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ABSTRACT. In this paper, we study the following quasilinear (p, q)-equation

−∆pu − u∆qu2 + λ|u|p−2u = µ|u|l−2u + |u|m−2u, in RN ,

with prescribed mass ∫
RN

|u|p = cp,

where c > 0, µ ≥ 0, 2 ≤ p < q < N, ∆pu = div(|∇u|p−2∇u),

∆qu2 = 2q−1(|u|q−2udiv(|∇u|q−2∇u) + (q − 1)|u|q−3u|∇u|q),

λ is a Lagrange multiplier and p < l < m < p∗ := Np
N−p . We first consider the case pq

N + 2q < m < p∗,
µ = 0 and we prove the existence of normalized solutions in the purely supercritical case by using
the perturbation method. Then we obtain multiplicity of normalized solutions in the case

p < l <
p2

N
+ p,

pq
N

+ 2q < m < p∗, µ > 0,

namely when the two nonlinearities have a different character with respect to the Lp-critical expo-
nent. This case presents substantial differences concerning the purely supercritical case.
KEYWORDS: Quasilinear (p, q)-equations; Normalized solutions; Perturbation method; Combined
nonlinearities.
2020 MATHEMATICS SUBJECT CLASSIFICATION: 35A15, 35B38, 35J92.

1. INTRODUCTION

In this paper, we consider the following quasilinear (p, q)-equation with lack of compactness

−∆pu − u∆qu2 + λ|u|p−2u = µ|u|l−2u + |u|m−2u, in RN . (1.1)

We are interested in the existence of solutions with prescribed mass∫
RN

|u|p = cp,

where 2 ≤ p < q < N. Here, ∆pu = div(|∇u|p−2∇u) and

∆qu2 = 2q−1(|u|q−2udiv(|∇u|q−2∇u) + (q − 1)|u|q−3u|∇u|q),

µ ≥ 0, p < l < m < p∗ := Np
N−p , λ is a Lagrange multiplier, and c > 0 is a constant.

The features of problem (1.1) are the following:
(i) The presence of two differential operators with different growth, which generates a double

phase associated energy.
(ii) The problem combines the effect generated by the combined nonlinearities.
(iii) The corresponding energy functional is a non-autonomous variational integral that satis-

fies nonstandard growth conditions of (p, q)-type, following the terminology introduced
in the basic papers of Marcellini [27, 28, 29, 30].

(iv) Due to the unboundedness of the domain, the Palais-Smale sequences do not have the
compactness property.
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Since the content of the paper is closely concerned with unbalanced growth, we briefly intro-
duce in what follows the related background and applications and we recall some pioneering
contributions to these fields. Equation (1.1) is driven by a differential operator with unbalanced
growth due to the presence of the (p, q)-Laplacian operator. This type of problem comes from a
general reaction-diffusion system:

ut = div[A(∇u)∇u] + c(x, u), and A(∇u) = |∇u|p−2 + |∇u|q−2,

where the function u is a state variable and describes the density or concentration of multicompo-
nent substances, div[A(∇u)∇u] corresponds to the diffusion with coefficient A(∇u) and c(x, u)
is the reaction and relates to source and loss processes. Originally, the idea to treat such operators
comes from Zhikov [39] who introduced such classes to provide models of strongly anisotropic
materials, see also the monograph of Zhikov et al.[40]. We refer to the remarkable works initiated
by Marcellini [27, 28], where the author investigated the regularity and existence of solutions of
elliptic equations with unbalanced growth conditions. For further contributions to this field, we
refer to Eleuteri, Marcellini and Mascolo [13, 14].

The (p, q)-equation is also motivated by numerous models arising in mathematical physics. For
instance, we can refer to the following Born-Infeld equation [8] that appears in electromagnetism,
electrostatics and electrodynamics as a model based on a modification of Maxwell’s Lagrangian
density:

−div

(
∇u

(1 − 2|∇u|2) 1
2

)
= h(u) in Ω.

Indeed, by the Taylor formula, we have

(1 − x)−
1
2 = 1 +

x
2
+

3
2 · 22 x2 +

5!!
3! · 23 x3 + · · ·+ (2n − 3)!!

(n − 1)! · 2n−1 xn−1 + · · · for |x| < 1.

Here, (2n − 3)!! := 1 × 3 × 5 × · · · × (2n − 3) and (n − 1)! := 1 × 2 × 3 × · · · × (n − 1). Taking
x = 2|∇u|2 and adopting the first order approximation, we obtain the (p, q)-equation for p = 2
and q = 4. Furthermore, the n-th order approximation problem is driven by the multi-phase
differential operator

−∆u − ∆4u − 3
2

∆6u − · · · − (2n − 3)!!
(n − 1)!

∆2nu.

We also refer to the following fourth-order relativistic operator

u 7→ div

(
|∇u|2

(1 − |∇u|4) 3
4
∇u

)
,

which describes large classes of phenomena arising in relativistic quantum mechanics. Again, by
Taylor’s formula, we have

x2(1 − x4)−
3
4 = x2 +

3x6

4
+

21x10

32
+ · · · .

This shows that the fourth-order relativistic operator can be approximated by the following oper-
ator

u 7→ ∆4u +
3
4

∆8u.

For more details on the physical backgrounds and other applications, we refer to Bahrouni et al.
[5] (for phenomena associated with transonic flows) and to Benci et al. [6] (for models arising in
quantum physics).

In the past few decades, the (p, q)-equation has been the subject of extensive mathematical
studies. Using various variational and topological arguments, many authors studied the existence
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and multiplicity results of nontrivial solutions, ground state solutions, nodal solutions and some
qualitative properties of solutions, respectively. We refer to [15, 31, 35] for the case of bounded
domains. In this classical setting, we recall the seminal papers by Ni et al. [32], Li et al. [21], del
Pino et al. [11, 12] and Ambrosetti et al. [4]. The regularity results, existence and multiplicity of
solutions to (p, q)-equation on the whole space can be found in [3, 17, 38].

In the present paper, motivated by the fact that physicists are often interested in normalized
solutions, we look for solutions to (1.1) having a prescribed Lp-norm. More precisely, the existence
of normalized solutions can be formulated as the following problem: provided c > 0, µ ≥ 0 and
p < l < m < p∗, we aim to search for (u, λ) ∈ H ×R solving (1.1) together with the normalization
condition ∫

RN
|u|p dx = cp,

where

H :=
{

u ∈ W1,p(RN) :
∫

RN
|u|q|∇u|q dx < +∞

}
.

Solutions can be obtained as critical points of the energy functional Iµ under the constraint

u ∈ S̃(c) :=
{

u ∈ H :
∫

RN
|u|p dx = cp

}
,

where

I0
µ(u) :=

1
p

∫
RN

|∇u|p dx +
2q−1

q

∫
RN

|u|q|∇u|q dx − µ

l

∫
RN

|u|l dx − 1
m

∫
RN

|u|m dx.

Compared with the classical (p, q)-equation, the search for solutions of (1.1) presents a major dif-
ficulty: the functional associated with the term u∆qu2

V(u) =
∫

RN
|u|q|∇u|q dx

is nondifferentiable in H. In order to overcome this difficulty, we take the perturbation method,
which has been applied firstly to the unconstrained situation in [25, 26] and then to constrained
situation in [20, 23]. That is, for α ∈ (0, 1], we denote

Iα
µ(u) :=

α

θ

∫
RN

|∇u|θ dx + I0
µ(u)

on the space E := W1,p(RN) ∩ W1,θ(RN), where 2Nq
N+q < θ < min

{
N, 2Nq+2q

N+q

}
. Then we easily

know that E is a reflexive Banach space and Iα
µ ∈ C1(E). We consider Iα

µ on the following con-
straint:

S(c) :=
{

u ∈ E :
∫

RN
|u|p dx = cp

}
.

Now we collect some works close to our equation (1.1). When p = q = 2, µ = 0, equation (1.1)
is reduced to the classical quasilinear Schrödinger equation

−∆u − u∆u2 + λu = |u|m−2u in RN , (1.2)

where m > 2 and N > 1. Colin, Jeanjean and Squassina [10] and Jeanjean and Luo [19] consider
the minimization problem

m̃(c) := inf
S̃(c)

I0
0 (u)
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with 2 < m ≤ 4+ 4
N . By the Gagliardo–Nirenberg inequality, they obtained some properties about

m̃(c) by applying some minimization approaches. After that, Zeng and Zhang [37] considered the
existence and asymptotic behavior of the minimizers to

inf
u∈S̃(c)

I0
0 (u) +

∫
RN

a(x)u2 dx,

where a(x) is an infinite potential well. The difference from the previous method is that Jeanjean,
Luo and Wang [20] proved the existence of mountain-pass-type normalized solution of (1.2) by
using the perturbation method. Then Li and Zou [23] first considered the existence of normalized
solutions for equation (1.2) in case of m > 4 + 4

N through the similar method. Moreover, they
applied the index theory to obtain the existence of infinitely many normalized solutions.

Inspired by the above literature, we first study the normalized solutions of the quasilinear (p, q)-
equation (1.1). In addition to overcoming the lack of differentiability of the associated functional,
we need to introduce the Pohozaev manifold method to study the geometry of the associated
functional influenced by the quasilinear (p, q)-Laplacian operator and the combined nonlineari-
ties. Thus we define the Pohozaev set

Pα
µ(c) :=

{
u ∈ S(c) : Pα

µ (u) = 0
}

,

where

Pα
µ (u) : =

Nθ + pθ − pN
pθ

α
∫

RN
|∇u|θ dx +

∫
RN

|∇u|p dx +
2q−1(2qN + pq − pN)

pq

∫
RN

|u|q|∇u|q dx

− lN − pN
pl

µ
∫

RN
|u|l dx − mN − pN

pm

∫
RN

|u|m dx.

It is well known that any critical point of Iα
µ |S(c) stays in Pα

µ , as a consequence of the Pohozaev
identity. We denote the Lp-norm preserved transform

u ∈ S(c) 7→ s ∗ u(x) = e
N
p su(esx) ∈ S(c)

and it is natural to study the fiber maps

(Ψα
µ)u(s) := Iα

µ(s ∗ u) =
α

θ
e

N
p sθ+θs−Ns

∫
RN

|∇u|θ dx +
1
p

eps
∫

RN
|∇u|p dx

+
2q−1

q
e

N
p s·2q+qs−Ns

∫
RN

|u|q|∇u|q dx − µ

l
· e

N
p s·l−Ns

∫
RN

|u|l dx

− 1
m

· e
N
p s·m−Ns

∫
RN

|u|m dx.

We shall find that critical points of (Ψα
µ)u allow to project a function on Pα

µ and the monotonicity
and convexity properties of (Ψα

µ)u strongly affect the structure of Pα
µ . In this direction, we consider

the decomposition of Pα
µ into the disjoint union Pα

µ = (Pα
µ)

+ ∪ (Pα
µ)

0 ∪ (Pα
µ)

−, where

(Pα
µ)

+ :=
{

u ∈ Pα
µ : (Ψα

µ)
′′
u(0) > 0

}
(Pα

µ)
0 :=

{
u ∈ Pα

µ : (Ψα
µ)

′′
u(0) = 0

}
(Pα

µ)
− :=

{
u ∈ Pα

µ : (Ψα
µ)

′′
u(0) < 0

}
.

Throughout this paper, we introduce some relevant results about the Sobolev spaces. For p ∈
(1,+∞) and N > p, we define D1,p(RN) as the closure of C∞

0 (RN) with respect to ∥∇u∥p :=(∫
RN |∇u|p dx

) 1
p . ∥ · ∥s denotes the usual norm of the space Ls(RN), 1 ≤ s ≤ +∞. Let W1,p(RN) be
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the usual Sobolev space endowed with the standard norm ∥u∥W1,p(RN) :=
(∫

RN |∇u|p + |u|p dx
) 1

p .

W1,p
r (RN) :=

{
u ∈ W1,p(RN) : u(x) = u(|x|)

}
. For equation (1.1), we introduce the working space

E endowed with the norm
∥u∥E := ∥u∥W1,p(RN) + ∥u∥W1,θ(RN)

and
Er := {u ∈ E : u(x) = u(|x|)} .

Next, we need to give the well-known Sobolev embedding theorem and Gagliardo–Nirenberg
inequality.

Lemma 1.1. [1] Let N > p. There exists a constant S > 0 such that, for any u ∈ D1,p(RN),

∥u∥p
p∗ ≤ S−1∥∇u∥p

p.

Moreover, W1,p(RN) is embedded continuously into Lm(RN) for any m ∈ [p, p∗] and compactly into
Lm

loc(R
N) for any m ∈ [1, p∗), where p∗ := Np

N−p .

Lemma 1.2. [3] The space E is embedded continuously into Lm(RN) for m ∈ [p, θ∗] and compactly into
Lm

loc(R
N) for m ∈ [1, θ∗).

Lemma 1.3. [2, 33] The following results hold:
(i) Let m ∈ (p, p∗). There exists a sharp constant CN,m > 0 such that

∥u∥m ≤ CN,m∥∇u∥δm
p ∥u∥1−δm

p , ∀u ∈ W1,p(RN), (1.3)

where δm := N
p − N

m .
(ii) Let 1 < q < N and 1 ≤ p < m < q∗. Then there exists a sharp constant KN,m > 0 such that

∥u∥m ≤ KN,m∥∇u∥γm
q ∥u∥1−γm

p , ∀u ∈ W q (1.4)

where γm := Nq(m−p)
m[Nq−p(N−q)] , W

q :=
{

u ∈ Lp(RN) : ∇u ∈ Lq(RN)
}

.

Remark 1.4. In particular, by (1.4), we also have∫
RN

|u| m
2 dx ≤ K

m
2
N, m

2

(∫
RN

|∇u|q dx
) mγ̄m

2q

·
(∫

RN
|u|

p
2 dx

) m(1−γ̄m)
p

, ∀u ∈ W q
, (1.5)

where 1 < q < N, 2 ≤ p < m < 2 · q∗, γ̄m := Nq(m−p)
m[Nq− p

2 (N−q)] , W
q

:=
{

u ∈ L
p
2 (RN) : ∇u ∈ Lq(RN)

}
.

Then by replacing u with u2 in (1.5), we immediately obtains the following equality∫
RN

|u|m dx ≤ KN,m

(∫
RN

|u|q|∇u|q dx
) mγ̄m

2q

·
(∫

RN
|u|p dx

) m(1−γ̄m)
p

, ∀u ∈ Ŵ q, (1.6)

where KN,m := K
m
2
N, m

2
· 2

mγ̄m
2 , Ŵ q :=

{
u ∈ Lp(RN) : u∇u ∈ Lq(RN)

}
and 1 < q < N, 2 ≤ p < m <

2 · q∗. Now combining the definition of I0
µ(u), (1.3) and (1.6), we find that m = pq

N + 2q is Lp-critical
exponent.

The main results read as follows.

Theorem 1.5. Assume that pq
N + 2q < m < p∗ and µ = 0. Then exists a radially symmetric solution

u ∈ W1,p(RN) ∩ L∞(RN)\{0} of (1.1) for some λ > 0.

Remark 1.6. In Theorem 1.5, due to the failure of the compact embedding E ↪→ Lκ(RN) for p < κ < p∗,
we recover the compactness of bounded sequences by using the symmetric decreasing arrangement.
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Remark 1.7. The idea is to look for critical points of Iα
µ for α > 0 small by using minimax and deformation

argument first. Then having these critical points for the perturbed functional Iα
µ , we study the convergence

of these critical points as α > 0 and obtain a certain convergence to critical points of the original functional
I0
µ.

Theorem 1.8. Assume that p < l < p2

N + p, pq
N + 2q < m < p∗, µ > 0,

µ

l
Cl

N,lc
l(1−δl)+

m(1−δm)(p−lδl )
mδm−p <

mδm − p
p(mδm − lδl)

·
(

(p − lδl)m
p(mδm − lδl)Cm

N,m

) p−lδl
mδm−p

(1.7)

andµ

l
Cl

N,l

(
N
p · l − N

) (
N
p m − N

p l
)

(
N
p m − N − p

)


1
p−lδl

· c
l(1−δl )
p−lδl

−mδm−m
mδm−p <

 m
Cm

N,m

(
p + N − N

p l
)

(
N
p m − N

) (
N
p m − N

p l
)


1
mδm−p

.

(1.8)
Then the following results hold:

(i) I0
µ|S̃(c) has a critical point u at negative level m̄∗ < 0.

(ii) I0
µ|S̃(c) has a second critical point v at positive level σ̄∗ > m̄∗.

(iii) Both u and v are radially symmetric functions in RN and solve (1.1) for suitable λu, λv > 0.

Remark 1.9. In Theorem 1.8, since we need to study the geometry of the perturbed functional and show
that (Pα

µ) = ∅, the mass c is limited.

Remark 1.10. Different from the results about the normalized solutions for the classical quasilinear Schrödinger
equation, we first study the quasilinear (p, q)-equation with the combined nonlinearities. This case has dif-
ferent character with respect to the Lp-critical exponent and leads to the assocaited functional having a
more complex geometric structure. Hence it is necessary for us to discuss the manifold in blocks and obtain
solutions with different properties in different regions.

Remark 1.11. We observe that when p = q = 2 and µ = 0, equation (1.1) is reduced to the classical
quasilinear Schrödinger equation (1.2). In particular, we point out that the results in Theorems 1.5 and 1.8
still hold in case of 1 < p = q < N. In addition, although we only study normalized solutions of equation
(1.1) in the purely supercritical case and the mixed supercritical and subcritical case, the results about
normalized solutions of equation (1.1) in the purely subcritical case can also be obtained by the method
introduced in [10, 19], where the condition p < m ≤ p + p2

N for equation (1.1) is much closer to the
condition 2 < m ≤ 4 + 4

N for equation (1.2).

Remark 1.12. Note that the quasilinear operators can be degenerate when p > 2. Similar to the argument
of Lemma 2.6 in [26], we can see that the solutions obtained in Theorems 1.5 and 1.8 are strictly positive.
Moreover, the quasilinear expression ∆qu2 can be replaced by ∆q(|u|ru) for some r > 1 as in the porous me-
dia equation. This also allows us to deal with the existence and multiplicity of normalized solutions with the
help of the perturbation method in this paper. However, based on the minimax and deformation argument,
we need to give the new working space and Gagliardo–Nirenberg inequality to analyze the geometry of the
energy functional and construct the corresponding Pohozaev manifold to obtain the normalized solutions of
the equation.

The paper is organized as follows. In Section 2, we consider the perturbed functional and give
some properties of the associated Pohozaev manifold in case of µ = 0. In Section 4, we study
the convergence of the critical points for the perturbed functional as α → 0+ in case of µ = 0
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and prove Theorem 1.5. In Section 5, we discuss the compactness of Palais-Smale sequences and
properties of the associated Pohozaev manifold in case of µ > 0. In Section 6, we give some results
about the convergence of the critical points for the perturbed functional as α → 0+ in case of µ > 0
and prove Theorem 1.8.

2. PERTURBED FUNCTIONAL IN CASE OF µ = 0

In this section, we discuss the case of µ = 0 by taking the perturbation method. First of all, we
give some properties of Pα

0 (c).

Lemma 2.1. Assume that 0 < α ≤ 1 and m > pq
N + 2q. Then Pα

0 (c) is a C1-submanifold of codimension
1 in S(c), and hence a C1-submanifold of codimension 2 in E.

Proof. It follows from the definition of Pα
0 (c) that the set Pα

0 (c) is defined by the two equations
F(u) = 0 and Pα

0 (u) = 0, where
F(u) := cp − ∥u∥p

p.

We observe that F(u) ∈ C1(E). Now we verify that d(Pα
0 , F) : E 7→ R2 is surjective. Otherwise,

dPα
0 (u) and dF(u) are linearly dependent, i.e., there exists ξ ∈ R such that for any ψ ∈ E

θN + pθ − pN
p

α
∫

RN
|∇u|θ−2∇u∇ψ dx + p

∫
RN

|∇u|p−2∇u∇ψ dx

+
2q−1(2qN + pq − pN)

p

∫
RN

|∇u|q|u|q−2uψ + |u|q|∇u|q−2∇u∇ψ dx

− mN − pN
p

∫
RN

|u|m−2uψ dx = pξ
∫

RN
|u|p−2uψ dx.

In particular, taking ψ = u and ψ = x · ∇u respectively, we get

θN + pθ − pN
p

α∥∇u∥θ
θ + p∥∇u∥p

p +
2q(2qN + pq − pN)

p
∥u∇u∥q

q

=
mN − pN

p
∥u∥m

m + pξ∥u∥p
p

(2.1)

and
θN + pθ − pN

pθ
· α(N − θ)∥∇u∥θ

θ + (N − p)∥∇u∥p
p

+
2q(2qN + pq − pN)

pq
· (N − q)∥u∇u∥q

q =
mN − pN

pm
· N∥u∥m

m + Nξ∥u∥p
p.

(2.2)

Combining (2.1) and (2.2), we deduce that

(θN + pθ − pN)α

(
N
p
− N − θ

θ

)
∥∇u∥θ

θ + p2∥∇u∥p
p

+ 2q(2qN + pq − pN)

(
N
p
− N − q

q

)
∥u∇u∥q

q = (mN − pN)

(
N
p
− N

m

)
∥u∥m

m,

which along with Pα
0 (u) = 0 yields that

(θN + pθ − pN)α

(
N
p
− N − θ

θ
− mN − pN

pθ

)
∥∇u∥θ

θ + (p2 − pN + mN)∥∇u∥p
p

+ 2q−1(2qN + pq − pN)

[
2
(

N
p
− N − q

q

)
− mN − pN

pq

]
∥u∇u∥q

q = 0.
(2.3)
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We note that N
p − N−θ

θ − mN−pN
pθ > 0 since 2Nq

N+q < θ < 2Nq+2q
N+q . In addition, when m > pq

N + 2q,

p2 − pN + mN > 0 and 2
(

N
p − N−q

q − mN−pN
pq

)
> 0. Then in view of (2.3), we get u = 0, which

contradicts the fact that u ∈ S(c). The proof of Lemma 2.1 is completed. □

Lemma 2.2. Assume that m > pq
N + 2q. For any 0 < α ≤ 1 and any u ∈ E\{0}, the following results

hold:

(i) There exists a unique number sα(u) ∈ R such that Pµ(sα(u) ∗ u) = 0. Iα
0 (s ∗ u) is strictly

increasing in s ∈ (−∞, sα(u)) and is strictly decreasing in s ∈ (sα(u),+∞) and

lim
s→−∞

Iα
0 (s ∗ u) = 0+, lim

s→+∞
Iα
0 (s ∗ u) = −∞, Iα

0 (sα(u) ∗ u) > 0.

Hence sα(u) < 0 if and only if Pα
0 (u) < 0.

(ii) The map u ∈ E\{0} 7→ sα(u) ∈ R is of class C1.
(iii) sα(u) is an even function with respect to u ∈ E\{0}.

Proof. (i) It follows from the definition of Pα
0 (u) and the direct calculation that

Pα
0 (s ∗ u) =

d
ds

Iα
0 (s ∗ u) =

Nθ + pθ − pN
pθ

· αe
Ns
p ·θ+θs−Ns∥∇u∥θ

θ + eps∥∇u∥p
p

+
2q−1(2qN + pq − pN)

pq
· e

N
p s·2q+qs−Ns∥u∇u∥q

q −
mN − pN

pm
· e

N
p s·m−Ns∥u∥m

m

= e
N
p s·m−Ns

[
Nθ + pθ − pN

pθ
· αe

Ns
p ·θ+θs− N

p s·m∥∇u∥θ
θ + eps− N

p s·m+Ns∥∇u∥p
p

+
2q−1(2qN + pq − pN)

pq
· e

N
p s·2q+qs− N

p s·m∥u∇u∥q
q −

mN − pN
pm

∥u∥m
m

]
.

(2.4)

We observe that N
p θ + θ − N

p m < 0, p − N
p m + N < 0 and 2qN

p + q − N
p m < 0 since 2Nq

N+q < θ <
2Nq+2q

N+q and m > pq
N + 2q. Then in virtue of (2.4), we obtain that Pα

0 (s ∗ u) = 0 has only one solution
sα(u) ∈ R. Moreover, Pα

0 (s ∗ u) > 0 when s < sα(u) and Pα
0 (s ∗ u) < 0 when s > sα(u). This means

that Iα
0 (s ∗ u) is strictly increasing in s ∈ (−∞, sα(u)) and is strictly decreasing in s ∈ (sα(u),+∞).

In addition, Note that

lim
s→−∞

Iα
0 (s ∗ u) = 0+, lim

s→+∞
Iα
0 (s ∗ u) = −∞,

which yields that

Iα
0 (sα(u) ∗ u) = max

s∈R
Iα
0 (s ∗ u) > 0.

Hence sα(u) < 0 if and only if Pα
0 (u) < 0.

(ii) Suppose that Ψ(s, u) = Pα
0 (s ∗ u). Then from (i), we have Ψ(sα(u), u) = 0. On the other

hand,

∂

∂s
Ψ(s, u) =

(
Nθ + pθ − pN

p

)2

· α

θ
e

Ns
p θ+θs−Ns∥∇u∥θ

θ + peps∥∇u∥p
p

+
2q−1

q

(
2qN + pq − pN

p

)2

· e
N
p s·2q+qs−Ns∥u∇u∥q

q

−
(

mN − pN
p

)2

· 1
m

· e
N
p s·m−Ns∥u∥m

m.

8



Then combining the fact that Pα
0 (sα(u) ∗ u) = 0, it holds that

∂

∂s
Ψ(s, u) =

Nθ + pθ − pN
p

(
Nθ + pθ − pN

p
− mN − pN

p

)
· α

θ
e

Ns
p θ+θs−Ns∥∇u∥θ

θ

+
2q−1

q
· 2qN + pq − pN

p
·
(
·2qN + pq − pN

p
− mN − pN

p

)
e

2qNs
p +qs−Ns∥u∇u∥q

q

+

(
p − mN − pN

p

)
eps∥∇u∥p

p

< 0.

Hence by the implicit function theorem in [9], the map u 7→ sα(u) is of class C1.
(iii) From

Pα
0 (sα(u) ∗ (−u)) = Pα

0 (−sα(u) ∗ u) = Pα
0 (sα(u) ∗ u) = 0,

one has sα(−u) = sα(u) by the uniqueness. □

In what follows, we consider a minimization problem

mα
0(c) := inf

u∈Pα
0 (c)

Iα
0 (u).

We easily find any critical point u of Iα
0 |S(c) is contained in Pα

0 (c) and if mα
0(c) is achieved, then the

minimizer is a ground state critical point of Iα
0 |S(c).

For any u ∈ Pα
0 (c) and α ∈ (0, 1], we have

Iα
0 (u) = Iα

0 (u)−
p

mN − pN
Pα

0 (u)

=

(
α

θ
− p

mN − pN
· Nθ + pθ − pN

pθ
α

)
∥∇u∥θ

θ +

(
1
p
− p

mN − pN

)
∥∇u∥p

p

+

(
2q−1

q
− p

mN − pN
· 2q−1(2qN + pq − pN)

pq

)
∥u∇u∥q

q

≥
(

2q−1

q
− p

mN − pN
· 2q−1(2qN + pq − pN)

pq

)
∥u∇u∥q

q

> 0.

This means that mα
0(c) ≥ A(c) > 0 for all α ∈ (0, 1], where

A(c) :=
(

2q−1

q
− p

mN − pN
· 2q−1(2qN + pq − pN)

pq

)
inf

0<α≤1,u∈Pα
0 (c)

∥u∇u∥q
q.

Lemma 2.3. There exists a small r > 0 independent of α such that for any 0 < α ≤ 1,

0 < sup
u∈B(r,c)

Iα
0 (u) < A(c) and Iα

0 (u), Pα
0 (u) > 0 for all u ∈ B(r, c),

where
B(r, c) =

{
u ∈ S(c) : α∥∇u∥θ

θ + ∥∇u∥p
p + ∥u∇u∥q

q ≤ r
}

.

Proof. By the definition of Iα
0 , for r > 0 small enough and independent of α, it holds that

sup
u∈B(r,c)

Iα
0 (u) ≤ max

{
1
θ

,
1
p

,
2q−1

q

}
r < A(c).
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In addition, by (1.6), for any u ∈ ∂B(ρ, c) with 0 < ρ < r for a smaller r > 0, we get

inf
∂B(ρ,c)

Iα
0 (u) ≥

α

θ
∥∇u∥θ

θ +
1
p
∥∇u∥p

p +
2q−1

q
∥u∇u∥q

q −
1
m

· KN,mcm(1−γ̄m)∥u∇u∥
mγ̄m

2
q

≥ C1ρ > 0

and

inf
∂B(ρ,c)

Pα
0 (u) ≥

Nθ + pθ − pN
pθ

α∥∇u∥θ
θ + ∥∇u∥p

p +
2q−1(2qN + pq − pN)

pq
∥u∇u∥q

q

− mN − pN
pm

· KN,mcm(1−γ̄m)∥u∇u∥
mγ̄m

2
q

≥ C2ρ > 0,

where C1, C2 are positive constants independent of ρ > 0. To sum up, the proof of Lemma 2.3 is
completed. □

Inspired by [18], in order to find a Palais-Smale sequence, we consider an auxiliary functional

Iα
0 (s, u) := Iα

0 (s ∗ u) : R × E 7→ R

and study Iα
0 on the radial space R × Sr(c) with

Sr(c) := S(c) ∩ Er, Er = W1,θ
r (RN) ∩ W1,2

r (RN).

Obviously, Iα
0 is of class C1. Moreover, it follows from the symmetric critical point principle in

[34] that a Palais-Smale sequence for Iα
0 |R×Sr(c) is a Palais-Smale sequence for Iα

0 |R×S(c). Then we
define the closed sublevel set by

(Iα
0)

ι := {u ∈ S(c) : Iα
0 (u) ≤ ι}

and the minimax level
σα

0 (c) := inf
γ∈Γα

sup
t∈[0,1]

Iα
0 (γ(t)),

where the minimax class

Γα :=
{

γ = (β1, β2) ∈ C([0, 1], R × Sr(c)) : γ(0) ∈ {0} × B(r, c), γ(1) ∈ {0} × (Iα
0)

0} .

Lemma 2.4. For any 0 < α ≤ 1, mα
0(c) = σα

0 (c) and σα
0 (c) is nondecreasing with respect to α ∈ (0, 1].

Proof. On the one hand, for any γ = (β1, β2) ∈ Γα, let us consider the function

gγ(t) := Pα
0 (β1(t) ∗ β2(t)).

From Lemma 2.3, we infer that gγ(0) = Pα
0 (β2(0)) > 0. Now we show that gγ(1) = Pα

0 (β2(1)) < 0.
In fact, by Iα

0 (β2(1)) ≤ 0 and Lemma 2.2, we find that sα(β2(1)) < 0, which yields that Pα
0 (β2(1)) <

0. Then combining the continuous property of gγ, we deduce that there exists tγ ∈ (0, 1) such that
gγ(tγ) = 0, that is β1(tγ) ∗ β2(tγ) ∈ Pα

0 (c). Thus

max
t∈[0,1]

Iα
0 (γ(t)) ≥ Iα

0 (β1(tγ) ∗ β2(tγ)) ≥ mα
0(c).

This means that σα
0 (c) ≥ mα

0(c).
On the other hand, if u ∈ Pα

0 (c) ∩ Er, then

γu(t) := (0, ((1 − t)s1 + ts2) ∗ u) ∈ γα,

where s1 ≪ −1 and s2 ≫ 1. Hence

Iα
0 (u) ≥ max

t∈[0,1]
Iα
0 (((1 − t)s1 + ts2) ∗ u) ≥ σα

0 (c),
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which implies that

(mα
0)

r(c) := inf
u∈Pα

0 (c)∩Er

Iα
0 (u) ≥ σα

0 (c). (2.5)

In addition, using the symmetric decreasing rearrangement in [24], we easily obtain mα
0(c) ≥

(mα
0)

r(c), which along with (2.5) yields that mα
0(c) ≥ (mα

0)
r(c). To sum up, mα

0 = σα
0 (c).

In the last, for any 0 < α1 < α2 ≤ 1, by Iα2
0 (u) ≥ Iα1

0 (u) and Γα2 ⊂ Γα1 , it holds that

σα2
0 (c) = inf

γ∈Γα2

sup
t∈[0,1]

Iα2
0 (γ(t)) ≥ inf

γ∈Γα2

sup
t∈[0,1]

Iα1
0 (γ(t)) ≥ inf

γ∈Γα1

sup
t∈[0,1]

Iα1
0 (γ(t)) = σα1

0 (c).

Thus σα
0 (c) is nondecreasing with respect to α ∈ (0, 1]. □

In order to construct a Palais-Smale sequence of σα
0 (c), we give the following well-known re-

sults.

Definition 2.1 (Definition 3.1,[16]). Let B be a closed subset of X . We say a class F of compact subsets
of X is a homotopy stable family with boundary B provided:

(i) Every set in F contains B.
(ii) For any set A in F and any η ∈ C([0, 1]×X ,X ) satisfying η(t, x) = x for all (t, x) in ({0} ×

X ) ∪ ([0, 1]×B), we have η(1,A) ⊂ F .

Theorem 2.5 (Theorem 5.2, [16]). Let ϕ be a C1-functional on a completely connected C1-Finsler manifold
X and consider a homotopy stable family F with an extended closed boundary B. Set ϑ = ϑ(ϕ,F ) and let
F be a closed subset of X satisfying

A∩F\B ̸= ∅ for all A ∈ F (2.6)

and

sup ϕ(B) ≤ ϑ ≤ inf ϕ(F ). (2.7)

Then for any sequence of sets An ⊂ F such that limn→+∞ supAn
ϕ = ϑ, there exists a sequence xn ⊂ X\B

such that

(i) limn→+∞ ϕ(xn) = ϑ.
(ii) limn→+∞ ∥dϕ(xn)∥ = 0.
(iii) limn→+∞ dist(xn, F) = 0.
(iv) limn→+∞(xn,An) = 0.

Lemma 2.6. For any fixed α ∈ (0, 1], there exists a sequence un ∈ Sr(c) such that

Iα
0 (un) → σα

0 (c), (Iα
0 )

′|S(c)(un) → 0, Pα
0 (un) → 0 and u−

n → 0 a.e. in RN .

Proof. It follows from Definition 2.1 that F = {A = γ([0, 1]) : γ ∈ Γα} is a homotopy stable
family of compact subsets of X = R × Sr(c) with boundary B = ({0} × B(r, c))∪ ({0} ××(Iα

0)
0).

Applying Theorem 2.5, we set F = {Iα
0 ≥ σα

0 (c)} and (2.6), (2.7) with ϕ = Iα
0 , ϑ = σα

0 (c) are
satisfied. Hence, taking a minimizing sequence {γn = (0, (β2)n)} ⊂ Γα with (β2)n ≥ 0 a.e. in RN ,
there exists a Palais-Smale sequence {(sn, wn)} ⊂ R × Sr(c) for Iα

0 |R×Sr(c) at level σα
0 (c), namely,

∂sIα
0 (sn, wn) → 0 and ∂uIα

0 (sn, wn) → 0 as n → +∞ (2.8)

with

|sn|+ distE(wn, (β2)n([0, 1])) → 0 as n → +∞. (2.9)
11



Denote un = sn ∗ wn. Then the first result in (2.8) implies that Pα
0 (un) → 0 and the second result in

(2.8) gives when n → +∞,

∥dIα
0 |S(c)(un)∥ = sup

ψ∈Tun S(c),∥ψ∥E≤1
|dIα

0 (un)[ψ]|

= sup
ψ∈Tun S(c),∥ψ∥E≤1

|dIα
0 (sn ∗ wn)[sn ∗ (−sn)ψ]|

= sup
ψ∈Tun S(c),∥ψ∥E≤1

|∂uIα
0 (sn, wn)[(−sn) ∗ ψ]|

≤ ∥∂uIα
0 (sn, wn)∥ sup

ψ∈Tun S(c),∥ψ∥E≤1
|(−sn) ∗ ψ|

≤ C∥∂uIα
0 (sn, wn)∥ → 0.

In the last, (2.9) reads u−
n → 0 a.e. in RN . Therefore, the proof of Lemma 2.6 is completed. □

In the following, we shall show the compactness of the Palais-Smale sequence obtained in
Lemma 2.6.

Lemma 2.7. For any fixed α ∈ (0, 1], let {un} be a sequence obtained in Lemma 2.6. Then there exists a
uα ∈ E\{0} and a Lagrange multiplier λα ∈ R such that up to a subsequence,

un ⇀ uα in E,

Iα
0 (uα) = σα

0 (c) and (Iα
0 )

′(uα) + λα|uα|p−2uα = 0.
Furthermore, if λα ̸= 0, then

un → uα in E.

Proof. Since {un} is a sequence obtained in Lemma 2.6, combining Lemma 2.4 and the fact that
Iα
0 (un) → σα

0 (c), Pα
0 (un) → 0 as n → +∞, we easily get {un} is bounded in Er. Then using the

Sobolev embedding theorem and interpolation, it holds that up to a subsequence, there exists a
uα ∈ Er such that

un ⇀ uα in E,

un → uα in Lκ(RN) for all κ ∈ (p, 2 · q∗),
un → uα ≥ 0 a.e. in R.

Now we claim that uα ̸= 0. Otherwise, when n → +∞, we obtain that

Nθ + pθ − pN
pθ

α∥∇un∥θ
θ + ∥∇un∥p

p +
2q−1(2qN + pq − pN)

pq
∥un∇un∥q

q

=
mN − pN

pm
∥un∥m

m + Pα
0 (un) + on(1) → 0.

This means that Iα
0 (un) → 0 as n → +∞, which contradicts the fact mα

0(c) = σα
0 (c) > 0. Hence the

claim is true. Next by Lemma 3 in [7] and (Iα
0 )

′|S(c)(un) → 0, it holds that there exists a sequence
{λn} ∈ R such that

(Iα
0 )

′(un) + λn|un|p−2un → 0 in E∗. (2.10)
This implies that λn = 1

cp ⟨(Iα
0 )

′(un), un⟩ + on(1) is bounded in R. Then we assume that up to a
subsequence, there exists λα ∈ R such that λn → λα. Moreover, (Iα

0 )
′(uα) + λα|uα|p−2uα = 0

and Pα
0 (uα) = 0. In addition, using the weak lower semicontinuous property, which is similar to

Lemma 4.3 in [10], we have
α∥∇un∥θ

θ → α∥∇uα∥θ
θ ,

∥∇un∥p
p → ∥∇uα∥p

p
12



and
∥un∇un∥q

q → ∥uα∇uα∥q
q.

That is, Iα
0 (uα) = limn→+∞ Iα

0 (un) = σα
0 (c) and ⟨(Iα

0 )
′(un), un⟩ → ⟨(Iα

0 )
′(uα), uα⟩. This also means

that λα∥un∥p
p → λα∥uα∥p

p. So if λα ̸= 0, then un → uα in E. □

Based on the above lemmas, we easily conclude the following theorem.

Theorem 2.8. For any fixed α ∈ (0, 1], there exists a uα ∈ Er\{0} and a Lagrange multiplier λα ∈ R

such that
(Iα

0 )
′(uα) + λα|uα|p−2uα = 0, Iα

0 (uα) = mα
0(c),

Pα
0 (uα) = 0, 0 < ∥uα∥p

p ≤ cp, uα ≥ 0.

Furthermore, if λα ̸= 0, then ∥uα∥p
p = cp, i.e., mα

0(c) is achieved and uα is a ground state critical point of
Iα
0 |S(c).

3. CONVERGENCE ISSUES AS α → 0+ IN CASE OF µ = 0

In this section, letting α → 0+, we shall prove that the sequences of critical points of Iα
0 |S(c)

obtained in Section 2 converge to critical points of I0
0 |S̃(c).

Lemma 3.1. Assume that αn → 0+, (Iαn
0 )′(uαn) + λαn |uαn |p−2uαn = 0 with λαn ≥ 0 and Iαn

0 (uαn) →
ϱ ∈ (0,+∞) for uαn ∈ Sr(cn) with 0 < cn ≤ c. Then there exists a subsequence uαn ⇀ u in W1,p(RN)

with u ̸= 0, u ∈ W1,p
r (RN) ∩ L∞(RN) and there exists a Lagrange multiplier λ ∈ R such that

(I0
0 )

′(u) + λ|u|p−2u = 0, I0
0 (u) = ϱ, 0 < ∥u∥p

p ≤ cp

and
(i) If uαn ≥ 0 for every n ∈ N+, then u ≥ 0.
(ii) If λ ̸= 0, then limn→+∞ cn = ∥u∥p.

Proof. The idea of proof for Lemma 3.1 is inspired by [20, 23]. In the first, using the fact that
(Iαn

0 )′(uαn) + λαn |uαn |p−2uαn = 0, we easily see that Pαn
0 (uαn) = 0 for every n ∈ N+. Moreover, it

holds that
sup
n≥1

max
{

αn∥∇uαn∥θ
θ , ∥∇uαn∥

p
p, ∥uαn∇uαn∥

q
q

}
< +∞.

Therefore {uαn} is bounded in W1,p(RN). Now we claim that lim infn→+∞ cn > 0. Indeed, if cn →
0, then using (1.6), we have ∥un∥m → 0, which along with Pαn

0 (uαn) = 0 yields that Iαn
0 (uαn) → 0

which contradicts ϱ > 0. Hence the claim is true and λαn = 1
cp

n
(Iαn

0 )′(uαn)(uαn) is bounded in

R. Thus up to a subsequence, λαn → λ in R, uαn ⇀ u in W1,p(RN), uαn → u in Lκ(RN) for
κ ∈ (p, 2 · q∗) and uαn → u a.e. on RN . In addition, if uαn ≥ 0 for every n ∈ N+, then u ≥ 0.
Furthermore, similar to the arguments in Lemma A.2 in [23], we also have un∇un → u∇u in
Lq

loc(R
N) and ∇uαn → ∇u a.e. on RN . In what follows, we divide the remaining proof into three

steps.
Step 1. We show that there exists a positive constant C such that ∥uαn∥∞ ≤ C and ∥u∥∞ ≤ C.

Denote R > 2, ν > 0 and

vn =


R, uαn ≥ R,
uαn , |uαn | ≤ R,
−R, uαn ≤ −R.
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Let ψ = uαn |vαn |qν. Then ψ ∈ E. Then it follows from (Iαn
0 )′(uαn) + λαn |uαn |p−2uαn = 0 and λαn ≥ 0

that ∫
RN

|uαn |m−2uαn ψ dx

= αn

∫
RN

|∇uαn |θ−2∇uαn · ∇ψ dx +
∫

RN
|∇uαn |p−2∇uαn · ∇ψ dx

+ 2q−1
∫

RN
|∇uαn |q|uαn |q−2uαn ψ + |uαn |q|∇uαn |q−2∇uαn · ∇ψ dx

+ λαn

∫
RN

|uαn |p−2uαn ψ dx

≥ αn

∫
RN

|∇uαn |θ−2∇uαn · ∇ψ dx +
∫

RN
|∇uαn |p−2∇uαn · ∇ψ dx

+ 2q−1
∫

RN
|uαn |q|∇uαn |q−2∇uαn · ∇ψ dx

= αn

∫
RN

|∇uαn |θ |vαn |qν dx + αn

∫
RN

|∇uαn |θ−2qν|vαn |qν−2uαn vαn∇uαn · ∇vαn dx

+
∫

RN
|∇uαn |p|vαn |qν dx +

∫
RN

|∇uαn |p−2qν|vαn |qν−2uαn vαn∇uαn · ∇vαn dx

+ 2q−1
∫

RN
|uαn |q|∇uαn |q|vαn |qν + |uαn |q|∇uαn |q−2qν|vαn |qν−2uαn vαn∇uαn · ∇vαn dx

≥ 2q−1
∫

RN
|uαn |q|∇uαn |q|vαn |qν + |uαn |q|∇uαn |q−2qν|vαn |qν−2uαn vαn∇uαn · ∇vαn dx

=
1
2

∫
RN

|vαn |qν(|∇u2
αn
|)q dx +

q2q−1

νq−1

∫
RN

|∇vν
αn
|q|uαn |2q dx

≥ 1
(2 + ν)q−1

∫
RN

|∇(u2
αn
· |vαn |ν)|q dx

≥ C
(2 + ν)q−1

(∫
RN

|u2
αn
· |vαn |ν|q

∗
dx
) q

q∗

.

On the other hand, by the interpolation inequality, one has∫
RN

|uαn |m−2uαn ψ dx =
∫

RN
|uαn |m · |vαn |qν dx

≤
(∫

RN
|uαn |2·q

∗
dx
) m−2q

2·q∗

·
(∫

RN
(|vαn |νu2

αn
)

2q·q∗
2·q∗−m+2q dx

) 2·q∗−m+2q
2·q∗

≤ C ·
(∫

RN
(|vαn |νu2

αn
)

2q·q∗
2·q∗−m+2q dx

) 2·q∗−m+2q
2·q∗

,

where C is a positive constant. Combining the above inequalities, it holds that(∫
RN

|u2
αn
· |vαn |ν|q

∗
dx
) q

q∗

≤ C(2 + ν)q−1 ·
(∫

RN
(|vαn |νu2

αn
)

2q·q∗
2·q∗−m+2q dx

) 2·q∗−m+2q
2·q∗

. (3.1)

Let (ν0 + 2)ζ = 2 · q∗ and ϑ = q∗
ζ > 1 where ζ = 2q·q∗

2·q∗−m+2q . Then taking ν = ν0 in (3.1) and
R → +∞, we deduce that

∥uαn∥(2+ν0)ϑ·ζ ≤ (C(2 + ν0))
1

q(2+ν0) ∥uαn∥(2+ν0)ζ .
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Denote 2 + νi+1 = (2 + νi)ϑ for i ∈ N. Thus

∥uαn∥(2+ν0)ϑ·ζ ≤ Πi
k=0(C(2 + νk))

1
q(2+νk) ∥uαn∥(2+ν0)ζ ≤ C̃∥uαn∥(2+ν0)ζ , (3.2)

where C̃ is a positive constant. Taking i → +∞ in (3.2), we have

∥uαn∥∞ ≤ Ĉ and ∥u∥∞ ≤ Ĉ,

where Ĉ is a positive constant.
Step 2. We claim that (I0

0 )
′(u) + λ|u|p−2u = 0. Taking ψ = ηe−Muαn with η ∈ C∞

0 (RN), η ≥ 0,
M > 0. we get

0 = ((Iαn
0 )′(uαn) + λαn |uαn |p−2uαn)uαn

= αn

∫
RN

|∇uαn |θ−2∇uαn(∇ηe−Muαn − ηMe−Muαn∇uαn) dx

+
∫

RN
|∇uαn |p−2∇uαn(∇ηe−Muαn − ηMe−Muαn∇uαn) dx

+ 2q−1
∫

RN
|uαn |q|∇uαn |q−2∇uαn(∇ηe−Muαn − ηMe−Muαn∇uαn) dx

+ 2q−1
∫

RN
|∇uαn |q|uαn |q−2uαn ηe−Muαn dx

+ λαn

∫
RN

|uαn |p−2uαn ηe−Muαn dx −
∫

RN
|uαn |m−2uαn ηe−Muαn dx

≤ αn

∫
RN

|∇uαn |θ−2∇uαn∇ηe−Muαn dx +
∫

RN
|∇uαn |p−2∇uαn(∇ηe−Muαn − ηMe−Muαn∇uαn) dx

+ 2q−1
∫

RN
|uαn |q|∇uαn |q−2∇uαn(∇ηe−Muαn − ηMe−Muαn∇uαn) dx

+ 2q−1
∫

RN
|∇uαn |q|uαn |q−2uαn ηe−Muαn dx

+ λαn

∫
RN

|uαn |p−2uαn ηe−Muαn dx −
∫

RN
|uαn |m−2uαn ηe−Muαn dx.

In particular, since αn → 0+ and ∥uαn∥∞ ≤ C and uαn is bounded in E,

αn

∫
RN

|∇uαn |θ−2∇uαn∇ηe−Muαn dx → 0.

Moreover, by the weak convergence of uαn , the Hölder inequality and the Lebesgue’s dominated
convergence theorem, we see that∫

RN
|∇uαn |p−2∇uαn∇ηe−Muαn + 2q−1|uαn |q|∇uαn |q−2∇uαn∇ηe−Muαn dx

→
∫

RN
|∇u|p−2∇u∇ηe−Mu + 2q−1|u|q|∇u|q−2∇u∇ηe−Mu dx,

λαn

∫
RN

|uαn |p−2uαn ηe−Muαn dx → λ
∫

RN
|u|p−2uηe−Mu dx

and ∫
RN

|uαn |m−2uαn ηe−Muαn dx →
∫

RN
|u|m−2uηe−Mu dx.

In addition, using the Fatou’s lemma and taking M large enough, it holds that

lim inf
n→+∞

∫
RN

|∇uαn |p · ηMe−Nuαn + 2q−1|uαn |q|∇uαn |q · ηMe−Muαn − 2q−1|∇uαn |q|uαn |q−2uαn ηe−Muαn dx

≥
∫

RN
|∇u|p · ηMe−Nu + 2q−1|u|q|∇u|q · ηMe−Mu − 2q−1|∇u|q|u|q−2uηe−Mu dx.
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Consequently, we have

0 ≤
∫

RN
|∇u|p−2∇u(∇ηe−Mu − ηMe−Mu∇u) dx

+ 2q−1
∫

RN
|u|q|∇u|q−2∇u(∇ηe−Mu − ηMe−Mu∇u) dx

+ 2q−1
∫

RN
|∇u|q|u|q−2uηe−Mu dx

+ λ
∫

RN
|u|p−2uηe−Mu dx −

∫
RN

|u|m−2uηe−Mu dx.

(3.3)

For any ϕ ∈ C∞
0 (RN) with ϕ ≥ 0, we take a sequence of nonnegative functions ηn ∈ C∞

0 (RN) such
that ηn → ϕeMu in W1,p(RN), ηn → ϕeMu a.e. in RN , and ηn is uniformly bounded in L∞(RN).
Thus by (3.3), we obtain that

0 ≤
∫

RN
|∇u|p−2∇u∇ϕ dx + 2q−1

∫
RN

|u|q|∇u|q−2∇u∇ϕ dx + 2q−1
∫

RN
|∇u|q|u|q−2uϕ dx

+ λ
∫

RN
|u|p−2uϕ dx −

∫
RN

|u|m−2uϕ dx.

Similarly, we can choose ψ = ηeMuαn to get an opposite inequality. Note that ϕ = ϕ+ − ϕ− for any
ϕ ∈ C∞

0 (RN), we infer that (I0
0 )

′(u) + λ|u|p−2u = 0.
Step 3. We prove that if λ ̸= 0, then ∥u∥p = limn→+∞ cn. From the result that (I0

0 )
′(u) +

λ|u|p−2u = 0, we immediately know that P0
0 (u) = 0. On the other hand, using the weak lower

semicontinuous property, it holds that

αn∥∇uαn∥θ
θ → 0, ∥∇uαn∥

p
p → ∥∇u∥p

p

∥uαn∇uαn∥
q
q → ∥u∇u∥q

q, ∥uαn∥m
m → ∥u∥m

m.

This means that I0
0 (u) = limn→+∞ Iαn

0 (uαn) = ϱ and ⟨(Iαn
0 )′(uαn), uαn⟩ → ⟨(I0

0 )
′(u), u⟩. Then

λαn∥uαn∥
p
p → λ∥u∥p

p. Thus if λ ̸= 0, then ∥u∥p = limn→+∞ cn. The proof of Lemma 3.1 is com-
pleted. □

Proof of Theorem 1.5. From the fact that mα
0(c) ≥ A(c) > 0 for all α ∈ (0, 1] and Lemma 2.4, we find

that
m∗(c) := lim

α→0+
mα

0(c) ∈ (0,+∞).

Using Lemma 2.7, we obtain that

αn → 0+, (Iαn
0 )′(uαn) + λαn |uαn |p−2uαn = 0, Iαn

0 (uαn) → m∗(c) (3.4)

for uαn ∈ Sr(cn) with 0 < cn ≤ c and uαn ≥ 0. Moreover, Pαn
0 (uαn) = 0. In addition, testing the

second result of (3.4) with uαn , we have

0 = αn∥∇uαn∥θ
θ + ∥∇uαn∥

p
p + 2q∥uαn∇uαn∥

q
q − ∥uαn∥m

m + λαn∥uαn∥
p
p.

Then combining the condition that pq
N + 2q < m < p∗, we deduce that

λαn ·
mN − pN

pm
∥uαn∥

p
p =

(
Nθ + pθ − PN

pθ
− mN − pN

pm

)
αn∥∇uαn∥θ

θ

+

(
1 − mN − pN

pm

)
∥∇uαn∥

p
p

+

(
2q−1(2qN + pq − pN)

pq
− 2q(mN − pN)

pm

)
∥uαn∇uαn∥

q
q

> 0.
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This means that λαn > 0. Next applying Lemma 3.1, there exists u ̸= 0, u ≥ 0 and u ∈ W1,p
r (RN)∩

L∞(RN) and λ ∈ R such that

(I0
0 )

′(u) + λ|u|p−2u = 0, I0
0 (u) = m∗(c), 0 < ∥u∥p

p ≤ cp.

Similarly, we also have λ > 0. Since λαn → λ, we may suppose that λαn ̸= 0 for n large enough.
Hence cn = c and ∥u∥p

p = cp. This means that u is a nontrivial nonnegative solution of (1.1). □

4. PERTURBED FUNCTIONAL IN CASE OF µ > 0

In this section, we discuss the case of µ > 0 by taking the perturbation method. First of all, we
prove the convergence of special Palais-Smale sequences satisfying suitable additional conditions
by applying the ideas introduced in [18].

Lemma 4.1. Assume that p < l < p2

N + p, pq
N + 2q < m < p∗. Let {un} ⊂ Sr(c) be a Palais-Smale

sequence for Iα
µ at level ϱ ̸= 0 and Pα

µ (un) → 0 as n → +∞. Then up to a subsequence, un → u strongly
in E and there exists a Lagrange multiplier λ > 0.

Proof. Since Pα
µ (un) → 0 as n → +∞, we see that

Nθ + pθ − pN
pθ

α∥∇un∥θ
θ + ∥∇un∥p

p +
2q−1(2qN + pq − pN)

pq
∥un∇un∥q

q

= µ
lN − pN

pl
∥un∥l

l +
mN − pN

pm
∥un∥m

m + on(1).

Combining the definition of Iα
µ(u), we deduce that

Iα
µ(un) =

(
1 − Nθ + pθ − pN

mN − pN

)
α

θ
∥∇un∥θ

θ +

(
1
p
− p

mN − pN

)
∥∇un∥p

p

+

(
1 − 2qN + pq − pN

mN − pN

)
2q−1

q
∥un∇un∥q

q −
(

1 − lN − pN
mN − pN

)
µ

l
∥un∥l

l + on(1),
(4.1)

where the coefficients inside the brackets are positive. When µ > 0, by (1.3), one has

ϱ + 1 ≥ Iα
µ(un) ≥

(
1
p
− p

mN − pN

)
∥∇un∥p

p −
(

1 − lN − pN
mN − pN

)
µ

l
· Cl

N,l∥∇un∥lδl
p · cl(1−δl).

Since lδl < p, combining (4.1), we know that {un} is bounded in E. Next, we observe that Er ↪→
Lκ(RN) is compact for κ ∈ (p, p∗). Then there exists u ∈ Er such that up to a subsequence, un ⇀ u
weakly in E, un → u strongly in Lκ(RN) for κ ∈ (p, p∗) and a.e. in RN . Now, since {un} is a
bounded Palais-Smale sequence of Iα

µ |S(c), by the Lagrange multipliers rule, there exists λn ∈ R

such that
⟨(Iα

µ)
′(un), ψ⟩+ λn|un|p−2unψ = on(1) (4.2)

for every ψ ∈ E. In particular, we take ψ = un. Then

λncp = −α∥∇un∥θ
θ − ∥∇un∥p

p − 2q∥un∇un∥q
q + µ∥un∥l

l + ∥un∥m
m + on(1),

which along with the boundedness of {un} yields that {λn} is bounded in R. Thus up to a sub-
sequence, there exists λ ∈ R such that λn → λ in R. Moreover, recalling that Pα

µ (un) → 0, we
deduce that

λncp =

(
Nθ + pθ − pN

pθ
− 1
)

α∥∇un∥θ
θ +

(
2q−1(2qN + pq − pN)

pq
− 2q

)
∥un∇un∥q

q

+ µ

(
1 − lN − pN

pl

)
∥un∥l

l +

(
1 − mN − pN

pm

)
∥un∥m

m + on(1),
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where the coefficients inside the brackets are positive. Hence λ ≥ 0, with equality only if u ≡ 0.
In particular, if u ≡ 0, then

µ∥un∥l
l + ∥un∥m

m → 0.

Combining Pα
µ (un) → 0, we obtain that Iα

µ(un) → 0, which contradicts the fact that ϱ ̸= 0. That is,
λn → λ > 0. Finally, by the weak convergence and (4.2), it holds that

⟨(Iα
µ)

′(un), ψ⟩+ λ|u|p−2uψ = 0

for every ψ ∈ E. Moreover, using the fact that Er ↪→ Lκ(RN) is compact for κ ∈ (p, p∗) and the
weak lower semicontinuous property, similar to the proof of Lemma 2.2 in [22], we obtain that
un → u strongly in E. □

In order to obtain the existence of normalized solutions in case of a supercritical leading term
with focusing subcritical perturbation, we consider the constrained functional Iα

µ |S(c). By (1.3), we
have

Iα
µ(u) ≥

1
p
∥∇u∥p

p −
µ

l
· Cl

N,l∥∇u∥lδl
p · cl(1−δl) − 1

m
· Cm

N,m∥∇u∥mδm
p · cm(1−δm) (4.3)

for every u ∈ S(c). Hence, to analyze the geometry of the functional Iα
µ |S(c), it is useful to denote

the function h : R+ 7→ R

h(t) :=
1
p
· tp − µ

l
Cl

N,lc
l(1−δl)tlδl − 1

m
Cm

N,mcm(1−δm)tmδm . (4.4)

We observe µ > 0 and lδl < p < mδm. So h(0+) = 0− and h(+∞) = −∞. Furthermore, we have
the following lemma.

Lemma 4.2. Assume that the condition (1.7) holds. Then the function h has a local strict minimum at
a negative level and a global strict maximum at a positive level. Moreover, there exist 0 < R1 < R2,
depending on c, µ, such that h(R1) = 0 = h(R2) and h(t) > 0 when t ∈ (R1, R2).

Proof. Note that for t > 0, h(t) > 0 if and only if

h̄(t) >
µ

l
Cl

N,lc
l(1−δl), with h̄(t) :=

1
p

tp−lδl − 1
m

Cm
N,mcm(1−δm)tmδm−lδl .

It follows from the structure of h̄(t) that h̄(t) has a unique critical point on (0,+∞), which is a
global maximum point at positive level, in

t̄ :=

(
p − lδl

p
· m
(mδm − lδl)Cm

N,m

) 1
mδm−p

· c−
m(1−δm)
mδm−p ,

the maximum level is

h̄(t̄) =
mδm − p

p(mδm − lδl)
·
(

(p − lδl)m
p(mδm − lδl)Cm

N,m

) p−lδl
mδm−p

· c−
m(1−δm)(p−lδl )

mδm−p .

Hence there exists an open interval (R1, R2) such that h(t) is positive on this interval when h̄(t̄) >
µ
l Cl

N,lc
l(1−δl), that is, the condition (1.7) holds. Then we immediately obtain that h(t) has a global

maximum at positive level (R1, R2). In addition, by the fact that h(0+) = 0−, there exists a local
minimum point at negative level in (0, R1). On the other hand, we observe that h′(t) = 0 if and
only if

h̃(t) = µδlCl
N,lc

l(1−δl), with h̃(t) := tp−lδl − δmCm
N,mcm(1−δm)tmδm−lδl .

18



Obviously, h̃(t) has only one critical point, which is a strict maximum. This means that the above
equation has at most two solutions, which are the local minimum and the global maximum of h
previously found. That is, h(t) has no other critical points. □

Lemma 4.3. Assume that the condition (1.8) holds. Then (Pα
µ)

0 = ∅, and Pα
µ is a C1-submanifold of

codimension 2 in E.

Proof. We assume that there exists u ∈ (Pα
µ)

0. Then using Pα
µ (u) = 0 and (Ψα

µ)
′′
u(0) = 0, we deduce

that
α

θ

(
N
p

θ + θ − N
)
∥∇u∥θ

θ + ∥∇u∥p
p +

2q−1

q

(
N
p
· 2q + q − N

)
∥u∇u∥q

q

=
µ

l

(
N
p
· l − N

)
∥u∥l

l +
1
m

(
N
p

m − N
)
∥u∥m

m

and
α

θ

(
N
p

θ + θ − N
)2

∥∇u∥θ
θ + p∥∇u∥p

p +
2q−1

q

(
N
p
· 2q + q − N

)2

∥u∇u∥q
q

=
µ

l

(
N
p
· l − N

)2

∥u∥l
l +

1
m

(
N
p

m − N
)2

∥u∥m
m.

Thus by (1.3), one has(
N
p

m − N − p
)
∥∇u∥p

p ≤ µ

l

(
N
p
· l − N

)(
N
p

m − N
p

l
)
∥u∥l

l

≤ µ

l

(
N
p
· l − N

)(
N
p

m − N
p

l
)

Cl
N,l∥∇u∥lδl

p · cl(1−δl)

and (
p + N − N

p
l
)
∥∇u∥p

p ≤ 1
m

(
N
p

m − N
)(

N
p

m − N
p

l
)
∥u∥m

m

≤ 1
m

(
N
p

m − N
)(

N
p

m − N
p

l
)

Cm
N,m∥∇u∥mδm

p · cm(1−δm).

This implies that the lower and upper bounds ∥∇u∥p are given by m
Cm

N,mcm(1−δm)

(
p + N − N

p l
)

(
N
p m − N

) (
N
p m − N

p l
)


1
mδm−p

≤ ∥∇u∥p ≤

µ

l
Cl

N,lc
l(1−δl)

(
N
p · l − N

) (
N
p m − N

p l
)

(
N
p m − N − p

)


1
p−lδl

,

which contradicts the condition (1.8). That is, (Pα
µ)

0 = ∅ holds. Next similar to the proof of
Lemma 2.1, we easily show that Pα

µ is a C1-submanifold of codimension 2 in E. Hence the proof
of Lemma 4.3 is completed. □

Based on Lemma 4.3, we see that the manifold Pα
µ is divided into two components (Pα

µ)
+ and

(Pα
µ)

−.

Lemma 4.4. For every u ∈ S(c), the function (Ψα
µ)u has exactly two critical au, cu ∈ R and two zeros

bu, du ∈ R, with au < bu < cu < du. Furthermore, the following results hold:
(i) au ∗ u ∈ (Pα

µ)
+, cu ∗ u ∈ (Pα

µ)
−, and if s ∗ u ∈ Pα

µ , then either s = au or s = cu.
(ii) ∥∇(s ∗ u)∥p ≤ R1 for every s ≤ bu, and

Iα
µ(au ∗ u) = min

{
Iα
µ(s ∗ u) : s ∈ R and ∥∇(s ∗ u)∥p < R1

}
< 0
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(iii)

Iα
µ(cu ∗ u) = max

{
Iα
µ(s ∗ u) : s ∈ R

}
> 0,

and (Ψα
µ)u is strictly decreasing and concave on (cu,+∞). In particular, if cu < 0, then Pα

µ (u) < 0.
(iv) The maps u ∈ S(c) 7→ au ∈ R and u ∈ S(c) 7→ cu ∈ R are of class C1.

Proof. Let u ∈ S(c). Note that (Ψα
µ)

′
u(s) = 0 if and only if s ∗ u ∈ Pα

µ . Thus we first show that
(Ψα

µ)u has at least two critical points. By (4.3) and (4.4), it holds that

(Ψα
µ)u(s) = Iα

µ(s ∗ u) ≥ h(∥s ∗ u∥p) = h(es∥∇u∥p).

This means that the C2 function Ψα
µ is positive on

(
ln
(

R1
∥∇u∥p

)
, ln
(

R2
∥∇u∥p

))
. We easily check that

Ψα
µ(−∞) = 0−, Ψα

µ(+∞) = −∞, which yields that (Ψα
µ)u has at least two critical points au < cu,

with au local minimum point on
(

0, ln
(

R1
∥∇u∥p

))
at negative level, and cu global maximum point

at positive level. Next we claim that (Ψα
µ)u has no other critical points. Indeed, (Ψα

µ)
′
u(s) = 0 is

equivalent to ϕ(s) = 1
m

(
N
p m − N

)
∥u∥m

m, with

ϕ(s) : =
α

θ

(
N
p

θ + θs − N
)

e
N
p sθ+θ− N

p sm∥∇u∥θ
θ + eps+Ns− N

p sm∥∇u∥p
p

+
2q−1

q

(
N
p

2q + q − N
)

e
N
q s·2q+qs− N

p sm∥u∇u∥q
q −

µ

l

(
N
p

l − N
)

e
N
p sl− N

p sm∥u∥l
l .

It follows from the structure of ϕ(s) that ϕ has a unique maximum point, and hence (Ψα
µ)

′
u(s) = 0

has at most two solutions. That is, (Ψα
µ)u has exactly two critical points and no other critical points.

To sum up, it holds that (Ψα
µ)u has exactly two critical points: au is the local minimum on(

−∞, ln
(

R1
∥∇u∥p

))
at negative level, and cu is the global maximum at positive level. Furthermore,

au ∗ u, cu ∗ u ∈ Pα
µ , and s ∗ u ∈ Pα

µ implies that s ∈ {au.cu}. Since (Pα
µ)

0 = ∅, we easily see that
au ∗ u ∈ (Pα

µ)
+ and cu ∗ u ∈ (Pα

µ)
−. It follows from the monotonicity and the behavior of (Ψα

µ)u

at infinity that (Ψα
µ)u has exactly two zeros bu, du, with au < bu < cu < du. (Ψα

µ)u is concave on
[cu,+∞), and hence if tu < 0, then Pα

µ (u) = (Ψα
µ)

′
u(0) = 0.

In what follows, we apply the implicit function theorem on the C1 function Φ(s, u) := (Ψα
µ)

′
u(s).

Then by Φ(au, u) = 0, ∂sΦ(au, u) = (Ψα
µ)

′′
u(au) < 0 and (Pα

µ)
0 = ∅, we deduce that u 7→ au

is of class C1. Similarly, we also find that u 7→ cu is of class C1. The proof of Lemma 4.4 is
completed. □

Based on the results of Lemma 4.4, for k > 0, we denote

Ak :=
{

u ∈ S(c) : ∥∇u∥p < k
}

, m̄α
µ(c) := inf

u∈AR1

Iα
µ(u).

Then we easily find that (Pα
µ)

+ is contained in AR1 and supu∈(Pα
µ )

+ Iα
µ(u) ≤ 0 ≤ infu∈(Pα

µ )
− Iα

µ(u).
Furthermore, we have the following results about m̄α

µ(c).

Lemma 4.5. It holds that m̄α
µ(c) ∈ (−∞, 0),

m̄α
µ(c) = inf

u∈Pα
µ

Iα
µ(u) = inf

u∈(Pα
µ )

+
Iα
µ(u),

and
m̄α

µ(c) < inf
AR1\AR1−ρ

Iα
µ(u)
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for ρ > 0 small enough.

Proof. For u ∈ AR1 ,
Iα
µ(u) ≥ h(∥∇u∥p) ≥ min

t∈[0,R1]
h(t) > −∞,

which means that m̄α
µ(c) > −∞. In addition, for any u ∈ S(c), combining ∥∇(s ∗ u)∥p < R1

and Iα
µ(s ∗ u) < 0 for s ≪ −1, we have m̄α

µ(c) < 0. Next on one hand, since (Pα
µ)

+ ⊂ AR1 ,
m̄α

µ(c) ≤ infu∈(Pα
µ )

+ Iα
µ(u). On the other hand, if u ∈ AR1 , then au ∗ u ∈ (Pα

µ)
+ ⊂ AR1 and

Iα
µ(au ∗ u) = min

{
Iα
µ(s ∗ u) : s ∈ R and ∥∇(s ∗ u)∥p < R1

}
≤ Iα

µ(u),

which implies that infu∈(Pα
µ )

+ Iα
µ(u) ≤ m̄α

µ(c). Moreover, since Iα
µ(u) > 0 when u ∈ (Pα

µ)
−, we

obtain that infu∈(Pα
µ )

+ Iα
µ(u) = infu∈Pα

µ
Iα
µ(u). Hence

m̄α
µ(c) = inf

u∈Pα
µ

Iα
µ(u) = inf

u∈(Pα
µ )

+
Iα
µ(u).

In the last, it follows from the continuity of h that there exists ρ > 0 such that h(t) ≥ m̄α
µ(c)
2 when

t ∈ [R1 − ρ, R1]. Thus combining infu∈Pα
µ

Iα
µ(u) ∈ (−∞, 0), it holds that

Iα
µ(u) ≥ h(∥∇u∥p) ≥

m̄α
µ(c)
2

> m̄α
µ(c)

for each u ∈ S(c) with R1 − ρ ≤ ∥∇u∥p ≤ R1. The proof of Lemma 4.5 is completed. □

To search for the second critical point for Iα
µ |S(c), we give the following lemma.

Lemma 4.6. The following results hold:
(i) Assume that Iα

µ(u) < m̄α
µ(c). Then the value cu defined by Lemma 4.4 is negative.

(ii) σ̄α
µ(c) := infu∈(Pα

µ )
− Iα

µ(u) > 0.

Proof. (i) It follows from Lemma 4.4 that Ψα
µ has exactly two critical points au, cu ∈ R and two

zeros bu, du ∈ R, with au < bu < cu < du. Obviously, if du ≤ 0, then cu < 0. Thus we suppose
that cu > 0. In particular, if 0 ∈ (bu, du), then Iα

µ(u) = (Ψα
µ)u(0) > 0, which is impossible by

Iα
µ(u) < m̄α

µ(c) < 0. This means that bu > 0. Then using Lemma 4.4(ii), one has

m̄α
µ(c) > Iα

µ(u) = (Ψα
µ)u(0) ≥ inf

s∈(−∞,bu]
Ψα

µ(s)

≥ inf
{

Iα
µ(s ∗ u) : s ∈ R and ∥∇(s ∗ u)∥p < R1

}
= Iα

µ(au ∗ u) ≥ m̄α
µ(c),

which is a contradiction. Thus the value cu is negative.
(ii) By Lemma 4.2, let t̄ be the strict maximum of the function h at positive level. For each

u ∈ (Pα
µ)

−, there exists τu ∈ R such that ∥∇(τu ∗ u)∥ = t̄. On the other hand, it follows from
Lemma 4.4 and u ∈ (Pα

µ)
− that the value 0 is the unique strict maximum of the function Ψα

µ.
Hence

Iα
µ(u) = (Ψα

µ)u(0) ≥ (Ψα
µ)u(τu) = Iα

µ(τu ∗ u) ≥ h(∥∇(τu ∗ u)∥p) = h(t̄) > 0,

which along with the arbitrary of u ∈ (Pα
µ)

− yields that

σ̄α
µ(c) = inf

u∈(Pα
µ )

−
Iα
µ(u) > 0.

This completes the proof. □

Based on the above lemmas, we have the following theorem.
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Theorem 4.7. Under the assumptions (1.7) and (1.8), the following results hold:
(i) Iα

µ |S(c) has a critical point u1 at negative level m̄α
µ(c) < 0 which is an interior local minimizer of Iα

µ

on the set Ak for a suitable k > 0 small enough.
(ii) Iα

µ |S(c) has a second critical point u2 at level σ̄α
µ(c) > m̄α

µ(c).
(iii) u1, u2 are radially symmetric functions in RN and the Lagrange multipliers λ1, λ2 > 0.

Proof. We first show the existence of a local minimizer. Let us consider a minimizing sequence
{un} for Iα

µ |AR1
. By the Schwarz rearrangement, we can further assume that un ∈ Er ∩ S(c) is

decreasing for every n. For each n, we take aun ∗ un ∈ (Pα
µ)

+. Then by Lemma 4.4, ∥∇(aun ∗
un)∥p < R1 and

Iα
µ(aun ∗ un) = min

{
Iα
µ(s ∗ un) : s ∈ R and ∥∇(s ∗ un)∥p < R1

}
≤ Iα

µ(un),

we obtain a new minimizing sequence {vn := aun ∗ un} with vn ∈ Er ∩ S(c) ∩ (Pα
µ)

+ radially
decreasing for each n. In addition, it follows from Lemma 4.5 that ∥vn∥p < R1 − ρ for each n.
Hence by the Ekeland’s variational principle, we find the existence of a new minimizing sequence
{wn} ⊂ AR1 for m̄α

µ(c) with the property that ∥wn − vn∥E → 0 as n → +∞. Moreover, {wn}
satisfies all the assumptions of Lemma 4.1. So up to a subsequence, there exists w such that wn →
w strongly in E, w is an interior local minimizer for Iα

µ |AR1
with some λ > 0 and Iα

µ(w) = m̄α
µ(c).

Next we prove the existence of a second critical point for Iα
µ |S(c). Define

(Iα
µ)

ι :=
{

u ∈ S(c) : Iα
µ(u) ≤ ι

}
.

Inspired by [18], we consider the augmented functional

Iα
µ(s, u) := Iα

µ(s ∗ u) : R × E 7→ R

and study Iα
µ |R×S(c). Obviously, Iα

µ is of class C1. Theorem 1.28 in [36] indicates that a critical
point for Iα

µ |R×(Er∩S(c)) is a critical point for Iα
µ |R×S(c). Now we introduce the minimax class

Γ̄α :=
{

γ = (β1, β2) ∈ C([0, 1], R × (Er ∩ S(c))), γ(0) ∈ {0} × (Pα
µ)

+, γ(1) ∈ {0} × (Iα
µ)

2m̄α
µ(c)
}

with associated minimax level

σ̄α
µ(c) := inf

γ∈Γ̄α

max
(s,u)∈γ([0,1])

Iα
µ(s, u).

For any u ∈ Er ∩ S(c), by Lemma 4.4, we know that there exists s0 ≫ 1 such that

γu : τ ∈ [0, 1] 7→ (0, ((1 − τ)au + τs0) ∗ u) ∈ R × (Er ∩ S(c))

is a path in Γ̄α. So Γα ̸= ∅ and σ̄α
µ is a real number. We claim that for any γ ∈ Γ̄α, there exists

τγ ∈ (0, 1) such that
β1(τγ) ∗ β2(τγ) ∈ (Pα

µ)
−. (4.5)

Indeed, since γ(0) = (β1(0), β2(0)) ∈ {0} × (Pα
µ)

+, by Lemma 4.4, it holds that cβ1(0)∗β2(0) =

cβ2(0) > aβ2(0) = 0. On the other hand, since Iα
µ(β2(1)) = Iα

µ(γ(1)) ≤ 2m̄α
µ(c) < 0, by Lemma 4.6,

it holds that cβ1(1)∗β2(1) = cβ2(1) < 0. In addition, we easily find that cβ1(τ)∗β2(τ) is continuous in τ.
Thus for any γ ∈ Γ̄α, there exists τγ ∈ (0, 1) such that cβ1(τγ)∗β2(τγ) = 0. That is β1(τγ) ∗ β2(τγ) ∈
(Pα

µ)
−. The claim is true.

In what follows, we show that σ̄α
µ = infu∈(Pα

µ )
−∩Er∩S(c) Iα

µ(u). In fact, for any γ ∈ Γ̄α, by (4.5), one
infers that

max
γ[0,1]

Iα
µ ≥ Iα

µ(γ(τγ)) = Iα
µ(β1(τγ) ∗ β2(τγ)) ≥ inf

u∈(Pα
µ )

−∩Er∩S(c)
Iα
µ(u).
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This means that σ̄α
µ ≥ infu∈(Pα

µ )
−∩Er∩S(c) Iα

µ(u). On the other hand, if u ∈ (Pα
µ)

− ∩ Er ∩ S(c), then
γu is a path in Γ̄α with

Iα
µ(u) = Iα

µ(0, u) = max
γu([0,1])

Iα
µ ≥ σ̄α

µ .

This means that σ̄α
µ ≤ infu∈(Pα

µ )
−∩Er∩S(c) Iα

µ(u). Then in virtue of Lemma 4.6, it holds that

σ̄α
µ = inf

(Pα
µ )

−∩Er∩S(c)
Iα
µ > 0 ≥ sup

((Pα
µ )

+∪(Iα
µ)

2m̄α
µ(c))∩Er∩S(c)

Iα
µ = sup

({0}×(Pα
µ )

+∪{0}×(Iα
µ)

2m̄α
µ(c))∩R×(Er∩S(c))

Iα
µ .

In the last, we suppose that γn(τ) = ((β1)n(τ), (β2)n(τ)) be any minimizing sequence for σ̄α
µ(c)

with the property that (β1)n(τ) = 0 and (β2)n(τ) ≥ 0 a.e. in RN for each τ ∈ [0, 1]. Similar to the
discussion in Lemma 2.6, we obtain that there exists a Palais-Smale sequence {un} ⊂ Er ∩ S(c) for
Iα
µ |Er∩S(c) at level σ̄α

µ(c) with Pα
µ (un) → 0. Applying Lemma 4.1, there exists u such that un → u

strongly in E with some λ > 0 and Iα
µ(u) = σ̄α

µ(c) > 0. The proof of Theorem 4.7 is completed. □

5. CONVERGENCE ISSUES AS α → 0+ IN CASE OF µ > 0

In this section, letting α → 0+, we shall show that the sequence of critical points of Iα
µ |S(c)

obtained in Section 4 convergence to critical points of I0
µ|S̃(c). Based on Lemma 4.1, similar to the

proof of Lemma 3.1, it is not difficult for us to obtain the following lemma.

Lemma 5.1. Assume that α → 0+, (Iαn
µ )′(uαn) + λαn |uαn |p−2uαn = 0 with λαn > 0 and Iαn

µ (uαn) →
ϱ ̸= 0 for uαn ∈ Er ∩ S(c). Then there exists a subsequence uαn ⇀ u in W1,p(RN) with u ̸≡ 0,
u ∈ W1,p

r (RN) ∩ L∞(RN) ∩ S(c) and there exists a Lagrange multiplier λ ∈ R such that

(I0
µ)

′(u) + λ|u|p−2u = 0, I0
µ(u) = ϱ.

Proof of Theorem 1.8. First of all, it follows from the proof of Lemmas 4.2 and 4.5 that

m̄∗(c) := lim
α→0+

m̄α
µ(c) ∈ (−∞, 0).

Then by Theorem 4.7, we take

αn → 0+, (Iαn
µ )′(uαn) + λαn |uαn |p−2uαn = 0, Iαn

µ (uαn) → m̄∗

for uαn ∈ Er ∩ S(c), λαn > 0. Combining Lemma 5.1, there exist u ̸= 0, u ∈ W1,p(RN) ∩ L∞(RN)
and λ > 0 such that

(I0
µ)

′(u) + λ|u|p−2u = 0, I0
µ(u) = m̄∗(c) , ∥u∥p

p = cp.

That is, u is a nontrivial solution of (1.1). On the other hand, based on the proof of Lemma 4.6, we
easily know that σ̄∗(c) := limα→0+ σ̄α

µ(c) > 0. Then similar to the above argument, we obtain the
existence of a second critical point for I0

µ|S̃(c). The proof of Theorem 1.8 is completed. □
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