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REMARKS ON A LIMITING CASE IN THE TREATMENT OF
NONLINEAR PROBLEMS WITH MOUNTAIN PASS GEOMETRY

VICENŢIU RĂDULESCU

Abstract. We study a class of nonlinear elliptic problem with linear

growth and Dirichlet boundary condition. By means of the mountain pass

theorem, we establish the existence of a positive solution. The proof of

the Palais-Smale condition differs with respect to the standard case that

corresponds to nonlinearities with a superlinear behaviour.

1. Introduction

The mountain pass theorem of A. Ambrosetti and P. Rabinowitz [2] is a result
of great importance in the determination of critical points to energy functionals that
occur in the theory of partial differential equations. The original version of A. Am-
brosetti and P. Rabinowitz corresponds to the case of mountains of positive altitude.
Their proof relies on some deep deformation techniques developed by R. Palais and
S. Smale [11, 12], who put the main ideas of the Morse theory into the framework of
differential topology on infinite dimensional manifolds. H. Brezis and L. Nirenberg
provided in [4] a simpler proof which combines two major tools: Ekeland’s varia-
tional principle and the pseudogradient lemma. Ekeland’s variational principle is the
nonlinear version of the Bishop–Phelps theorem and it may be also viewed as a gen-
eralization of Fermat’s theorem. As pointed out by H. Brezis and F. Browder [3], the
mountain pass theorem “extends ideas already present in Poincaré and Birkhoff”. An
important contribution is due to P. Pucci and J. Serrin [14, 15, 16], who studied he
case of mountains of zero altitude.

In its simplest form, the mountain pass theorem considers functions J : X →
R of class C1, where X is a real Banach space. It is assumed that J satisfies the
following geometric conditions:
(H1) there exist two numbers R > 0 and c0 ∈ R such that J(u) ≥ c0 for every
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u ∈ SR := {v ∈ X; ‖v‖ = R};
(H2) J(0) < c0 and J(e) < c0 for some e ∈ X with ‖e‖ > R.
With an additional compactness condition of Palais-Smale type it then follows that
the function J has a critical point u0 ∈ X \ {0, e}, with corresponding critical value
c ≥ c0. In essence, this critical value occurs because 0 and e are low points on either
side of the “mountain” SR, so that between 0 and e there must be a lowest critical
point, that is, a mountain pass. Condition (H2) signifies that the mountain should
have positive altitude. P. Pucci and J. Serrin [14, 15] proved that the mountain
pass theorem continues to hold for a mountain of zero altitude, provided it also has
nonzero thickness. In addition, if c = c0, then the “pass” itself occurs precisely on
the mountain. Roughly speaking, P. Pucci and J. Serrin showed that the mountain
pass theorem still remains true if (H1) is strengthened a little, to the form
(H1)′ there exist real numbers c0, R, r such that 0 < r < R and J(u) ≥ c0 for every
u ∈ A := {v ∈ X; r < ‖v‖ < R},
while hypothesis (H2) is weakened and replaced with
(H2)′ J(0) ≤ c0 and J(e) ≤ c0 for some e ∈ X with ‖e‖ > R.

As stated above, the Palais-Smale compactness condition is also crucial for
the mountain pass theorem. Let X be a real Banach space and J ∈ C1(X, R). We
recall that J satisfies the Palais-Smale condition if any sequence (un)n in X such that

(J(un))n is bounded and J ′(un) → 0,

admits a convergent subsequence. As pointed out by M. Struwe [19, p. 169], “recent
advances in the calculus of variations have shown that the Palais-Smale condition
holds for problems in a broad range of energies. Moreover, the failure of the Palais-
Smale condition at certain levels reflects highly interesting phenomena related to
internal symmetries of the systems under study, which geometrically can be described
as separation of spheres, or mathematically as singularities, respectively as change in
topology. Speaking in physical terms, we might observe phase transitions or particle
creation at the energy levels where the Palais-Smale condition fails”.

The mountain pass theorem has the following simple geometric interpretation.
Consider two valleys A and B such that A is surrounded by a mountain ridge that
separates it from B. To go from A to B, we must cross the mountain chain. If we
want to climb as little as possible, we would have to consider the maximal elevation
of each path. The path with the minimal one of these elevations will cross a mountain
pass.

We refer to the books by A. Ambrosetti and A. Malchiodi [1], M. Ghergu and
V. Rădulescu [7], Y. Jabri [8], A. Kristály, V. Rădulescu, and Cs. Varga [9], J. Mawhin

100



THE TREATMENT OF NONLINEAR PROBLEMS WITH MOUNTAIN PASS GEOMETRY

and M. Willem [10], P. Rabinowitz [17], M. Schechter [18], M. Struwe [19], M. Willem
[20], and W. Zou [21] for relevant applications of the mountain pass theory. We also
refer to the recent paper by P. Pucci and V. Rădulescu [13] for a history of this result
and several applications, including in the nonsmooth setting.

2. Main Result

The main application of the mountain pass theorem provided by A. Am-
brosetti and P. Rabinowitz [2] concerns the Emden–Fowler equation (see R. Emden
[5] and R. H. Fowler [6]) 

−∆u = f(u) in Ω
u > 0 in Ω
u = 0 on ∂Ω,

(2.1)

where Ω ⊂ RN is a bounded domain with smooth boundary. The standard example
here is given by f(u) = |u|p−1u, where 1 < p < (N+2)/(N−2) for N ≥ 3 (1 < p <∞
if N = 1 or N = 2). More generally, the nonlinear term in problem (2.1) can be
assumed to satisfy the following assumptions:
(1) f : R → R is a differentiable function such that

|f(u)| ≤ C (1 + up) for all u ≥ 0,

for some C > 0, where 1 < p < (N + 2)/(N − 2);
(2) f(0) = f ′(0) = 0;
(3) there exists µ > 2 such that

0 < µF (u) ≤ uf(u) for all u large enough,

where F (u) :=
∫ u

0
f(t) dt.

The purpose of the present paper is to study problem (2.1) in the case of
f has a linear behaviour. This means that f fulfills the same growth condition as
in hypothesis (1) above, but provided that p = 1. Simple examples show that we
cannot expect that a solution exists in all cases. Indeed, if we consider the simplest
case corresponding to f(u) = λu, where λ is a positive parameter, then problem (2.1)
has a solution if and only if λ = λ1. Here, λ1 stands for the first eigenvalue of (−∆)
in H1

0 (Ω). Even if we drop the restriction that the solution is positive, a nontrivial
solution of (2.1) does not exist if λ is not an eigenvalue of the Laplace operator. These
simple remarks show that the lowest eigenvalue λ1 of (−∆) must play a central role
in the existence of a solution to problem (2.1), provided that the nonlinear term f

has a linear growth.
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Our main result is stated in what follows. We point out that the nonlinear
term is not assumed to satisfy the above Ambrosetti-Rabinowitz technical assumption
(3).

Theorem 2.1. Assume f : R → R is a differentiable function such that f(0) = 0,

f ′(0) < λ1 (2.2)

and

λ1 < lim
u→∞

f(u)
u

<∞ . (2.3)

Then problem (2.1) has at least a solution.

Proof. Since we are looking for positive solutions, it is natural to consider the contin-
uous function

f0(u) :=

{
f(u) if u ≥ 0
0 if u < 0.

By our hypotheses, there is some C > 0 such that for all u ∈ R,

|f0(u)| ≤ C(1 + |u|). (2.4)

Assumption (2.3) implies that C > λ1. Relation (2.3) also shows that

f0(u) ≥ C1u− C2 for all u ≥ 0,

for some C1, C2 > 0 with C1 > λ1.
Set F0(u) :=

∫ u

0
f(t) dt. Therefore

|F0(u)| ≤ C

(
u+

u2

2

)
and

F0(u) ≥ C1
u2

2
− C3 for all u ≥ 0,

where C3 > 0.
We associate to (2.1) the energy functional J : H1

0 (Ω) → R defined by

J(u) :=
∫

Ω

|∇u|2 dx−
∫

Ω

F0(u) dx for all u ∈ H1
0 (Ω).

It follows from (2.4) and the Sobolev embedding theorem that J is well defined on
H1

0 (Ω). Moreover, J is of class C1 and for all v ∈ H1
0 (Ω),

J ′(u)(v) =
∫

Ω

[∇u∇v − f0(u)v] dx.

We first argue that the geometric assumptions of the mountain pass theorem
are fulfilled. Fix 1 < p < (N + 2)/(N − 2). In order to check condition (H1) we
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observe that hypothesis (2.3) implies that there are some 0 < α < λ1 and C4 > 0
such that for all u ∈ H1

0 (Ω)

|f0(u)| ≤ α |u|+ C4|u|p.

Thus, F0(u) ≤ αu2/2 + C5 |u|p+1, where C5 > 0. It follows that

J(u) ≥ 1
2

∫
Ω

|∇u|2 dx− α

2

∫
Ω

u2 dx− C5

∫
Ω

|u|p+1 dx.

By Poincaré’s inequality we have∫
Ω

u2 dx ≤ 1
λ1

∫
Ω

|∇u|2 dx for all u ∈ H1
0 (Ω).

We deduce that
J(u) ≥ λ1 − α

2λ1
‖u‖2

H1
0 (Ω) − C5

∫
Ω

|u|p+1 dx,

for all u ∈ H1
0 (Ω). Using Sobolev embeddings we conclude that J(u) > 0 for all u

with ‖u‖ = R, provided that R > 0 is small enough. This shows that condition (H1)
is fulfilled.

Now, we prove that assumption (H2) in the mountain pass theorem holds

true. Let e1 > 0 be the first eigenfunction of (−∆) in H1
0 (Ω), hence

∫
Ω

|∇e1|2 dx =

λ1

∫
Ω

e21 dx. Thus, for all t > 0,

J(te1) ≤
t2λ2

1

2

∫
Ω

e21 dx−
t2C2

1

2

∫
Ω

e21 dx+ C3|Ω| < 0,

provided that t is sufficiently large. This follows from the fact that C1 > λ1, which is
a direct consequence of our assumption (2.3).

To complete the proof, it remains to show that the energy functional J sat-
isfies the Palais-Smale condition. For this purpose, let (un) be a sequence in H1

0 (Ω)
such that

sup
n
|J(un)| <∞ (2.5)

and
lim

n→∞
‖J ′(un)‖H−1(Ω) = 0. (2.6)

We now claim that
(un) is bounded in H1

0 (Ω). (2.7)

We first observe that relation (2.6) implies

−∆un = f0(un) + ψn , (2.8)

where ‖ψn‖H−1(Ω) → 0. Taking into account the linear growth of f0 and using
(2.8), we deduce that our claim (2.7) follows after proving that (un) is bounded in
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L2(Ω). Arguing by contradiction, we assume that ‖un‖L2(Ω) → ∞. It follows that
vn := un/‖un‖L2(Ω) satisfies

−∆vn =
f0(un)

‖un‖L2(Ω)
+

ψn

‖un‖L2(Ω)
. (2.9)

We now observe that f0(un)/‖un‖L2(Ω) is bounded in L2(Ω). Thus, after multiplica-
tion with vn in (2.9) and integration, we deduce that (vn) is bounded in H1

0 (Ω). So,
up to a subsequence,

vn → v in H1
0 (Ω).

Moreover, since ‖vn‖L2(Ω) = 1, we also have

‖v‖L2(Ω) = 1. (2.10)

Next, we observe that the definition of f0 implies that there is some C > 0 such that
f0(u) ≤ −C for all u ∈ R. Thus, by (2.9),

−∆un ≥ −C + ψn in Ω .

So, by the maximum principle, un ≥ −C + ρn, where ρn → 0 in H1
0 (Ω) and hence

ρn → 0 a.e. in Ω (at a subsequence). This implies that

v ≥ 0 a.e. in Ω. (2.11)

On the other hand, our assumption (2.3) implies

f0(u) ≥ Au−B for all u ∈ R,

where A > λ1 and B > 0. This implies that

−∆un ≥ Aun −B + ψn in Ω. (2.12)

Let e1 > 0 be the first eigenfunction of the Laplace operator in H1
0 (Ω). After multi-

plication with e1 in relation (2.12) we obtain

λ1

∫
Ω

unψn dx ≥ A

∫
Ω

une1 dx− C + 〈ψn, en〉H−1,H1
0
.

Dividing by ‖un‖L2(Ω) and taking n→∞ we obtain λ1

∫
Ω

ve1 dx ≥ A

∫
Ω

ve1 dx, which

contradicts relations (2.10) and (2.11). This concludes the proof of our claim (2.7).
From now on, using the same ideas as in the proof of Theorem 9 in [13], we can deduce
that any bounded sequence (un) in H1

0 (Ω) satisfying relation (2.6) has the property
that contains a strongly convergent subsequence in H1

0 (Ω). These arguments do not
depend on the linear growth of the nonlinear term f . Our proof is now complete.
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