝜓 , 𝑢∗𝜆2 ]. (95)

From (93), we have
�̂�𝜆1 (𝑢𝜆1 ) ≤ �̂�𝜆1 (�̂�𝜓 ),

⇒ 𝜑𝜆1 (𝑢𝜆1 ) ≤ 𝜑𝜆1 (�̂�𝜓 ) see (91), (94)

= 1
𝑝
𝜌𝛼1,𝑝 (𝐷�̄�𝜓 ) +

1
𝑞
𝜌𝛼2 ,𝑞(𝐷�̄�𝜓 ) − ∫𝛺

𝐸𝜆1 (𝑧, �̄�𝜓 )d𝑧

≤ 𝜌𝛼1,𝑝 (𝐷�̄�) + 𝜌𝛼2 ,𝑞(𝐷�̄�𝜓 ) − ∫𝛺
𝜆1�̄�

1−𝜂
𝜓 d𝑧

= ⟨𝑉 (�̄�𝜓 , �̄�𝜓 )⟩ − ∫𝛺
𝜆1(�̄�−𝜂𝜓 )�̄�𝜓d𝑧
= 0 (see Proposition 4).
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We can say that

𝑢𝜆1 ∈ 𝑆𝜆1 ⊆ int 𝐶+ see (95), 𝜑𝜆1 (𝑢𝜆1 ) ≤ 0.

e repeat the same argument with 𝜆1 replaced by 𝜆2 and 𝑢∗𝜆2 replaced by 𝑢∗𝜆3 . We produce 𝑢𝜆2 ∈ 𝑊 1,𝑝
0 (𝛺) such that

𝑢𝜆2 ∈ 𝑆𝜆2 ⊆ int 𝐶+, 𝜑𝜆2 (𝑢𝜆2 ) ≤ 0.

We continue this way and generate a sequence {𝑢𝑛 = 𝑢𝜆𝑛}𝑛∈N such that

𝑢𝑛 = 𝑢𝜆𝑛 ∈ 𝑆𝜆𝑛 ⊆ int 𝐶+, �̄�𝜓 ≤ 𝑢𝑛, 𝜑𝜆𝑛 (𝑢𝑛) ≤ 0 for all 𝑛 ∈ N. (96)

Using (96) and reasoning as in Claim 1 in the proof of Proposition 5 (if hypotheses 𝐻1 hold) and as in the Claim in the proof of
Proposition 6 (f hypotheses 𝐻 ′

1 hold), we show that

{𝑢𝑛}𝑛∈N ⊆ 𝑊
1,𝑝
0 (𝛺) is bounded.

So, we may assume that

𝑢𝑛
𝑤
←←←←←←←←→ 𝑢∗ in 𝑊 1,𝑝

0 (𝛺), 𝑢𝑛 → 𝑢∗ in 𝐿𝑟(𝛺) (𝑟 > 𝑝). (97)

From (96), we have

⟨𝑉 (𝑢𝑛), ℎ⟩ = ∫𝛺
[𝜆𝑛(𝑢−𝜂𝑛 + 𝑢𝜏−1𝑛 ) + 𝑓 (𝑧, 𝑢𝑛)]ℎd𝑧 for all ℎ ∈ 𝑊 1,𝑝

0 (𝛺), all ℎ ∈ N. (98)

In (98), we use ℎ = 𝑢𝑛 − 𝑢∗ ∈ 𝑊 1,𝑝
0 (𝛺). Then an account of (97) we see that

∫𝛺
(𝜆𝑛𝑢𝜏−1𝑛 + 𝑓 (𝑧, 𝑢𝑛))(𝑢𝑛 − 𝑢∗)d𝑧→ 0 as 𝑛→ ∞. (99)

Also note that
|

|

|

|

∫𝛺
𝜆𝑛𝑢

𝜂
𝑛(𝑢𝑛 − 𝑢∗)d𝑧

|

|

|

|

≤𝜆∗ ∫𝛺
�̄�−𝜂𝜓 |𝑢𝑛 − 𝑢∗|d𝑧 (see (96))

≤𝜆∗𝑐34 ∫𝛺
|𝑢𝑛 − 𝑢∗|

𝑑
d𝑧 for some 𝑐34 > 0 (since �̄�𝜓 ∈ int 𝐶+).

Using Proposition 1 (Hardy’s inequality), we infer that
{

𝑢𝑛 − 𝑢∗
𝑑

}

𝑛∈N
⊆ 𝐿𝑝(𝛺) is bounded. (see (96)),

⇒

{

𝑢𝑛 − 𝑢∗
𝑑

}

𝑛∈N
is uniformly integrable.

Also, we have
(𝑢𝑛 − 𝑢∗)(𝑧)

𝑑(𝑧)
→ 0 for a.a. 𝑧 ∈ 𝛺 as 𝑛 ∈ ∞ (see (97)).

Hence by Vitali’s Theorem (see [25], Theorem 2.147, p.91), we have

∫𝛺
|𝑢𝑛 − 𝑢∗|

𝑑
d𝑧→ 0,

⇒𝜆𝑛 ∫𝛺
𝑢−𝜂𝑛 (𝑢𝑛 − 𝑢∗)d𝑧→ 0.

(100)

Therefore from (98) with ℎ = 𝑢𝑛 − 𝑢∗ ∈ 𝑊 1,𝑝
0 (𝛺), using (99), (100), we obtain

lim
𝑛→∞

⟨𝑉 (𝑢𝑛), 𝑢𝑛 − 𝑢∗⟩ = 0,

⇒𝑢𝑛 → 𝑢∗ in 𝑊 1,𝑝
0 (𝛺) as 𝑛→ ∞.

(101)

So, if in (98) we pass to the limit as 𝑛→ ∞, arguing as above and using (101), we obtain

⟨𝑉 (𝑢∗), ℎ⟩ = ∫𝛺
[𝜆∗(𝑢−𝜂∗ + 𝑢𝜏−1∗ ) + 𝑓 (𝑧, 𝑢∗)]ℎd𝑧 for all ℎ ∈ 𝑊 1,𝑝

0 (𝛺), �̄�𝜓 ≤ 𝑢∗ (see (96)).

We conclude that 𝑢∗ ∈ 𝑆𝜆∗ ⊆ int 𝐶+ and 𝜆∗ ∈ . □

Summarizing, we can state the following result concerning the positive solutions of problem (1). The result is global in the
arameter 𝜆 > 0 (bifurcation type theorem).

′ ∗
heorem 1. If hypotheses 𝐻0 and 𝐻1 or 𝐻1 hold, then there exists 𝜆 > 0 such that

21 



N.S. Papageorgiou et al.

5

w

P

P
𝜓

𝜓
h
b
h

Nonlinear Analysis: Real World Applications 81 (2025) 104225 
(a) for all 𝜆 ∈ (0, 𝜆∗) problem (1) has at least two positive solutions

𝑢0, �̂� ∈ int 𝐶+;

(b) for 𝜆 = 𝜆∗ problem (1) has at least one positive solution

𝑢∗ ∈ int 𝐶+;

(c) for all 𝜆 > 𝜆∗ problem (1) has no positive solutions. Moreover, for every 𝜆 ∈ (0, 𝜆∗], problem (1) has a smallest positive solution
𝑢∗𝜆 ∈ int 𝐶+ and

‘‘0 < 𝜆1 < 𝜆2 ≤ 𝜆∗ ⇒ 𝑢∗𝜆2 − 𝑢
∗
𝜆1

∈ int 𝐶+’’.

. Solution multifunction

In this section, we examine the solution multifunction 𝜆 → 𝑆𝜆 and determine its continuity properties. Our result extends the
orks of [17,18] (for nonsingular equations) and of [19] (singular problems driven by the p-Laplacian).

We start with a basic topological property of the solution set 𝑆𝜆.

roposition 13. If hypotheses 𝐻0 and 𝐻1 or 𝐻 ′
1 hold, then for every 𝜆 ∈ , 𝑆𝜆 ⊆ 𝐶1

0 (�̄�) is compact.

roof. Let 𝜆 ∈ . From Proposition 11 we know that 𝑆𝜆 has a smallest element 𝑢∗𝜆 ∈ int 𝐶+. Using Proposition 4, we can find
∈ (0, 𝜆) small such that

�̄�𝜓 ≤ 𝑢∗𝜆 ≤ 𝑢 for all 𝑢 ∈ 𝑆𝜆. (102)

We consider the Carathéodory function 𝑘𝜆(𝑧, 𝑥) from the proof of Proposition 5 (see (14)), and the corresponding 𝐶1-functional
𝜆 ∶ 𝑊 1,𝑝

0 (𝛺) → R (see the proof of Proposition 5). If hypotheses 𝐻1 hold, then from Claim 1 in the proof of Proposition 5, we
ave that 𝑆𝜆 ⊆ 𝑊 1,𝑝

0 (𝛺) is bounded. Similarly, if hypotheses 𝐻 ′
1 hold using this time the Claim in the proof of Proposition 6. The

oundedness in 𝑊 1,𝑝
0 (𝛺), implies that 𝑆𝜆 ⊆ 𝐿∞(𝛺) and it is bounded (see [27,42]). Using (102) and recalling that �̄�𝜓 ∈ int 𝐶+, we

ave
|𝜆(𝑢−𝜂 + 𝑢𝜏−1) + 𝑓 (𝑧, 𝑢)|

≤𝑐35(𝜆𝑑𝜂 + 1) for some 𝑐35 > 0

≤𝜆𝑐36𝑑−𝜂 for some 𝑐36 > 0, all 𝑢 ∈ 𝑆𝜆.

Thus we can use Theorem 1.7 of Giacomoni, Kumar, Sreenadh [36] and get 𝛼 ∈ (0, 1) and 𝑐37 > 0 such that

𝑢 ∈ 𝐶1,𝛼
0 (�̄�), ‖𝑢‖𝐶1,𝛼

0 (�̄�) ≤ 𝑐37 for all 𝑢 ∈ 𝑆𝜆.

We know that 𝐶1,𝛼
0 (�̄�) ↪ 𝐶1

0 (�̄�) compactly (Arzela–Ascoli theorem). Therefore we infer that 𝑆𝜆 ⊆ 𝐶1
0 (�̄�) is relatively compact.

We can easily see that 𝑆𝜆 ⊆ 𝐶1
0 (�̄�) is closed. Therefore 𝑆𝜆 ⊆ 𝐶1

0 (�̄�) is compact. □

Remark 5. A careful reading of the above proof reveals that for every closed interval [𝜆0, 𝜆1] ⊆ , we have that ⋃{𝑆𝜆 ∶ 𝜆 ∈ [𝜆0, 𝜆1]}
is relatively compact in 𝐶1

0 (�̄�). So the solution multifunction 𝜆 → 𝑆𝜆 is locally compact (see [25], p. 275).

In what follows, 𝑃𝑘(𝐶1
0 (�̄�)) denotes the family of nonempty and compact subsets of 𝐶1

0 (�̄�).

Proposition 14. If hypotheses 𝐻0 and 𝐻1 or 𝐻 ′
1 hold, then the multifunction  ∋ 𝜆 → 𝑆𝜆 ∈ 𝑃𝑘(𝐶1

0 (�̄�)) is lsc and h-lsc.

Proof. According to Proposition 5.6, p.274, of Hu, Papageorgiou [25], in order to obtain the lower semicontinuity of the solution
multifunction, it suffices to show that if 𝜆𝑛 → 𝜆 ∈  in  ∈ (0, 𝜆∗], then

𝑆𝜆 ⊆ lim inf𝑛→∞𝑆𝜆𝑛 . (103)

Let 𝑢 ∈ 𝑆𝜆 ⊆ int 𝐶+ and consider the following Dirichlet problem

− 𝛥𝛼1𝑝 𝑣 − 𝛥
𝛼2
𝑞 𝑣 = 𝜆𝑛(𝑢𝜂 + 𝑢𝜏−1) + 𝑓 (𝑧, 𝑢) in 𝛺, 𝑢|𝜕𝛺 = 0, 𝑛 ∈ N. (104)

Let 𝜆0 = inf𝑛∈N 𝜆𝑛 > 0 and using Proposition 4, choose 𝜓 ∈ (0, 𝜆0) small so that

�̄�𝜓 ≤ 𝑢∗𝜆0 , (105)

⇒�̄�𝜓 for all 𝑢 ∈ 𝑆𝜆𝑛 , all 𝑛 ∈ N.
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Note that, if �̂�0 = sup𝑛∈N 𝜆𝑛 ≤ 𝜆∗, then for every ℎ ∈ 𝑊 1,𝑝
0 (𝛺) we have

|

|

|

|

𝜆𝑛 ∫𝛺
ℎ
𝑢𝜂

d𝑧
|

|

|

|

≤ 𝜆0 ∫𝛺
|ℎ|
�̄�𝜂𝜓

d𝑧 (see (105))

≤ 𝜆0𝑐38 ∫𝛺
|ℎ|
𝑑

d𝑧 for some𝑐38 > 0 (since �̄�𝜓 ∈ int 𝐶+)

≤ 𝜆0𝑐39‖ℎ‖ for some 𝑐39 > 0,

⇒𝜆𝑛𝑢
−𝜂 ∈ 𝑊 −1,𝑝′ (𝛺) = 𝑊 1,𝑝

0 (𝛺)∗.

We know that 𝑉 (⋅) is maximal monotone and coercive. Hence, by Corollary 2.8.7, p. 135, of Papageorgiou, Rădulescu,
Repovs [20], we have that 𝑉 (⋅) is surjective. So, from (104) and since 𝜆𝑛𝑢−𝜂 + 𝜆𝑛𝑢𝜏−1 + 𝑓 (𝑧, 𝑢) ∈ 𝑊 −1,𝑝′

0 (𝛺), we see that there
exist 𝑣𝑛 ∈ 𝑊 1,𝑝

0 (𝛺) which solves (104). In fact the strict monotone city of 𝑉 (⋅) implies that the solution 𝑣𝑛 of (104) is unique. On
(104) we act with 𝑣𝑛 ∈ 𝑊 1,𝑝

0 (𝛺) and using hypotheses 𝐻0 and the local compactness of the solution multifunction, we obtain

𝑐 ‖
‖

𝑣𝑛‖‖
𝑝 ≤ 𝑐40

(

1 + ‖

‖

𝑣𝑛‖‖
)

for some 𝑐40 > 0, all 𝑛 ∈ N,

⇒
{

𝑣𝑛
}

𝑛∈N ⊆ 𝑊
1,𝑝
0 (𝛺) is bounded.

From this, as before, via the nonlinear regularity theory (see [36]), we produce 𝛼1 ∈ (0, 1) and 𝑐41 > 0 such that

𝑣𝑛 ∈ 𝐶1,𝛼
0 (�̄�), ‖

‖

𝑣𝑛‖‖𝐶1,𝛼
0 (�̄�) ≤ 𝑐41, for all 𝑛 ∈ N.

Exploiting the compact embedding of 𝐶1,𝛼
0 (�̄�) into 𝐶1

0 (�̄�), we may assume that

𝑣𝑛 → 𝑣 ∈ 𝐶1
0 (�̄�) as 𝑛→ ∞,

⇒ − 𝛥𝑎1𝑝 𝑣 − 𝛥
𝛼2
𝑞 𝑣 = 𝜆

(

𝑢−𝜂 + 𝑢𝜏−1
)

+ 𝑓 (𝑧, 𝑢) in 𝛺, 𝑣|𝜕𝛺 = 0.
(106)

The solution of (106) is unique and clearly 𝑢 solves (106). Therefore 𝑣 = 𝑢 and we have

𝑣𝑛 → 𝑢 in 𝐶1
0 (�̄�) as 𝑛 → ∞.

Let 𝑣0𝑛 = 𝑣𝑛 ∈ int 𝐶+ and consider the following Dirichlet problem

−𝛥𝑎1𝑝 𝑣 − 𝛥
𝑎2
𝑞 𝑣 = 𝜆𝑛

(

(

𝑣0𝑛
)−𝜂 +

(

𝑣0𝑛
)𝜏−1) + 𝑓

(

𝑧, 𝑣0𝑛
)

in 𝛺, 𝑣𝑛||𝜕𝛺 = 0, 𝑛 ∈ N.

Reasoning as above, for every 𝑛 ∈ N this problem has a unique solution 𝑣1𝑛 ∈ int 𝐶+. Moreover, as in the proof of Proposition 12,
sing Vitali’s theorem, we have

∫𝛺
𝜆𝑛

ℎ
(

𝑣0𝑛
)𝜂 d𝑧→ ∫𝛺

𝜆 ℎ
𝑢𝜂

d𝑧 for all ℎ ∈ 𝑊 1,𝑝
0 (𝛺).

Therefore, we can say that

𝑣1𝑛 → 𝑢 ∈ 𝐶1
0 (�̄�) as 𝑛→ ∞.

Continuing this way, we generate a sequence
{

𝑣𝑘𝑛
}

𝑘∈N0
⊆ int 𝐶+, 𝑛 ∈ N such that

⎧

⎪

⎨

⎪

⎩

−𝛥𝑎1𝑝 𝑣𝑘𝑛 − 𝛥
𝑎2
𝑞 𝑣𝑘𝑛 = 𝜆𝑛

[

(

𝑣𝑘−1𝑛
)−𝜂 +

(

𝑣𝑘−1𝑛
)𝜏−1

]

+ 𝑓
(

𝑧, 𝑣𝑘−1𝑛
)

in 𝛺,
𝑣𝑘𝑛 ||𝜕𝛺 = 0 for all 𝑘, 𝑛 ∈ N,

𝑣𝑘𝑛 → 𝑢 in 𝐶1
0 (�̄�) as 𝑛→ ∞ for all 𝑘 ∈ N0.

⎫

⎪

⎬

⎪

⎭

(107)

laim. For every 𝑛 ∈ N, the sequence
{

𝑣𝑘𝑛
}

𝑘∈N0
⊆ 𝑊 1,𝑝

0 (𝛺) is bounded.

We argue indirectly. So suppose that the assertion of the Claim is not true. We may assume that
‖

‖

‖

𝑣𝑘𝑛
‖

‖

‖

→ ∞ as 𝑘→ ∞. (108)

We set 𝑦𝑘 =
𝑣𝑘𝑛

‖

‖

‖

𝑣𝑘𝑛
‖

‖

‖

𝑘 ∈ N0. Then ‖𝑦𝑘 = 1‖, 𝑦𝑘 = 0 for all 𝑘 ∈ N0. So, we may assume that

𝑦𝑘
𝑤
←←←←←←←←→ 𝑦 in 𝑊 1,𝑝

0 (𝛺), 𝑦𝑘 → 𝑦 in 𝐿𝑟(𝛺). (109)

From (107), we have

⟨𝐴𝛼1𝑝 (𝑦𝑘), ℎ⟩ +
1

‖

‖

𝑣𝑘𝑛‖‖
𝑝−𝑞 ⟨𝐴

𝛼2
𝑞 (𝑦𝑘𝑛), ℎ⟩

=∫𝛺

(

𝜆𝑛

(

1
(

𝑣𝑘−1𝑛
)𝜂

‖

‖

𝑣𝑘𝑛‖‖
𝑝−1

+ 1
‖

‖

𝑣𝑘𝑛‖‖
𝑝−𝜏 𝑦

𝜏−1
𝑘

)

+
𝑓 (𝑧, 𝑣𝑘−1𝑛 )
‖

‖

𝑣𝑘𝑛‖‖
𝑝−1

)

ℎd𝑧

1,𝑝

(110)
for all ℎ ∈ 𝑊0 (𝛺), all 𝑘 ∈ N0.
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First assume that hypotheses 𝐻1 hold. If in (110) we use ℎ = 𝑦𝑘 − 𝑦 ∈ 𝑊 1,𝑝
0 (𝛺), then

lim
𝑘→∞

⟨

𝐴𝑎1𝑝 (𝑦𝑘), 𝑦𝑘 − 𝑦
⟩

= 0 ( see (108),(109)),

⇒𝑦𝑘 → 𝑦 in 𝑊 1,𝑝
0 (𝛺) ( see Proposition 3, so ‖𝑦‖ = 1, 𝑦 ≥ 0).

(111)

If in (110) we pass to the limit as 𝑘 → ∞ and use hypothesis 𝐻1(𝑖𝑖) and (111), we obtain

⟨𝐴𝑎1𝑝 (𝑦), ℎ⟩ = ∫𝛺
𝜂𝑧(𝑧)𝑦𝑝−1ℎd𝑧 for all ℎ ∈ 𝑊 1,𝑝

0 (𝛺),

with 𝜂(𝑧) ≤ 𝜂𝑘(𝑧) ≤ �̂�(𝑧) for a.a. 𝑧 ∈ 𝛺 (see hypothesis 𝐻1(𝑖𝑖)). Hence

− 𝛥𝛼1𝑝 𝑦(𝑧) = 𝜂𝑘(𝑧)𝑦(𝑧)𝑝−1 in 𝛺, 𝑦|𝜕𝛺 = 0,

⇒𝑦 is nodal or 𝑦 = 0.

Both possibilities contradict (111).
Now assume that hypotheses 𝐻 ′

1 hold. Then in (110) the left hand side is bounded. On the other hand, looking at the right hand
side, on account of hypothesis 𝐻 ′

1(𝑖𝑖) and Fatou’s lemma, we see that we must have 𝑦 = 0, again a contradiction to (111).
We conclude that for every 𝑛 ∈ N

{

𝑣𝑘𝑛
}

𝑘∈N0
⊆ 𝑊 1,𝑝

0 (𝛺) is bounded. Then as before the nonlinear regularity theory implies that
we may assume that for all 𝑛 ∈ N, we have

𝑣𝑘𝑛 → 𝑣 in 𝐶1
0 (𝛺) as 𝑘→ ∞. (112)

Passing to the limit as 𝑘 → ∞ in (107) and using (112), we obtain
{

−𝛥𝛼1𝑝 𝑣𝑛 − 𝛥
𝑎2
𝑞 𝑣𝑛 = 𝜆𝑛

(

𝑣−𝜂𝑛 + 𝑣𝜏−1𝑛
)

+ 𝑓
(

𝑧, 𝑣𝑛
)

in 𝛺,
𝑣𝑛||𝜕𝛺 = 0.

}

(113)

From (107), (110) and the double limit lemma (see Hu-Papageorgiou [25], p. 43), we can find a sequence {𝑘(𝑛)}𝑛∈N such that

𝑢𝑛 = 𝑣𝑘(𝑛)𝑛 → 𝑢 in 𝐶1
0 (�̄�). (114)

But (113) and (114) imply 𝑢 ∈ lim inf𝑛→∞𝑆𝜆𝑛 . Hence

𝑆𝜆 ⊆ lim
𝑛→∞

int 𝑆𝜆𝑛 ,

⇒𝜆 → 𝑆𝜆 is lsc.

Because its values are compact 𝜆 → 𝑆𝜆 is also h-lsc.

Proposition 15. If hypotheses 𝐻0 and 𝐻1 or 𝐻 ′
1 hold, Then  ∋ 𝜆→ 𝑆𝜆 ∈ 𝑃𝑘

(

𝐶1
0 (�̄�)

)

is usc and h-usc.

Proof. We know that the solution multifunction is locally compact. So, according to Proposition 5.13, p.273, of Hu, Papageor-
giou [25], to show the upper semicontinuity of the solution multifunction, it suffices to show that it has a closed graph. So, let
{

𝜆𝑛
}

𝑛∈N ∈  be such that 𝜆𝑛 → 𝜆0 and 𝑢𝑛 ∈ 𝑆𝜆𝑛 ⊆ int 𝐶+, such that 𝑢𝑛 → 𝑢 in 𝐶1
0 (𝛺). As before, we set 𝜆0 = inf𝑛∈N 𝜆𝑛 > 0 and choose

𝜓 ∈ (0, 𝜆0) small so that

�̄�𝜓 ≤ 𝑢∗𝜆0 ≤ 𝑢∗𝜆𝑛 ≤ 𝑢 for all 𝑛 ∈ N, all 𝑢 ∈ 𝑠𝜆𝑛 .

We have
⟨

𝑉
(

𝑢𝑛
)

, ℎ
⟩

= ∫𝛺
𝑘𝜆𝑛

(

𝑧, 𝑢𝑛
)

ℎd𝑧 for all ℎ ∈ 𝑊 1,𝑝
0 (𝛺), all 𝑛 ∈ N,

⇒⟨𝑉 (𝑢), ℎ⟩ = ∫𝛺
𝑘𝜆(𝑧, 𝑢)ℎd𝑧 for all ℎ ∈ 𝑊 1,𝑝

0 (𝛺).

As before, we check that 𝑢 ∈ [�̄�𝜓 ) ∩ int 𝐶+ (see (12)) and so 𝑢 ∈ 𝑆𝜆. Therefore 𝜆→ 𝑆𝜆 has closed graph and so it is both usc and
h-usc. □

Combining Propositions 14 and 15, we obtain the following theorem for the solution multifunction.

Theorem 2. If hypotheses 𝐻0 and 𝐻1 or 𝐻 ′
1 hold, then for all 𝜆 ∈  𝑆𝜆 ∈ 𝑃𝑘(𝐶1

0 (�̄�)) and the multifunction  ∋ 𝜆 → 𝑆𝜆 is continuous
and h-continuous.
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