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a b s t r a c t

The existence of three nontrivial solutions for a nonlinear problem on compact d-
dimensional (d ≥ 3) Riemannian manifolds without boundary, is established. This
multiplicity result is then applied to solve Emden–Fowler equations that involve sublinear
terms at infinity. Two concrete examples are also provided in the present paper. Our results
apply to problems arising in conformal Riemannian geometry, astrophysics, and in the
theories of thermionic emission, isothermal stationary gas sphere, and gas combustion.
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1. Introduction

Analysis of Riemannian manifolds is a field currently undergoing great development. Moreover, analysis proves to be a
very powerful tool for solving geometrical problems. Conversely, geometrymay help us to solve certain problems in analysis,
as pointed out in Aubin [1].

Let (M, g) be a compact d-dimensional Riemannian manifold without boundary, where d ≥ 3. Let ∆g denote the
Laplace–Beltrami operator on (M, g) and assume that the functions α, K ∈ C∞(M) are positive. Suppose f : R → R is a
locally Hölder continuous function with sublinear growth and λ is a positive real parameter. In this paper, we are interested
in the existence of (classical) solutions to the following eigenvalue problem:

−∆gw + α(σ)w = λK(σ )f (w), σ ∈ M, w ∈ H2
1 (M). (Pλ)

This problem generalizes the celebrated Yamabe equation (see [2, p. 126])

4
d − 1
d − 2

∆gϕ + Rϕ = µ ϕq−1 in M,

where 2 < q < 2d/(d − 2) and R denotes the scalar curvature of M. According to Berger [3], curvature is ‘‘the No. 1
Riemannian invariant and themost natural. Gauss and thenRiemann saw it instantly’’. Themain question in the fundamental
Yamabe’s paper [4] was whether there are any restrictions needed to have a metric of constant scalar curvature. Yamabe
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proved that for compact manifolds there always exists such a metric conformally equivalent to any given metric on the
manifold. This proof turned out to be incomplete and Aubin [5] proved the theorem for all manifolds of dimension d ≥ 6
that were not conformally flat. To settle the problem completely, a new global type of argument was needed, and that was
provided in 1984 by Schoen [6].

By using variationalmethods (see Theorem2.1 below),we find awell determined open interval of values of the parameter
λ for which problem (Pλ) admits at least three nontrivial solutions. It is worth noticing that, to the best of our knowledge,
this is the first result in which all the three solutions are nontrivial.

A remarkable case of problem (Pλ) is

−∆hw + s(1 − s − d)w = λK(σ )f (w), σ ∈ Sd, w ∈ H2
1 (S

d), (Sλ)

where Sd is the unit sphere in Rd+1, h is the standardmetric induced by the embedding Sd ↩→ Rd+1, s is a constant such that
1 − d < s < 0, and ∆h denotes the Laplace–Beltrami operator on (Sd, h).

Indeed, existence results for problem (Sλ) yield, by using an appropriate change of coordinates, the existence of solutions
to the following parameterized Emden–Fowler equation

−∆u = λ|x|s−2K(x/|x|)f (|x|−su), x ∈ Rd+1
\ {0}; (Fλ)

see Remark 4.2 and Corollary 4.2.
Moreover, we observe that the existence of a smooth positive solution for problem (Sλ), when s = −d/2 or s = −d/2+1,

and f (t) = |t|
4

d−2 t, can be viewed as an affirmative answer to the famous Yamabe problem [4] on Sd (see also the Nirenberg
problem [7]); for these topics we refer to Aubin [1], Cotsiolis and Iliopoulos [8,9], Hebey [10], Kazdan and Warner [11],
Vázquez and Véron [12], and to the excellent survey by Lee and Parker [13]. In these cases, the right-hand side of problem
(Sλ) involves the critical Sobolev exponent.

Cotsiolis and Iliopoulos [9] and Vázquez and Véron [12] studied problem (Fλ), by applying either minimization or
minimax methods, provided that f (t) = |t|p−1t , with p > 1. Successively, in Kristály and Rădulescu [14], the authors
are interested in the existence of multiple solutions of problem (Pλ) in order to obtain solutions for the parameterized
Emden–Fowler equation (Fλ) considering nonlinear terms of sublinear type at infinity. In particular, in [14, Theorem 1.1],
for λ sufficiently large, the existence of two nontrivial solutions for problem (Pλ) has been successfully obtained through a
careful analysis of the standard mountain pass geometry.

Further, in Kristály et al. [15, Theorem 9.4, p. 222], the existence of an open interval of positive parameters for which
problem (Pλ) admits two distinct nontrivial solutions is established by using an abstract three critical points theorem
contained in Bonanno [16].

In the present paper we use a new approach to attach sublinear problems at infinity, previously developed in Bonanno
and Molica Bisci [17]. We obtain the existence of a well localized open interval of positive parameters for which problem
(Pλ) admits at least three nontrivial solutions; see Theorem 3.1 and Remark 3.2.

The present paper is organized as follows. In Section 2 we recall some basic definitions and preliminary facts on the
Sobolev spaces defined on compact Riemannian manifolds, while Section 3 is devoted to the existence of at least three
solutions for the eigenvalue problem (Pλ). In Section 4 we give some consequences of the main results, as well as the
existence of three nontrivial solutions for Emden–Fowler equations. A concrete example of application of ourmain theorems
is then presented in the last section. We cite the very recent monograph by Kristály et al. [15] as general reference on this
subject.

2. Preliminaries

We start this section with a short list of notions in Riemannian geometry. We refer to Aubin [1] and Hebey [10] for
detailed derivations of the geometric quantities, their motivation and further applications.

Let (M, g) be a smooth compact d-dimensional (d ≥ 3) Riemannian manifold without boundary and let gij be the
components of the metric g . As usual, we denote by C∞(M) the space of smooth functions defined on M. Let α ∈ C∞(M)
be a positive function and put ‖α‖∞ := maxσ∈M α(σ). For every w ∈ C∞(M), set

‖w‖
2
H2

α
:=

∫
M

|∇w(σ)|2dσg +

∫
M

α(σ)|w(σ)|2dσg ,

where ∇w is the covariant derivative of w, and dσg is the Riemannian measure. In local coordinates (x1, . . . , xd), the
components of ∇w are given by

(∇2w)ij =
∂2w

∂xi∂xj
− Γ k

ij
∂w

∂xk
,

where

Γ k
ij :=

1
2


∂glj
∂xi

+
∂gli
∂xj

−
∂gij
∂xk


g lk,

are the usual Christoffel symbols and g lk are the elements of the inverse matrix of g .
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Here, and in what follows, the Einstein summation convention is adopted. Moreover, the measure element dσg assumes
the form dσg =

√
det g dx, where dx stands for the Lebesgue volume element of Rd. Hence, let

Volg(M) :=

∫
M

dσg .

In particular, if (M, g) = (Sd, h), where Sd is the unit sphere in Rd+1 and h is the standardmetric induced by the embedding
Sd ↩→ Rd+1, we set

ωd := Volh(Sd) :=

∫
Sd

dσh.

The Sobolev space H2
α(M) is defined as the completion of C∞(M) with respect to the norm ‖ · ‖H2

α
. Then H2

α(M) is a Hilbert
space endowed with the inner product

⟨w1, w2⟩H2
α

=

∫
M

⟨∇w1, ∇w2⟩gdσg +

∫
M

α(σ)⟨w1, w2⟩gdσg , w1, w2 ∈ H2
α(M),

where ⟨·, ·⟩g is the inner product on covariant tensor fields associated to g.
Since α is positive, the norm ‖ · ‖H2

α
is equivalent with the standard norm

‖w‖H2
1

:=

∫
M

|∇w(σ)|2dσg +

∫
M

|w(σ)|2dσg

1/2

.

Moreover, if w ∈ H2
α(M), the following inequalities hold

min{1,min
σ∈M

α(σ)1/2}‖w‖H2
1

≤ ‖w‖H2
α

≤ max{1, ‖α‖
1/2
∞

}‖w‖H2
1
. (1)

From the Rellich–Kondrachov theorem for compact manifolds without boundary one has

H2
α(M) ↩→ Lq(M),

for every q ∈ [1, 2d/(d − 2)]. In particular, the embedding is compact whenever q ∈ [1, 2d/(d − 2)).
Hence, there exists a positive constant Sq such that

‖w‖q ≤ Sq‖w‖H2
α
, for all w ∈ H2

α(M). (2)

From now on, we assume that the nonlinearity f satisfies the following structural condition
f : R → R is a locally Hölder continuous function sublinear at infinity, that is,

lim
|t|→∞

f (t)
t

= 0. (h∞)

Let K ∈ C∞(M) be a positive function.
We recall that a function w ∈ H2

1 (M) is a weak solution of problem (Pλ) if∫
M

⟨∇w, ∇v⟩gdσg +

∫
M

α(σ)⟨w, v⟩gdσg − λ

∫
M

K(σ )f (w(σ))v(σ )dσg = 0,

for every v ∈ H2
1 (M).

Further, due to the regularity assumption on f , the weak solutions are classical.
Hence, the main purpose is to study the following problem.

Find λ > 0 and w ∈ H2
1 (M) such that

−∆gw + α(σ)w = λK(σ )f (w), for all σ ∈ M, w ∈ H2
1 (M). (Pλ)

Here,∆g represents the Laplace–Beltrami operator that, applied to a functionw ∈ H2
1 (M), is given (locally) by the following

expression

∆gw = g ij


∂2w

∂xi∂xj
− Γ k

ij
∂w

∂xk


.

Remark 2.1. For a fixed λ > 0, the function wλ(σ ) = c ∈ R \ {0}, is a solution of (Pλ) if and only if the function
σ → λK(σ )/α(σ ) is constant. In this case, nontrivial constant solutions of (Pλ), appear as fixed points of the function
t → kλf (t), where κλ denotes the constant value λK(σ )/α(σ ).

In order to obtain multiple solutions of (Pλ) not only in the case of constant solutions but also other solutions, we use
variational methods. The main tool is a critical point theorem that we recall here in a convenient form. This result has been
obtained in Bonanno and Marano [18] and it is a more precise version of Theorem 3.2 of Bonanno and Candito [19].
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Theorem 2.1. Let X be a reflexive real Banach space, Φ : X → R be a coercive, continuously Gâteaux differentiable and
sequentially weakly lower semi-continuous functional whose Gâteaux derivative admits a continuous inverse on X∗, Ψ : X → R
be a continuously Gâteaux differentiable functional whose Gâteaux derivative is compact such that

Φ(0) = Ψ (0) = 0.

Assume that there exist r > 0 and x̄ ∈ X, with r < Φ(x̄), such that

(a1)
supx∈Φ−1(]−∞,r]) Ψ (x)

r < Ψ (x̄)
Φ(x̄) ;

(a2) for each λ ∈ Λr :=

]
Φ(x̄)
Ψ (x̄) ,

r
supx∈Φ−1(]−∞,r]) Ψ (x)

[
the functional Jλ := Φ − λΨ is coercive.

Then, for each λ ∈ Λr , the functional Jλ has at least three distinct critical points in X.

We recall that the derivative of Φ admits a continuous inverse on X∗ when there exists a continuous operator T : X∗
→ X

such that T (Φ ′(x)) = x for all x ∈ X .

3. Main results

We set

κα :=

 2
‖α‖L1(M)

1/2
,

and

K1 :=
S1
√
2

‖α‖L1(M), K2 :=
Sqq

2
2−q
2 q

‖α‖L1(M).

Further, let

F(ξ) :=

∫ ξ

0
f (t) dt,

for every ξ ∈ R.
The main abstract theorem in this paper is the following multiplicity result.

Theorem 3.1. Let f : R → R be a function such that (h∞) holds and assume that

(h1) There exist two nonnegative constants a1, a2 such that

|f (t)| ≤ a1 + a2|t|q−1, for all t ∈ R,

where q ∈]1, 2d/(d − 2)[.
(h2) There exist two positive constants γ and δ, with δ > γ κα , such that

F(δ)

δ2
>

‖K‖∞

‖K‖L1(M)


a1

K1

γ
+ a2K2γ

q−2


.

Then, for each parameter λ belonging to

Λ(γ ,δ) :=

 δ2
‖α‖L1(M)

2F(δ)‖K‖L1(M)

,
‖α‖L1(M)

2‖K‖∞


a1

K1
γ

+ a2K2γ q−2

 ,

the problem (Pλ) possesses at least three distinct solutions in H2
1 (M).

Proof. Our aim is to apply Theorem 2.1. Hence, let X := H2
1 (M) and consider the functionals Φ, Ψ : X → R defined by

Φ(w) :=

‖w‖
2
H2

α

2
, Ψ (w) :=

∫
M

K(σ )F(w(σ))dσg , for all w ∈ X .

Clearly Φ : X → R is a coercive, continuously Gâteaux differentiable and sequentially weakly lower semi-continuous
functional whose Gâteaux derivative admits a continuous inverse on X∗. On the other hand, Ψ is well defined, continuously
Gâteaux differentiable and with compact derivative. Moreover, one has

Φ ′(w)(v) =

∫
M

⟨∇w, ∇v⟩gdσg +

∫
M

α(σ)⟨w(σ), v(σ )⟩gdσg ,
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and

Ψ ′(w)(v) =

∫
M

K(σ )f (w(σ))v(σ )dσg ,

for every w, v ∈ X .
Fix λ > 0. A critical point of the functional Jλ := Φ − λΨ is a function w ∈ X such that

Φ ′(w)(v) − λΨ ′(w)(v) = 0,

for every v ∈ X . Hence, the critical points of the functional Jλ are weak solutions (hence classical solutions) of problem (Pλ).
Now, Φ(0) = Ψ (0) = 0 and since condition (h1) holds, one has

F(ξ) ≤ a1|ξ | + a2
|ξ |

q

q
, (3)

for every ξ ∈ R.
Let ϱ ∈]0, +∞[ and consider the function

χ(ϱ) :=

sup
w∈Φ−1(]−∞,ϱ])

Ψ (w)

ϱ
.

Taking into account (3), it follows that

Ψ (w) =

∫
M

K(σ )F(w(σ))dσg ≤ ‖K‖∞


a1‖w‖L1(M) +

a2
q

‖w‖
q
Lq(M)


.

Then, for every w ∈ X such that w ∈ Φ−1(] − ∞, ϱ]), owing to (2), we get

Ψ (w) ≤ ‖K‖∞


(2ϱ)1/2S1a1 +

2q/2Sqqa2
q

ϱq/2

.

Hence, by using the definition of Φ , one has

sup
w∈Φ−1(]−∞,ϱ])

Ψ (w) ≤ ‖K‖∞


(2ϱ)1/2S1a1 +

2q/2Sqqa2
q

ϱq/2


. (4)

From (4), the following inequality holds

χ(ϱ) ≤ ‖K‖∞


2
ϱ
S1a1 +

2q/2Sqqa2
q

ϱq/2−1


(5)

for every r > 0.
Next, put wδ(σ ) := δ for every σ ∈ M . Clearly wδ ∈ X and we have

Φ(wδ) =
1
2

∫
M

|∇wδ(σ )|2dσg +

∫
M

α(σ)|wδ(σ )|2dσg


=

1
2

∫
M

α(σ)δ2 dσg =
δ2

2
‖α‖L1(M). (6)

Taking into account that δ > γ κα , by a direct computation, one has γ 2 < Φ(wδ).
Moreover,

Ψ (wδ) =

∫
M

K(σ )F(wδ(σ )) dσg = F(δ)‖K‖L1(M). (7)

Hence, from (6) and (7), one has

Ψ (wδ)

Φ(wδ)
= 2

F(δ)‖K‖L1(M)

δ2‖α‖L1(M)

. (8)

In view of (h2) and taking into account (5) and (8), we get

χ(γ 2) =

sup
w∈Φ−1(]−∞,γ 2])

Ψ (w)

γ 2
≤ ‖K‖∞

√
2

γ
S1a1 +

2q/2Sqqa2
q

γ q−2

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=
2‖K‖∞

‖α‖L1(M)


a1

K1

γ
+ a2K2γ

q−2


< 2
F(δ)‖K‖L1(M)

δ2‖α‖L1(M)

=
Ψ (wδ)

Φ(wδ)
.

Therefore, the assumption (a1) of Theorem 2.1 is satisfied taking x̄ := wδ and by choosing r := γ 2. Moreover, owing to
(h∞), for every ε > 0 sufficiently small there is c(ε) > 0 such that |f (t)| ≤ ε|t| + c(ε) for every t ∈ R. Consequently, for
every w ∈ H2

1 (M), we have

Jλ(w) ≥
1
2
(1 − λε‖K‖∞S22)‖w‖

2
H2

α
− c(ε)λ‖K‖∞S1‖w‖H2

α
.

Therefore, the functional Jλ is coercive for every positive parameter, in particular, for every

λ ∈ Λ(γ ,δ) ⊆

Φ(wδ)

Ψ (wδ)
,

γ 2

sup
w∈Φ−1(]−∞,γ 2])

Ψ (w)

 .

So, condition (a2) holds and hence, all the assumptions of Theorem 2.1 are satisfied. Then, for each λ ∈ Λ(γ ,δ), the functional
Jλ has at least three distinct critical points that are classical solutions of problem (Pλ). �

Remark 3.1. Hypothesis (h∞) can be substituted by the following growth condition.

(h′
∞

) There exist two positive constants b and s < 2 such that

F(ξ) ≤ b(1 + |ξ |
s),

for every ξ ∈ R.

Indeed, owing to (h1), problem (Pλ) is well defined. Therefore, the functional Jλ is coercive for every λ ∈ (0, ∞). Indeed,
fixing λ > 0, since s < 2, from the Hölder inequality we have∫

M

|w(σ)|sdσg ≤ ‖w‖
s
L2(M)

Volg(M)
2−s
2 , for all w ∈ H2

1 (M).

Now, bearing in mind (2), we obtain∫
M

|w(σ)|sdσg ≤ Ss2‖w‖
s
H2

α
Volg(M)

2−s
2 , for all w ∈ H2

1 (M). (9)

So, by using (9) and from condition (h′
∞

), it follows that

Jλ(w) ≥

‖w‖
2
H2

α

2
− λbVolg(M)

2−s
2 Ss2‖w‖

s
H2

α
− λbVolg(M), for all w ∈ H2

1 (M).

Hence, Jλ is coercive for every real positive parameter λ.

Remark 3.2. Under the additional hypothesis f (0) ≠ 0, Theorem 3.1 ensures the existence of at least three nontrivial
solutions. Indeed, in this case, zero is not a solution for problem (Pλ), as a simple computation shows. Hence, all the three
solutions, attained by using our abstract framework, are nontrivial. Moreover, if f is only continuous instead of Hölder
continuous, our result guarantees the existence of at least three weak (nontrivial) solutions for problem (Pλ).

Remark 3.3. The technical approach used to prove the previous result have been introduced in Bonanno and Molica
Bisci [17]. In the cited work, the existence of at least three weak solutions for a Dirichlet problem is showed under suitable
conditions on the potential F .

Remark 3.4. Let f : R → R be a continuous and positive function in ]0, +∞[ such that

|f (t)| ≤ a2|t|q−1, ∀ t ∈ R,

for some q ∈]2, 2d/(d − 2)[.
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Clearly, the above growth condition is a particular case of hypothesis (h1) and implies f (0) = 0. In this setting, under the
additional hypothesis (h′

∞
), Theorem 3.1 ensures the existence of at least three (two nontrivial) solutions for every

λ > λ∗
:=

1
2

‖α‖L1(M)

‖K‖L1(M)

inf
δ>0

δ2

F(δ)
.

This particular result can be achieved by using [15, Theorem 9.1].

Remark 3.5. It is well known that sharp Sobolev inequalities are important in the study of partial differential equations,
especially in the study of those arising from geometry and physics. There has been much work on such inequalities and
their applications. In our context, a concrete upper bound for the constants Sq in Theorem 3.1 is essential for a concrete
evaluation of the interval Λ(γ ,δ). In the particular case (M, g) = (Sd, h), if q ∈ [1, 2d/(d − 2)[, one has

Sq ≤
κq

min

1,min

σ∈Sd
α(σ)1/2

 , (10)

where, we set

κq :=


ω

2−q
2q

d if q ∈ [1, 2[,

max


 q − 2

dω
q−2
q

d

1/2

,
1

ω
q−2
2q

d

 if q ∈

[
2,

2d
d − 2

[
.

Indeed, in Beckner [20], it is proved that for every 2 ≤ q < 2d/(d − 2) and any w ∈ H2
1 (S

d), one has∫
Sd

|w(σ)|qdσh

2/q

≤
q − 2

dω1−2/q
d

∫
Sd

|∇w(σ)|2dσh +
1

ω
1−2/q
d

∫
Sd

|w(σ)|2dσh;

see also, for instance, Theorem 4.28 in Hebey [10]. Hence,

‖w‖Lq(Sd) ≤ max


 q − 2

dω
q−2
q

d

1/2

,
1

ω
q−2
2q

d


∫

Sd
|∇w(σ)|2dσh +

∫
Sd

|w(σ)|2dσh

1/2

,

for every w ∈ H2
1 (S

d). Owing to (1) the desiderated statement follows.
On the other hand, if q ∈ [1, 2[, as simple consequence of the Hölder inequality, it follows that

‖w‖Lq(Sd) ≤ ω
2−q
2q

d ‖w‖L2(Sd), for all w ∈ L2(Sd).

The thesis is achieved by taking into account that

‖w‖L2(Sd) ≤ ‖w‖H2
1

≤
‖w‖H2

α

min

1,min

σ∈Sd
α(σ)1/2

 ,

for every w ∈ H2
1 (S

d).

4. Applications to nonlinear eigenvalue problems and Emden–Fowler equations

Let α, K ∈ C∞(Sd) be positive and set

K ⋆
1 :=

κ1‖α‖L1(Sd)

√
2min


1,min

σ∈Sd
α(σ)1/2

 . (11)

Further, for q ∈]1, 2d/(d − 2)[, we will denote

K ⋆
2 :=

κ
q
q‖α‖L1(Sd)

2
2−q
2 qmin


1,min

σ∈Sd
α(σ)q/2

 . (12)

As a consequence of Theorem 3.1, and taking into account Remark 3.5, we get the following result on the existence of three
solutions for nonlinear eigenvalues problems on the unit sphere Sd.
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Corollary 4.1. Let f : R → R be a function such that (h∞) and (h1) hold. Further, assume that there exist two positive constants
γ and δ, with δ > γ κα , and

(h⋆
2)

F(δ)

δ2
>

‖K‖∞

‖K‖L1(Sd)


a1

K ⋆
1

γ
+ a2K ⋆

2γ q−2


,

where K ⋆
1 and K ⋆

2 are given respectively by (11) and (12).
Then, for each parameter λ belonging to

Λ⋆
(γ ,δ) :=

 δ2
‖α‖L1(Sd)

2F(δ)‖K‖L1(Sd)
,

‖α‖L1(Sd)

2‖K‖∞


a1

K⋆
1
γ

+ a2K ⋆
2γ

q−2

 ,

the problem

−∆hw + α(σ)w = λK(σ )f (ω), σ ∈ Sd, w ∈ H2
1 (S

d), (Sα
λ )

possesses at least three distinct solutions.

Remark 4.1. Other relevant contributions on the existence of multiple solutions for elliptic problems on the sphere are
contained in Kristály [21]; see also the related paper Kristály and Marzantowicz [22].

Next, we consider the following parameterized Emden–Fowler problem that arises in astrophysics, conformal Riemannian
geometry, and in the theories of thermionic emission, isothermal stationary gas sphere, and gas combustion:

−∆u = λ|x|s−2K(x/|x|)f (|x|−su), x ∈ Rd+1
\ {0}. (Fλ)

The equation (Fλ) has been studied when f has the form f (t) = |t|p−1t, p > 1; see Cotsiolis–Iliopoulos [9], Vázquez–
Véron [12]. In these papers, the authors obtained the existence andmultiplicity results for (Fλ), applying eitherminimization
or minimax methods.

Remark 4.2. The solutions of (Fλ) are being sought in the particular form

u(x) = r sw(σ), (13)

where, (r, σ ) := (|x|, x/|x|) ∈ (0, ∞) × Sd are the spherical coordinates in Rd+1
\ {0} and w be a smooth function defined

on Sd. This type of transformation is also used by Bidaut-Véron and Véron [23], where the asymptotic of a special form of
(Fλ) has been studied. Throughout (13), taking into account that

∆u = r−d ∂

∂r


rd

∂u
∂r


+ r−2∆hu,

the equation (Fλ) reduces to

−∆hw + s(1 − s − d)w = λK(σ )f (w), σ ∈ Sd, w ∈ H2
1 (S

d);

see also Kristály and Rădulescu [14].

From Remark 4.2, we have the following result.

Corollary 4.2. Assume that d and s are two constants such that 1 − d < s < 0. Further, let K ∈ C∞(Sd) be a positive function
and f : R → R as in Corollary 4.1. Then, for each parameter λ belonging to

Λ
s,d
(γ ,δ) :=

 s(1 − s − d)ωdδ
2

2F(δ)‖K‖L1(Sd)
,

s(1 − s − d)ωd

2‖K‖∞


a1

K⋆
1
γ

+ a2K ⋆
2γ q−2


 ,

the following problem

−∆u = λ|x|s−2K(x/|x|)f (|x|−su), x ∈ Rd+1
\ {0}, (Fλ)

admits at least three distinct solutions.

Proof of Corollary 4.2. Let us choose (M, g) = (Sd, h), and α(σ) := s(1 − s − d) for every σ ∈ Sd in Corollary 4.1. Clearly
α ∈ C∞(Sd) and, thanks to 1 − d < s < 0, α to be positive on Sd. Thus, for every λ ∈ Λ

s,d
(γ ,δ), the problem

−∆hw + s(1 − s − d)w = λK(σ )f (w), σ ∈ Sd, w ∈ H2
1 (S

d),

has at least three distinct solutions wi
λ ∈ H2

1 (S
d), i ∈ {1, 2, 3}. On account of (13), the elements ui

λ(x) = |x|swi
λ(x/|x|),

i ∈ {1, 2, 3}, are solutions of (Fλ). �
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5. Some examples

In the next example, problem (Pλ) admits three nontrivial solutions owing to Theorem 3.1, while [14, Theorem 1.1] as
well as [15, Theorem 9.4, p. 222] cannot be applied.

Example 5.1. Let (M, g) be a compact d-dimensional (d ≥ 3) Riemannianmanifoldwithout boundary, fix q ∈]2, 2d/(d−2)[
and let K ∈ C∞(M) be a positive function. Moreover, let h : R → R be the locally Lipschitz continuous function defined by

h(t) :=

1 + |t|q−1 if |t| ≤ r
(1 + r2)(1 + rq−1)

1 + t2
if |t| > r,

where r is a fixed constant such that

r > max

 2
Volg(M)

1/2
, q

1
q−2


‖K‖∞

‖K‖L1(M)

(K1 + K2)
 1

q−2


. (14)

Clearly h(0) ≠ 0 and h(t) ≤ (1 + |t|q−1) for every t ∈ R. Hence, the condition (h1) is satisfied for a1 = a2 = 1. Moreover,
one has that lim|t|→∞ h(t)/t = 0. Finally, owing to (14), it follows that

‖K‖∞

‖K‖L1(M)

(K1 + K2) <
rq−2

q
.

Therefore, r
0 h(t)dt

r2
=

rq−2

q
+

1
r

>
‖K‖∞

‖K‖L1(M)

(K1 + K2),

and condition (h2) holds choosing δ = r .
Consequently, from Theorem 3.1, for each parameter

λ ∈

]
qr2Volg(M)

2(qr + rq)‖K‖L1(M)

,
Volg(M)

2‖K‖∞(K1 + K2)

[
,

the following problem

−∆gw + w = λK(σ )h(w), σ ∈ M, w ∈ H2
1 (M),

possesses at least three nontrivial solutions.

The next example follows directly by Corollary 4.1. Moreover, the existence of at least three nontrivial solutions for a
class of Emden–Fowler equations is achieved.

Example 5.2. Consider three positive constants a1, a2, ϵ, fix q ∈]2, 2d/(d−2)[, where d ≥ 3, and let α, K ∈ C∞(Sd) be two
positive functions. Define g : R → R as follows

g(t) :=


a1 + a2|t|q−1 if |t| ≤ max {κα, ρ} + ϵ

a1 + a2(max {κα, ρ} + ϵ)q−1 if |t| > max {κα, ρ} + ϵ,

where

κα :=

 2
‖α‖L1(Sd)

1/2
,

and

ρ :=


‖K‖∞‖α‖L1(Sd)

a2‖K‖L1(Sd)

 1
q−2

 qa1κ1
1

√
2min


1,min

σ∈Sd
α(σ)1/2

 +
2

q−2
2 a2κ

q
q

min

1,min

σ∈Sd
α(σ)q/2




1
q−2

.

From Corollary 4.1, for each parameter

λ ∈


q(max {κα, ρ} + ϵ)2‖α‖L1(Sd)

2(qa1(max {κα, ρ} + ϵ) + a2(max {κα, ρ} + ϵ)q)‖K‖L1(Sd)
,

q‖α‖L1(Sd)

2‖K‖L1(Sd)ρ
q−2


,
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the following problem

−∆hw + α(σ)w = λK(σ )g(w), σ ∈ Sd, w ∈ H2
1 (S

d),

possesses at least three nontrivial solutions.
Finally, let s be a constant such that d − 1 < s < 0. As consequence of Corollary 4.2, we obtain that, for every

λ ∈

]
sq(1 − s − d)(max {κ, ρ} + ϵ)2ωd

2(qa1(max {κ, ρ} + ϵ) + a2(max {κ, ρ} + ϵ)q)‖K‖L1(Sd)
,
sq(1 − s − d)ωd

2‖K‖L1(Sd)ρ
q−2

[
,

where

κ :=

 2
s(1 − s − d)ωd

1/2
,

the problem

−∆u = λ|x|s−2K(x/|x|)g(|x|−su), x ∈ Rd+1
\ {0},

admits at least three distinct nontrivial solutions.
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