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Abstract

In the present paper, we investigate the existence, multiplicity and concentration of
normalized solutions to the following fractional Schrödinger equation with potential(−∆)su+ V (εx)u+ λu = f(u), x ∈ RN ,∫

RN

|u|2dx = a2,

where 0 < s < 1, N ≥ 2, a, ε > 0, V ∈ C(RN ,R), λ is an unknown parameter that
will appear as a Lagrange multiplier, f is a mass subcritical and Sobolev subcritical
nonlinearity. Under fairly general assumptions about f and a global condition about
V , with the aid of minimization techniques and Ljusternik-Schnirelmann category
theory, we study the relation between the numbers of normalized solutions and the
topology of the set where the potential V attains its minimum value. In addition,
we obtain the decay behavior of normalized solutions. Finally, by using of the cut-off
technique we also consider the Sobolev supercritical case that has not been considered
about the study of normalized solutions.
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1 Introduction
In the present paper, we study the existence, multiplicity and concentration and decay behavior of nor-
malized solutions to the following fractional Schrödinger equation with potential(−∆)su+ V (εx)u+ λu = f(u), x ∈ RN ,∫

RN

|u|2dx = a2,
(Pa)
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where 0 < s < 1, N ≥ 2, a, ε > 0, V ∈ C(RN ,R), λ is an unknown parameter that will appear as a
Lagrange multiplier, f is a mass subcritical and Sobolev subcritical nonlinearity. Moreover, by using of
the cut-off technique we also consider the Sobolev supercritical case to the study of normalized solutions.

The problem
ε2s(−∆)su+ V (x)u+ λu = f(u), x ∈ RN , (1.1)

comes from the following time-dependent nonlinear Schrödinger equation

iε
∂Ψ

∂t
= ε2s(−∆)sΨ+ V (x)Ψ− g(|Ψ|2)Ψ, (1.2)

by looking for standing wave solutions

Ψ(t, x) = e
iλt
ε u(x),

with λ ∈ R is the frequency or the chemical potential, where 0 < s < 1, (−∆)s denotes the fractional
Laplacian of order s, V : RN → R is an external potential function, f(u) is the nonlinearity, i denotes
the imaginary unit and ε is a sufficiently small parameter which corresponds to the Planck constant.
Furthermore, Ψ = Ψ(t, x) ∈ C is a wave function which represents the quantum mechanical probability
amplitude for a given unit mass particle to have position x at time t (the corresponding probability density
is |Ψ(t, x)|2), g is an appropriate nonlinearity which verifies f(u) = g(|u|2)u. The equation (1.2) is the
fractional nonlinear Schrödinger equation that was introduced by Laskin([22]), as a result of extending the
Feynman path integral, from Brownian-like to Lévy-like quantum mechanical paths, where the Feynman
path integral leads to the classical Schrödinger equation and the path integral over Lévy trajectories leads
to the fractional Schrödinger equation. Such kind of equation is of particular interest in fractional quantum
mechanics in the study of particles on stochastic fields modelled by Lévy processes, see [1], which are
widely used in optimization, finance, phase transitions, stratified materials, crystal dislocation, flame
propagation, conservation laws, materials science and water waves. It results that fractional problems are
conducted extensive and deeply researched by many experts and scholars.

Equation (1.1) has attracted much attention in the community of nonlinear PDEs in the last decades. A
solution u(x) is referred to as a bound state of (1.1) if u(x) → 0 as |x| → +∞. When ε > 0 is sufficiently
small, bound states of (1.1) are called semiclassical states and an important feature of semiclassical states
is their concentration as ε → 0. Making the change of variable εz = x, we can rewrite (1.1) as the
following equation

(−∆)su+ V (εx)u+ λu = f(u), x ∈ RN . (1.3)

Until now, there exist two substantially different view of points in terms of the frequency λ in (1.3).
One is to regard λ as a given constant. At this time, with the aid of the critical point theory, there are a
lot of works on the existence, multiplicity and concentration of solutions for equation (1.3) with different
potentials involving Sobolev subcritical, critical and supercritical growth. It seems almost impossible
for us to give a complete list of references. We refer the readers to [9, 10, 32, 33, 34, 36, 41] and the
references therein. The other one is to regard λ as unknown quantities to (1.3). In this case, it is natural
to prescribe the value of the mass

∫
RN |u|2dx so that λ can be interpreted as the Lagrange multiplier. On

this line, a new critical exponent appears, the L2-critical exponent (also named mass-critical exponent):
r = 2 + 4s

N . It is the threshold exponent for many dynamical properties, such as global existence vs.
blow-up, and the stability or instability of ground states. People call r < 2 + 4s

N as L2-subcritical, and
r > 2 + 4s

N as L2-supercritical. In addition, the mass admits often a clear physical meaning: it represents
the power supply in nonlinear optics, or the total number of atoms in Bose-Einstein condensation. They
are two main fields of application of the NLS and physicists are often interested in them.

In quantum mechanics, as mentioned above, |Ψ(t, x)|2 represents the probability density of the parti-
cles appearing in space x at time t. For single particle system, physicists are interested in normalized
solutions, namely, solutions satisfying the normalized condition

∫
RN |Ψ(t, x)|2dx = 1. For n body

system of Bose-Einstein condensate (see [3]), the wave function for the whole condensate becomes

2



Ψ̃(t, x) =
√
nΨ(t, x), and so the wave function is normalized according to the total number of the parti-

cles, i.e.,
∫
RN |Ψ̃(t, x)|2dx = n (see [38]). But for convenience and extension, the normalized condition

in mathematics is always assumed to hold for any positive constant a > 0, i.e.,
∫
RN |Ψ(t, x)|2dx = a2.

Accordingly,
∫
RN |u|2dx = a2. What we are interested in this paper is the existence of solutions to Eq.

(1.3) with prescribed L2-norm ∫
RN

|u|2dx = a2.

Namely, for given a > 0, to study the solutions for (1.3) under the L2-norm constrained manifold

Sa :=

{
u ∈ Hs(RN ) :

∫
RN

|u|2dx = a2
}
,

where the definition of Hs(RN ) reads below. As above, physically, such type of solutions are the so-
called normalized solutions to (Pa), which are critical points of the energy functional Iε : Hs(RN ) → R
given by

Iε(u) :=
1

2

∫
RN

|(−∆)
s
2u|2dx+

1

2

∫
RN

V (εx)u2dx−
∫
RN

F (u)dx

restricted on Sa, where F (u) :=
∫ u

0
f(t)dt. At this time, the frequency λ is an unknown number that can

be determined as the Lagrange multiplier associated to the constraint Sa. In addition, it is well known to
us that the mass is conserved along the trajectories of (1.2), i.e.,∫

RN

|Ψ(t, x)|2dx =

∫
RN

|u|2dx

for all t > 0. The study about the existence of normalized solutions is particularly relevant from a physical
point of view, since it can provide a good insight of the dynamical properties (such as, orbital stability
and instability) of solutions to the equation (1.2), and is becoming more and more popular among many
scholars (see [12]).

When s = 1 and V ≡ 0, Jeanjean in [21] considered a semilinear elliptic equation

−∆u+ λu = g(u), x ∈ RN , (1.4)

where N ≥ 1, λ ∈ R, g satisfies

(g0) g ∈ C(R,R) and g is odd;

(g1) there exist α, β ∈ R with 2 + 4
N < α ≤ β < 2∗ such that

0 < αG(t) ≤ g(t)t ≤ βG(t)

for all t ∈ R\{0}, where 2∗ := 2N
N−2 for N ≥ 3 and 2∗ := +∞ for N = 1, 2;

(g2) G̃(t) := g(t)t− 2G(t) ∈ C1(R,R) and

G̃′(t)t > (2 +
4

N
)G̃(t)

for all t ∈ R\{0}.

It is easy to see that the corresponding energy functional is unbounded from below on Sa. By using of
a minimax procedure, Jeanjean showed that for each a > 0, (1.4) possesses at least one couple (ua, λa) ∈
H1(RN ) × R+ of weak solution with ∥ua∥2 = a and ua is radial under (g0)-(g1) for N ≥ 2, where

H1(RN ) is endowed with the usual norm ∥u∥H1 =
(
∥∇u∥22 + ∥u∥22

)1/2

. Furthermore, when (g2) is
also assumed, he obtained the existence of ground states for N ≥ 1. But, afterwards, there was little
progress about the study of normalized solutions for a long time. One of the main reasons is that it is
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hard to prove the boundedness of constrained Palais-Smale sequence when the functional is unbounded
from below on the constraint manifold. More recently, problems of such type begun to receive much
attention. Still under (g0)-(g1), by virtue of a fountain theorem type argument, Bartsch and de Valeriola
[4] established infinitely many radial solutions to (1.4) with ∥u∥2 = a > 0. About another proof for this
multiplicity result can be seen [20], and [5, 6] but requires the additional assumption (g2). For combined
power nonlinearities, Soave [35] studied the existence and properties of ground states to Eq.

−∆u+ λu = µ|u|q−2u+ |u|p−2u, x ∈ RN

on Sa, where N ≥ 1, 2 < q ≤ 2 + 4
N ≤ p < 2∗. There he gave a complete classification about

the existence and nonexistence of normalized solution to L2-subcritical, L2-critical and L2-supercritical
cases. Which is more difficult and substantially different with purely subcritical or supercritical cases,
because the interplay between subcritical, critical and supercritical nonlinearities has deep impacts on the
geometry of the functional and on the existence and properties of ground states.

Inspired by [35], Chen and Liu [8] studied the asymptotic behavior of ground states for the fractional
Schrödinger equation with combined L2-critical and L2-subcritical nonlinearities

(−∆)su+ λu = µ|u|q−2u+ |u|p−2u, x ∈ RN

with prescribed mass ∥u∥2 = a > 0, where µ ∈ R, 2 < q < p = 2 + 4s
N , N ≥ 2. The same equation is

studied by Luo and Zhang [29], and they extended the range of exponents to 2 < q < p < 2∗s := 2N
N−2s .

Under different assumptions on q < p, they obtained some existence and nonexistence results about the
normalized solutions. Feng et al. [16] studied the existence and instability of normalized standing waves
for the fractional Schrödinger equation

i
∂ψ

∂t
= (−∆)sψ − |ψ|p−2ψ, x ∈ RN ,

where 2 + 4s
N < p < 2∗s . Relied on the construction of a minimax structure, by means of a Pohozaev’ s

mountain in a product space and some deformation arguments under a new version of the Palais-Smale
condition introduced in [19] and [20], Cingolani, Gallo and Tanaka [7] obtained the existence of a weak
solution to the following problem (−∆)su+ λu = f(u), x ∈ RN ,∫

RN |u|2dx = a2,
u ∈ Hs

rad(RN ),

where N ≥ 2, f is a L2-subcritical nonlinearity, where

Hs
rad(RN ) := {u ∈ Hs(RN ) : u is radially decreasing}.

Under different conditions on a, p, s and N , Zhang and Han [42] obtained the existence of normalized
solutions to the fractional Schrödinger equation with Sobolev critical growth{

(−∆)su+ λu = |u|p−2u+ |u|2∗s−2u, x ∈ RN ,∫
RN |u|2dx = a2,

where N ≥ 2, 2 < p < 2∗s . Combining minimax method, barycentric functions and Brouwer degree the-
ory, the authors [39] investigated the existence of normalized solutions to the following mass subcritical
fractional Schrödinger equations in exterior domains (−∆)su+ λu = |u|p−2u, in Ω,

u = 0 on ∂Ω,∫
Ω
|u|2dx = a2,

where Ω ⊂ RN (N ≥ 3) is an exterior domain with smooth boundary ∂Ω ̸= ∅ such that RN\Ω is
bounded. By using of scaling transformation, classification discussion and concentration compactness
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principle, Zuo and Rădulescu [43] considered the normalized solutions for fractional Sobolev critical
nonlinear Schrödinger coupled systems. Du et al. [14] studied the existence, nonexistence and mass
concentration of normalized solutions for the nonlinear fractional Schrödinger equation

(−∆)su+ V (x)u = µu+ af(u), x ∈ RN ,

where f is a Sobolev subcritical nonlinearity but the potential is coercive. Under the periodic potential
function V (x), Dinh [11] considered normalized solutions for the fractional Schrödinger equation

(−∆)su+ V (x)u = µu+ |u|p−2u, x ∈ RN ,

where 2 < p < 2∗s if N > 2s and 2 < p < +∞ if N ≤ 2s. Using the concentration compactness
principle, he gave a complete classification for the existence and non-existence of minimizers for the
problem. And he also gave a detailed description of blow-up behaviour of minimizers once the mass
tends to a critical value for L2-critical case.

It is not hard to see from the above literature that most of the results about the study of normal-
ized solutions for fractional Schrödinger equations are performed in the absence of potential, or coercive
and periodic potential. Motivated by the aforementioned papers, in this article, we focus mainly on the
existence, multiplicity and concentration and decay behavior of normalized solutions to (Pa) under the
potential condition (V ). To the best of our knowledge, there is no result about Sobolev supercritical cases
to the study of normalized solutions. In this paper, we shall fill the gap of information. To reduce the
statements for main results, we list the assumptions as follows:

(V ) V ∈ C(RN ,R) ∩ L∞(RN ) and

0 < V0 := inf
x∈RN

V (x) < V∞ := lim inf
|x|→+∞

V (x).

(f1) f ∈ C(R,R) is odd and there exist r ∈ (2, 2 + 4s
N ) and α ∈ (0,+∞) such that lim

t→0

|f(t)|
|t|r−1 = α.

(f2) There exist two constants C1, C2 > 0 and p ∈ (2, 2 + 4s
N ) such that

|f(t)| ≤ C1 + C2|t|p−1, ∀t ∈ R.

(f3) There exists q ∈ (2, 2 + 4s
N ) such that f(t)

tq−1 is an increasing function of t on (0,+∞).

Let S be the Schwartz space of rapidly decaying C∞ functions in RN , for any u ∈ S and s ∈ (0, 1),
(−∆)s is defined as

(−∆)su(x) =CN,sP.V.

∫
RN

u(x)− u(y)

|x− y|N+2s
dy = CN,s lim

ε→0+

∫
CBε(x)

u(x)− u(y)

|x− y|N+2s
dy

=
1

2
CN,s

∫
RN

2u(x)− u(x+ y)− u(x− y)

|y|N+2s
dy,

where CBε(x) := RN \ Bε(x). The symbol P.V. stands for the Cauchy principal value and CN,s is a
dimensional constant that depends on N and s, precisely given by

CN,s =

(∫
RN

1− cosζ1
|ζ|N+2s

dζ

)−1

, ζ = (ζ1, ζ2, · · · , ζN ).

For any 0 < s < 1, the fractional Sobolev space Hs(RN ) is defined by

Hs(RN ) := {u ∈ L2(RN ) : u ∈ Ds,2(RN )}

endowed with the norm

∥u∥Hs :=
(
∥u∥2Ds,2(RN ) + ∥u∥2L2(RN )

) 1
2

=
(∫

RN

|(−∆)
s
2u|2dx+

∫
RN

u2dx
) 1

2

.
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Where the homogeneous fractional Sobolev space

Ds,2(RN ) := {u ∈ L2∗s (RN ) : |ξ|sû(ξ) ∈ L2(RN )},

which is the completion of C∞
0 (RN ) under the norm

∥u∥2Ds,2(RN ) :=

∫
RN

|(−∆)
s
2u|2dx =

∫
RN

|ξ|2s|û(ξ)|2dξ.

Moreover, from the monograph by Molica Bisci-Rădulescu-Servadei [30], we can see that

2C−1
N,s

∫
RN

|ξ|2s|û(ξ)|2dξ = 2C−1
N,s∥(−∆)

s
2u∥2L2(RN ) = [u]2Hs(RN ),

where

[u]Hs(RN ) :=
(∫

R2N

|u(x)− u(y)|2

|x− y|N+2s
dxdy

) 1
2

.

The best fractional critical Sobolev constant is given by

S := inf
u∈Ds,2(RN )\{0}

∥u∥2Ds,2(RN )

∥u∥2
L2∗s (RN )

.

For any δ > 0, set Mδ := {x ∈ RN : dist(x,M) ≤ δ}, where M := {x ∈ RN : V (x) = V0}. Without
loss of generality, we may assume that 0 ∈M .

We are now in a position to state the main results.

Theorem 1.1. Let (V ) and (f1)-(f3) hold. Then there exists V∗ > 0 such that for each δ > 0, there is a
constant ε0 > 0 such that (Pa) possesses at least catMδ

(M) couples (uj , λj) ∈ Hs(RN )× R+ of weak
solutions for 0 < ε < ε0 and ||V ||∞ < V∗ with Iε(uj) < 0. Furthermore, if uε is one of these solutions
and ξε ∈ RN is a global maximum of |uε|, then

(i) (concentration) lim
ε→0

V (εξε) = V0;

(ii) (decay estimates) there exists a constant C > 0 such that

uε(x) ≤ C|x− ξε|−(N+2s).

Moreover, fixed 0 < ε < ε0 and ∥V ∥∞ < V∗, we also study the existence of normalized solutions for
the following Schrödinger equation with Sobolev supercritical growth{

(−∆)su+ V (εx)u+ λu = f(u) + η|u|p−2u, in RN ,∫
RN |u|2dx = a2,

(Qa)

where p > 2∗s . Suppose that (V ), (f1), (f3) and the following (f̃2) hold.

(f̃2) There exist two constants C1, C2 > 0 and q ∈ (r, 2 + 4s
N ) such that

|f(t)| ≤ C1 + C2|t|q−1, ∀ t ∈ R.

With the aid of the truncation technique, we obtain the following theorem.

Theorem 1.2. Let (V ) and (f1), (f̃2) and (f3) hold. For fixed 0 < ε < ε0 and ∥V ∥∞ < V∗, there
exists some η0 > 0 such that for η ∈ (0, η0], problem (Qa) admits at least catMδ

(M) couples (u, λ) ∈
Hs(RN )× R+ of weak solutions.
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Remark 1.3. As far as we know, there is no result on the normalized solutions above Sobolev supercritical
case. In our work, with the aid of the truncation technique, we investigate the existence of normalized
soluitions to (Qa).

Remark 1.4. Notice that (−∆)s on RN with 0 < s < 1 is a nonlocal operator. The nonlocal nature of
the fractional Laplacian makes it difficult to study. Comparing with the classical Schrödinger equation,
we encounter some new challenges due to the nonlocal nature of the fractional Laplacian. Such as, the
ground state for (−∆)s decays polynomially at infinity, which is in contrast to the fact that the ground
state for −∆ decays exponentially at infinity. Even to the existence of normalized solutions, contrast with
the following fractional Schrödinger equation without potential{

(−∆)su+ λu = f(u), in RN ,∫
RN |u|2dx = a2,

the technique introduced in [21] by Jeanjean is not applicable at all. As a consequence, some fine esti-
mates are necessary.

Remark 1.5. Unlike [11] and [14], we do not assume that the potential is coercive or periodic. In
[40], Yang, Yu and Tang obtained the multiplicity of normalized solutions to the following fractional
Schrödinger equations in the absence of potential{

(−∆)su+ λu = h(εx)f(u), in RN ,∫
RN |u|2dx = a2.

And they proved that the numbers of normalized solutions is at least the numbers of global maximum
points of h when ε > 0 is small enough. We point out that people also begin to pay attention to the
study of normalized solutions for fractional Choquard equations, see [18, 26]. More results, please see
[24, 25, 28].

Remark 1.6. When the nonlinearity f satisfies

(f ′1) f(t) = o(t) as t→ 0, f(t)t > 0 for all t > 0 and f(t) = 0 for all t ≤ 0;

(f ′2)
f(t)
t is strictly increasing for t > 0;

(f ′3) |f(t)| ≤ C(1 + |t|p−1) for some C > 0, where 2 < p < 2∗s ,
and (V ) hold, Shang and Zhang [36] considered the following fixed frequency problem

ε2s(−∆)su+ V (x)u = |u|2
∗
s−2u+ λf(u), x ∈ RN ,

and investigated the relation between the numbers of solutions and the topology of the set where V at-
tains its minimum by applying Ljusternik-Schnirelmann category theory. Our results can be seen as an
expansion from the fixed frequency problem to unfixed frequency problem.

In the sequel, let us introduce the following fractional Gagliardo-Nirenberg inequality ([23]): if u ∈
Hs(RN ) and 2 < t < 2∗s , then

∥u∥tt ≤ Cs,N,t∥(−∆)
s
2u∥

N(t−2)
2s

2 ∥u∥t−
N(t−2)

2s
2 . (1.5)

By (f1)-(f2), there exist two constants C1, C2 > 0 such that

|f(t)| ≤ C1|t|r−1 + C2|t|p−1, ∀ t ∈ R. (1.6)

In addition, by (f3), for any t, τ > 0 and t ≥ 1, one has

F (tτ) ≥ tqF (τ). (1.7)
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By (f1)-(f2), for any τ > 0, there exists a constant Cτ > 0 such that

|f(t)| ≤ τ |t|+ Cτ |t|p−1, ∀ t ∈ R. (1.8)

By (f1) and (f3),
f(t)t ≥ qF (t) ≥ 2F (t) ≥ 0, ∀ t ∈ R. (1.9)

2 The autonomous case
We shall firstly consider the autonomous case. To be exact, we firstly consider the existence of normalized
solutions to the following autonomous problem{

(−∆)su+ µu+ λu = f(u), x ∈ RN ,∫
RN |u|2dx = a2,

(2.1)

where 0 < s < 1, N ≥ 2, a > 0, µ ≥ 0, λ is unknown, f is a mass subcritical and Sobolev subcritical
nonlinearity satisfying (f1)-(f3).

As is known to us that solutions to the problem (2.1) are critical points of the energy functional
Iµ : Hs(RN ) → R given by

Iµ(u) :=
1

2

∫
RN

|(−∆)
s
2u|2dx+

1

2

∫
RN

µu2dx−
∫
RN

F (u)dx

restricted on Sa.

Lemma 2.1. Iµ is coercive and bounded from below on Sa.

Proof. For any u ∈ Sa, by (1.5) and (1.6)

Iµ(u) =
1

2

∫
RN

|(−∆)
s
2u|2dx+

1

2

∫
RN

µu2dx−
∫
RN

F (u)dx

≥1

2

∫
RN

|(−∆)
s
2u|2dx− C1

∫
RN

|u|rdx− C2

∫
RN

|u|pdx

≥1

2

∫
RN

|(−∆)
s
2u|2dx− C1Cs,N,r∥(−∆)

s
2u∥

N(r−2)
2s

2 ∥u∥r−
N(r−2)

2s
2

− C2Cs,N,p∥(−∆)
s
2u∥

N(p−2)
2s

2 ∥u∥p−
N(p−2)

2s
2

=
1

2
∥(−∆)

s
2u∥22 − C1Cs,N,r∥(−∆)

s
2u∥

N(r−2)
2s

2 ar−
N(r−2)

2s

− C2Cs,N,p∥(−∆)
s
2u∥

N(p−2)
2s

2 ap−
N(p−2)

2s

Since 2 < r, p < 2+ 4s
N , it follows that N(r−2)

2s , N(p−2)
2s < 2. Consequently, Iµ is coercive and bounded

from below on Sa.

Remark 2.2. By Lemma 2.1, mµ,a := inf
u∈Sa

Iµ(u) is well defined. Furthermore, from the proof of Lemma

2.1, together with (V ) we know that Iε is also coercive and bounded from below on Sa.

About mµ,a, we have the following lemma.

Lemma 2.3. There exists V∗ > 0 such that mµ,a < 0 for 0 ≤ µ ≤ V∗.
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Proof. Let u0 ∈ Sa ∩ L∞(RN ) be a nonnegative function. Set

(τ ∗ u0)(x) = e
Nτ
2 u0(e

τx),

where x ∈ RN , τ ∈ R. Then, there holds∫
RN

|(−∆)
s
2 (τ ∗ u0)|2dx = e2τs

∫
RN

|(−∆)
s
2u0|2dx,∫

RN

|τ ∗ u0|2dx =

∫
RN

|u0|2dx,∫
RN

F (τ ∗ u0)dx =

∫
RN

F (e
Nτ
2 u0(e

τx))dx = e−Nτ

∫
RN

F (e
Nτ
2 u0)dx.

By (f1), there exists δ0 > 0 such that

rF (t)

tr
≥ α

2
, ∀ t ∈ [0, δ0].

Noting that when τ < 0 and |τ | large enough, one has 0 ≤ e
Nτ
2 u0(x) ≤ δ0, ∀x ∈ RN . Hence,∫

RN

F (τ ∗ u0)dx =e−Nτ

∫
RN

F (e
Nτ
2 u0)dx

≥e−Nτ α

2r

∫
RN

|eNτ
2 u0|rdx

=
α

2r
eNτ( r

2−1)

∫
RN

|u0|rdx,

which implies that

Iµ(τ ∗ u0) ≤
1

2
e2τs

∫
RN

|(−∆)
s
2u0|2dx+

µ

2
a2 − α

2r
eNτ( r

2−1)

∫
RN

|u0|rdx.

By the fact that 2 < r < 2 + 4s
N , so Nτ( r2 − 1) < 2τs and we may take |τ | large enough such that

1

2
e2τs

∫
RN

|(−∆)
s
2u0|2dx− α

2r
eNτ( r

2−1)

∫
RN

|u0|rdx := Aτ < 0.

This yields that Iµ(τ ∗ u0) ≤ Aτ + µ
2 a

2. Take 0 < V∗ < − 2Aτ

a2 . Therefore, if 0 ≤ µ ≤ V∗, then

Iµ(τ ∗ u0) ≤ Aτ +
µ

2
a2 ≤ Aτ +

V∗
2
a2 < 0.

As a consequence, mµ,a ≤ Iµ(τ ∗ u0) < 0.

Here we point out the proof of the above lemma yields that

m0,a = inf
u∈Sa

I0(u) ≤ I0(τ ∗ u0) < 0

for |τ | large enough. Then, taking V∗ = − 2m0,a

a2 > 0, one has

mµ,a = m0,a +
1

2
µa2 < 0

for 0 ≤ µ < V∗.

It is easy to see that Lemma 2.3 guarantees that the following lemma holds.
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Lemma 2.4. Fix 0 ≤ µ ≤ V∗, let 0 < a1 < a2. Then, a21 ·mµ,a2
< a22 ·mµ,a1

< 0.

Proof. It suffices to prove the first inequality holds. Let 0 < a1 < a2. Set ξ = a2

a1
> 1. Since f is odd,

we can let {un} ⊂ Sa1 be a nonnegative minimizing sequence of mµ,a1 . Namely, Iµ(un) → mµ,a1 as
n→ ∞. Set vn := ξun. Then, vn ∈ Sa2

. By virtue of (1.7) we deduce that

mµ,a2 ≤Iµ(vn) =
1

2

∫
RN

|(−∆)
s
2 vn|2dx+

1

2

∫
RN

µ|vn|2dx−
∫
RN

F (vn)dx

=
1

2
ξ2

∫
RN

|(−∆)
s
2un|2dx+

µ

2
ξ2

∫
RN

|un|2dx−
∫
RN

F (ξun)dx

=ξ2Iµ(un) + ξ2
∫
RN

F (un)dx−
∫
RN

F (ξun)dx

≤ξ2Iµ(un) + ξ2
∫
RN

F (un)dx− ξq
∫
RN

F (un)dx

=ξ2Iµ(un) + (ξ2 − ξq)

∫
RN

F (un)dx.

We assert that there are a constant C > 0 and n0 ∈ N such that∫
RN

F (un)dx ≥ C

for all n ≥ n0. Otherwise, up to a subsequence, we may assume that
∫
RN F (un)dx → 0 as n → ∞. By

Iµ(un) → mµ,a1 as n→ ∞ we derive that

mµ,a1
+ on(1) = Iµ(un) ≥ −

∫
RN

F (un)dx = on(1),

which yields mµ,a1
≥ 0, a contradiction to Lemma 2.3. Hence, the assertion is proved. Thereby,

mµ,a2 ≤ξ2Iµ(un) + (ξ2 − ξq)

∫
RN

F (un)dx

≤ξ2Iµ(un) + (ξ2 − ξq)C.

Let n→ +∞, it results that

mµ,a2
≤ ξ2mµ,a1

+ (ξ2 − ξq)C < ξ2mµ,a1
,

to wit, a21 ·mµ,a2
< a22 ·mµ,a1

.

In the sequel, we prove the following compactness lemma on Sa, which is very important to our
subsequent proof.

Lemma 2.5. Let µ ∈ [0, V∗] and {un} ⊂ Sa be a minimizing sequence of mµ,a. Then, one of the
following conclusions holds:

(i) {un} has a strongly convergence subsequence in Hs(RN );

(ii) there exists a sequence {yn} ⊂ RN with |yn| → +∞ such that the sequence {vn} is strongly
convergent to a function v ∈ Sa with Iµ(v) = mµ,a, where vn(x) := un(x+ yn).

Proof. By Lemma 2.1, {un} is bounded in Hs(RN ). Then, passing to a subsequence, there exists u ∈
Hs(RN ) such that un ⇀ u in Hs(RN ). We next continue our arguments by distinguishing two cases.

Case 1: u ̸= 0. Set ∥u∥2 = b. If b ̸= a, then the weak lower semi-continuity of the norm tells us
0 < b < a. Set vn = un − u. By Brézis-Lieb lemma (see Lemma 1.32 in [37]),

∥un∥22 − ∥vn∥22 − ∥u∥22 = on(1).
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Moreover, ∫
RN

|(−∆)
s
2un|2dx =

∫
RN

|(−∆)
s
2 vn|2dx+

∫
RN

|(−∆)
s
2u|2dx+ on(1).

In the sequel, we shall prove that∫
RN

F (un)dx =

∫
RN

F (vn)dx+

∫
RN

F (u)dx+ on(1). (2.2)

Indeed, by the Young inequality and (1.6) we deduce that for any τ > 0, there exists Cτ > 0 such that

|F (un)− F (vn)− F (u)|
≤|f(vn + θ(un − vn))(un − vn)|+ |F (u)|
≤[C1|vn + θu|r−1 + C2|vn + θu|p−1]|u|+ C1|u|r + C2|u|p

≤C|vn|r−1|u|+ C|u|r + C|vn|p−1|u|+ C|u|p

≤τ |vn|r + τ |vn|p + Cτ |u|r + Cτ |u|p.

Set
Gτ,n(x) = max{|F (un)− F (vn)− F (u)| − τ |vn|r − τ |vn|p, 0}.

Then
0 ≤ Gτ,n(x) ≤ Cτ |u|r + Cτ |u|p ∈ L1(RN )

and Gτ,n(x) → 0 a.e. on RN . It follows from Lebesgue dominated convergence theorem that∫
RN

Gτ,n(x)dx→ 0, as n→ ∞.

As a result,

lim sup
n→∞

∣∣∣ ∫
RN

[F (un)− F (vn)− F (u)]dx
∣∣∣

≤ lim sup
n→∞

∫
RN

Gτ,n(x)dx+ τ lim sup
n→∞

∫
RN

|vn|rdx+ τ lim sup
n→∞

∫
RN

|vn|pdx

≤Cτ.

By the arbitrariness of τ , (2.2) is proved.

Set ∥vn∥2 = dn. Suppose dn → d as n → ∞. Then, a2 = b2 + d2 > d2, which implies that
0 < dn < a for large n. Consequently, together with Lemma 2.4 we deduce that

mµ,a + on(1) =Iµ(un) = Iµ(vn) + Iµ(u) + on(1)

≥mµ,dn +mµ,b + on(1)

≥d
2
n

a2
mµ,a +mµ,b + on(1).

Which yields

mµ,a ≥d
2

a2
mµ,a +mµ,b >

d2

a2
mµ,a +

b2

a2
mµ,a

=
d2 + b2

a2
mµ,a = mµ,a,

a contradiction. Consequently, b = a, namely, u ∈ Sa, and ∥un∥2 → ∥u∥2 as n → ∞. Since L2(RN ) is
reflexive,

un → u in L2(RN ). (2.3)
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From (1.6) and (2.3) we infer that ∫
RN

F (un)dx→
∫
RN

F (u)dx (2.4)

as n→ ∞. Therefore,

mµ,a ≤Iµ(u) =
1

2

∫
RN

|(−∆)
s
2u|2dx+

1

2

∫
RN

µu2dx−
∫
RN

F (u)dx

=
CN,s

4

∫
R2N

|u(x)− u(y)|2

|x− y|N+2s
dxdy +

1

2

∫
RN

µu2dx−
∫
RN

F (u)dx

≤CN,s

4
lim inf
n→∞

∫
R2N

|un(x)− un(y)|2

|x− y|N+2s
dxdy +

1

2
lim
n→∞

∫
RN

µ|un|2dx

− lim
n→∞

∫
RN

F (un)dx

≤ lim
n→∞

Iµ(un) = mµ,a.

As a result, lim
n→∞

Iµ(un) = Iµ(u). So, together (2.3) with (2.4) we have

lim
n→∞

∫
RN

|(−∆)
s
2un|2dx =

∫
RN

|(−∆)
s
2u|2dx.

It yields that lim
n→∞

∥un∥Hs = ∥u∥Hs .

Case 2: u = 0. Based on Lemma 2.3, by similar calculations as in the proof of Lemma 2.4 we can
conclude that there exists C > 0 such that ∫

RN

F (un)dx ≥ C (2.5)

for large n. We assert that there exist R, α > 0 and yn ∈ RN such that∫
BR(yn)

|un|2dx ≥ α,∀ n ∈ N. (2.6)

Otherwise, by Lemma 2.3 in [36] one has un → 0 in Lt(RN ) for all t ∈ (2, 2∗s). Which implies by (1.6),∫
RN

F (un)dx→ 0

as n → ∞, a contradiction to (2.5). It follows from (2.6) that {yn} is unbounded in RN . Set vn(x) :=
un(x + yn). Obviously, vn ⊂ Sa is also a minimizing sequence of mµ,a. As a result, there exists
v ∈ Hs(RN )\{0} such that vn ⇀ v in Hs(RN ) and vn(x) → v(x) a.e. on RN . Then the proof follows
from the same arguments used in Case 1.

Lemma 2.6. Let (f1)-(f3) hold and µ ∈ [0, V∗]. Then, the problem (2.1) possesses solutions (u, λ) ∈
Hs(RN )× R+, where u is positive and radial.

Proof. By Lemma 2.1, there exists a bounded minimizing sequence {un} ⊂ Sa. Then, by Lemma 2.5,
up to a subsequence, there exists u ∈ Sa such that un → u in Hs(RN ) and Iµ(u) = mµ,a. Therefore, by
the Lagrange multiplier theorem, there exists λa ∈ R such that I ′µ(u) = −λaψ′(u) in H−s(RN ), where

ψ(w) :=

∫
RN

|w|2dx, w ∈ Hs(RN ).
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Then,
(−∆)su+ µu+ λau = f(u), x ∈ RN .

By Lemma 2.3 and (1.9), we can obtain that

0 >mµ,a = Iµ(u)

=
1

2

∫
RN

|(−∆)
s
2u|2dx+

1

2

∫
RN

µu2dx−
∫
RN

F (u)dx

=
1

2

[ ∫
RN

f(u)udx− λa

∫
RN

u2dx
]
−
∫
RN

F (u)dx

=

∫
RN

[1
2
f(u)u− F (u)

]
dx− 1

2
λa

∫
RN

u2dx

≥− 1

2
λa

∫
RN

u2dx,

to wit, λa > 0.

In the following, we shall prove that u is positive, radial. Indeed, since f is odd, then Iµ(|u|) = Iµ(u).
Consequently, mµ,a ≤ Iµ(|u|) = Iµ(u) = mµ,a, i.e., Iµ(|u|) = mµ,a. Hence, we may assume that u is
nonnegative. By the strong maximum principle ([13]) we get u > 0 in RN . Furthermore, let u∗ denote
the symmetric radial decreasing rearrangement of u. It follows from [31] that∫

RN

|(−∆)
s
2u∗|2dx ≤

∫
RN

|(−∆)
s
2u|2dx,∫

RN

F (u∗)dx =

∫
RN

F (u)dx,∫
RN

|u∗|2dx =

∫
RN

|u|2dx.

Therefore, u∗ ∈ Sa and
mµ,a ≤ Iµ(u

∗) ≤ Iµ(u) = mµ,a,

i.e., Iµ(u∗) = mµ,a. That is to say, we can replace u by u∗.

Remark 2.7. By the proof of Lemma 2.6, we know that u satisfies Iµ(u) = mµ,a.

The following corollary is a product of Lemma 2.6.

Corollary 2.8. Fix a > 0, let 0 ≤ µ1 < µ2 ≤ V∗. Then, mµ1,a < mµ2,a < 0.

Proof. Let mµ2,a ∈ Sa be such that Iµ2(uµ2,a) = mµ2,a < 0. Then,

mµ1,a ≤ Iµ1
(uµ2,a) < Iµ2

(uµ2,a) = mµ2,a < 0.

3 The non-autonomous case
In this section, we always assume that ∥V ∥∞ ≤ V∗. Define

mV0,a = inf
u∈Sa

IV0
(u), m∞,a = inf

u∈Sa

I∞(u), mε,a = inf
u∈Sa

Iε(u),

where I∞(·) = IV∞(·). By (V ) and Corollary 2.8, we can see that

mV0,a < m∞,a < 0. (3.1)

The relations about mV0,a, m∞,a and mε,a as follows.
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Lemma 3.1. lim sup
ε→0+

mε,a ≤ mV0,a. Furthermore, there exists ε0 > 0 such that

mε,a < m∞,a

for all ε ∈ (0, ε0).

Proof. By Remark 2.7, let u0 ∈ Sa be such that IV0
(u0) = mV0,a. Hence,

lim sup
ε→0+

mε,a ≤ lim sup
ε→0+

Iε(u0)

= lim sup
ε→0+

{
1

2

∫
RN

|(−∆)
s
2u0|2dx+

1

2

∫
RN

V (εx)u20dx−
∫
RN

F (u0)dx

}
=
1

2

∫
RN

|(−∆)
s
2u0|2dx+

1

2

∫
RN

V (0)u20dx−
∫
RN

F (u0)dx

=IV0
(u0) = mV0,a.

The other conclusion is a consequence of (3.1).

Set ρ1 := 1
2 (m∞,a −mV0,a) > 0 by (3.1). We obtain the following two lemmas.

Lemma 3.2. Let {un} ⊂ Sa be such that Iε(un) → c with c < mV0,a + ρ1 < 0. If un ⇀ u in Hs(RN ),
then u ̸= 0.

Proof. Arguing by contradiction we assume that u = 0. In view of (V ), for any given ξ > 0, there exists
R > 0 such that

V (x) ≥ V∞ − ξ, ∀ |x| ≥ R.

In addition, by Remark 2.2 we know that {un} is bounded in Hs(RN ). As a result,

mV0,a + ρ1 + on(1) >c+ on(1) = Iε(un)

=I∞(un) +
1

2

∫
RN

[V (εx)− V∞]u2ndx

=I∞(un) +
1

2

∫
BR

ε
(0)

[V (εx)− V∞]u2ndx

+
1

2

∫
RN\BR

ε
(0)

[V (εx)− V∞]u2ndx

≥I∞(un) +
1

2

∫
BR

ε
(0)

[V (εx)− V∞]u2ndx− 1

2
ξ

∫
RN\BR

ε
(0)

u2ndx

≥I∞(un) + on(1)− Cξ ≥ m∞,a + on(1)− Cξ.

Which indicates that m∞,a ≤ mV0,a + ρ1, i.e., ρ1 ≥ m∞,a −mV0,a, a contradiction.

Lemma 3.3. Fix ε ∈ (0, ε0). Let {un} ⊂ Sa be a (PS)c sequence for Iε restricted to Sa with c <
mV0,a + ρ1 < 0 and un ⇀ uε in Hs(RN ), i.e., Iε(un) → c and ∥Iε|′Sa

(un)∥ → 0 as n → ∞. If
vn := un − uε ̸→ 0 in Hs(RN ), then decreasing ε0 if necessary, there exists β > 0 independent of
ε ∈ (0, ε0) such that

lim inf
n→∞

∥un − uε∥22 ≥ β.
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Proof. Set

Φ(v) :=
1

2

∫
RN

|v|2dx, ∀ v ∈ Hs(RN ),

then Sa = Φ−1({a2

2 }). By Proposition 5.12 in [37], there exists a sequence {λn} ⊂ R such that

∥I ′ε(un)− λnΦ
′(un)∥H−s → 0 (3.2)

as n→ ∞, which means that

(−∆)sun + V (εx)un − f(un) = λnun + on(1) in H−s(RN ).

Therefore, for φ ∈ Hs(RN ),∫
RN

(−∆)
s
2un(−∆)

s
2φdx+

∫
RN

V (εx)unφdx−
∫
RN

f(un)φdx

=λn

∫
RN

unφdx+ on(1)∥φ∥.

Especially,∫
RN

|(−∆)
s
2un|2dx+

∫
RN

V (εx)|un|2dx−
∫
RN

f(un)undx = λna
2 + on(1)∥φ∥.

By Remark 2.2, {un} is bounded inHs(RN ). Then, we can find that {λn} is bounded. As a consequence,
up to a subsequence, there exists λε ∈ R such that λn → λε as n → ∞. It is standard to show that
∥I ′ε(un)− λεΦ

′(un)∥Hs → 0 as n→ ∞. And so,

I ′ε(uε)− λεΦ
′(uε) = 0 (3.3)

in H−s(RN ), see [27]. Moreover, it is not difficult to prove

I ′ε(un) = I ′ε(uε) + I ′ε(vn) + on(1),

Φ′(un) = Φ′(uε) + Φ′(vn) + on(1).

These together with (3.3) yield that

I ′ε(un)− λεΦ
′(un) = I ′ε(vn)− λεΦ

′(vn) + on(1).

Therefore, ∥I ′ε(vn)− λεΦ
′(vn)∥H−s → 0 as n→ ∞. As a result, by (1.9) and (3.2) one has

0 >mV0,a + ρ1 > c

= lim inf
n→∞

Iε(un)

= lim inf
n→∞

[
Iε(un)−

1

2
I ′ε(un)un +

1

2
λna

2
]

= lim inf
n→∞

{∫
RN

[1
2
f(un)un − F (un)

]
dx+

1

2
λna

2
}

≥1

2
λεa

2,

namely,

lim sup
ε→0+

λε ≤
2(mV0,a + ρ1)

a2
< 0.

Which implies that there exists λ∗ < 0 independent of ε such that

λε ≤ λ∗ < 0 (3.4)
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for all ε ∈ (0, ε0). Moreover, together with the boundedness of {∥vn∥Hs} we obtain∫
RN

|(−∆)
s
2 vn|2dx+

∫
RN

V (εx)|vn|2dx− λε

∫
RN

|vn|2dx =

∫
RN

f(vn)vndx+ on(1). (3.5)

Taking into account (3.4) and (3.5) we can deduce that∫
RN

|(−∆)
s
2 vn|2dx+

∫
RN

V (εx)|vn|2dx− λ∗

∫
RN

|vn|2dx ≤
∫
RN

f(vn)vndx+ on(1).

By the means of (1.8) we can prove that

∥vn∥2Hs =

∫
RN

|(−∆)
s
2 vn|2dx+

∫
RN

|vn|2dx ≤ C∥vn∥pp + on(1) ≤ C∥vn∥pHs + on(1).

By the fact that vn ̸→ 0 in Hs(RN ) we know that, up to a subsequence, lim inf
n→∞

∥vn∥Hs > 0.

Consequently, lim inf
n→∞

∥vn∥Hs ≥ ( 1
C )

1
p−2 , which yields that lim inf

n→∞
∥vn∥pp ≥ C1, where C1 > 0 is a

constant that does not depend on ε. And so, making use of (1.5) we have

C1 ≤ lim inf
n→∞

∥vn∥pp

≤ lim inf
n→∞

[
Cs,N,p∥(−∆)

s
2 vn∥

N(p−2)
2s

2 · ∥vn∥
p−N(p−2)

2s
2

]
≤C2 lim inf

n→∞
∥vn∥

2N−p(N−2s)
2s

2 ,

then, we can deduce that

lim inf
n→∞

∥vn∥22 ≥ (
C1

C2
)

4s
2N−p(N−2s) := β > 0.

In the sequel, in order to prove that Iε satisfies the (PS)c condition, we fix

0 < ρ < min

{
1

2
,
β

a2

}
(m∞,a −mV0,a) ≤ ρ1.

Lemma 3.4. For each ε ∈ (0, ε0), Iε satisfies the (PS)c condition restricted to Sa for c < mV0,a + ρ.

Proof. Let {un} be a (PS)c sequence for Iε restricted to Sa, i.e.,

un ∈ Sa, Iε(un) → c < mV0,a + ρ, ∥Iε|′Sa
(un)∥ → 0

as n → ∞. Again, set Φ(v) := 1
2

∫
RN |v|2dx, ∀v ∈ Hs(RN ), then Sa = Φ−1({a2

2 }). By Proposition
5.12 in [37], there exists a sequence {λn} ⊂ R such that

∥I ′ε(un)− λnΦ
′(un)∥H−s → 0

as n → ∞. Set vn := un − uε. If vn ̸→ 0 in Hs(RN ), it follows by Lemma 3.3 that there exists β > 0
independent of ε ∈ (0, ε0) such that

lim inf
n→∞

∥vn∥22 ≥ β > 0. (3.6)

Set ∥vn∥2 = dn and ∥uε∥2 = b. Assume that dn → d as n → ∞. Then, by (3.6) one has d2 ≥ β > 0.
By Lemma 3.2, b > 0. By the Brézis-Lieb lemma,

∥vn∥22 = ∥un∥22 − ∥uε∥22 + on(1).
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Then, a2 = b2 + d2 > d2. Which implies that 0 < dn < a for large n. Similar to the proof of Lemma
3.2, we can conclude that for any ζ > 0,

Iε(vn) ≥ m∞,dn + on(1)− Cζ.

Therefore, by (V ) and Lemma 2.4 we deduce that

mV0,a + ρ+ on(1) >c+ on(1) = Iε(un)

=Iε(vn) + Iε(uε) + on(1)

≥m∞,dn − Cζ +mV0,b + on(1)

≥d
2
n

a2
m∞,a +

b2

a2
mV0,a + on(1)− Cζ.

Let n→ ∞, we get

ρ ≥ d2

a2
m∞,a −

d2

a2
mV0,a − Cζ ≥ β

a2
(m∞,a −mV0,a)− Cζ.

By the arbitrariness of ζ, ρ ≥ β
a2 (m∞,a −mV0,a), a contradiction.

As a consequence, vn → 0 in Hs(RN ), namely, un → uε in Hs(RN ).

Remark 3.5. By Lemma 3.4, uε ∈ Sa. By the fact that ∥I ′ε(un) − λnΦ
′(un)∥H−s → 0 as n → ∞ we

obtain
(−∆)suε + V (εx)uε + λεuε = f(uε), x ∈ RN ,

where λε = lim
n→∞

(−λn). The proof is identical to that of Lemma 3.3.

4 Multiplicity result
In this section, we investigate the multiplicity of solutions for (Pa) by the Ljusternik-Schnirelmann cate-
gory theory and study the behavior of its maximum points concentrating on the set M of global minima
of V and decay behavior.

Suppose that ∥V ∥∞ ≤ V∗. By Lemma 2.6 and Remark 2.7, let (w, λ) ∈ Hs(RN ) × R+ solve the
following problem {

(−∆)su+ V0u+ λu = f(u), x ∈ RN ,∫
RN |u|2dx = a2,

(4.1)

and IV0
(w) = mV0,a. Simultaneously, let η be a smooth nonincreasing cut-off function defined in [0,∞)

with η(t) = 1 if 0 ≤ t ≤ 1
2 and η(t) = 0 if t ≥ 1 and |∇η| ≤ 1. For each y ∈M , let

Ψε,y(x) = η(|εx− y|)w(εx− y

ε
)

and

Ψ̃ε,y(x) = a · Ψε,y(x)

∥Ψε,y(x)∥2
.

Then for small 0 < ε < 1, one has Ψε,y ∈ Hs(RN ) \ {0} for all y ∈ M . Namely, there exists ε∗ > 0
such that Ψε,y ∈ Hs(RN )\{0} for every ε ∈ (0, ε∗). Frow now on, we assume that ε ∈ (0, ε∗). For
y ∈ M , let Φε(y) = Ψ̃ε,y . Then Φε : M → Sa, and Φε(y) has a compact support for any y ∈ M .
Moreover, we have the following fact for Φε.

Lemma 4.1. lim
ε→0

Iε(Φε(y)) = mV0,a uniformly in y ∈M .
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Proof. Suppose that the conclusion is false. Then, there exist ζ0 > 0, {yn} ⊂M with yn → y ∈M and
εn → 0 such that

|Iεn(Φεn(yn))−mV0,a| ≥ ζ0 > 0.

By the means of Lebesgue dominated convergence theorem, we obtain the following relations∫
RN

|(−∆)
s
2Φεn(yn)|2dx

=

∫
RN

|(−∆)
s
2 Ψ̃εn,yn

|2dx

=
CN,s

2

∫
R2N

|Ψ̃εn,yn(x)− Ψ̃εn,yn(z)|2

|x− z|N+2s
dxdz

=
CN,s

2

∫
R2N

∣∣a 1
∥Ψεn,yn (x)∥2

η(|εnx|)w(x)− a 1
∥Ψεn,yn (z)∥2

η(|εnz|)w(z)
∣∣2

|x− z|N+2s
dxdz

→CN,s

2

∫
R2N

|w(x)− w(z)|2

|x− z|N+2s
dxdz

=

∫
RN

|(−∆)
s
2w|2dx,

∫
RN

F (Φεn(yn))dx =

∫
RN

F
(
a
η(|εnx|)w(x)
∥Ψεn,yn

∥2
)
dx→

∫
RN

F (w)dx,∫
RN

V (εnx)Φ
2
εn(yn)dx =a2

∫
RN

V (εnx+ yn)
η2(|εnx|)w2(x)

∥Ψεn,yn
∥22

dx

→
∫
RN

V (y)w2dx =

∫
RN

V0w
2dx

as n→ ∞. As a consequence,

Iεn(Φεn(yn)) =
1

2

∫
RN

|(−∆)
s
2Φεn(yn)|2dx+

1

2

∫
RN

V (εnx)Φ
2
εn(yn)dx

−
∫
RN

F (Φεn(yn))dx

→1

2

∫
RN

|(−∆)
s
2w|2dx+

1

2

∫
RN

V0w
2dx−

∫
RN

F (w)dx

=IV0(w) = mV0,a,

a contradiction.

Let ρ = ρ(δ) > 0 be such that Mδ ⊂ Bρ(0). Consider the mapping χ : RN → RN defined by
χ(x) = x for |x| ≤ ρ and χ(x) = ρx

|x| for |x| ≥ ρ. Moreover, we also consider the map βε : Sa → RN

defined by

βε(v) =

∫
RN χ(εx)v

2dx∫
RN v2dx

.

We have the following facts.

Lemma 4.2. lim
ε→0

βε(Φε(y)) = y uniformly in y ∈M .

Proof. Suppose by contradiction that there exist δ0 > 0, {yn} ⊂M and εn → 0 such that

|βεn(Φεn(yn))− yn| ≥ δ0, ∀ n ∈ N.
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It is easy to calculate that

βεn(Φεn(yn)) = yn +

∫
RN [χ(εnx+ yn)− yn]η

2(|εnx|)w2(x)dx∫
RN η2(|εnx|)w2(x)dx

.

Since {yn} ⊂M ⊂ Bρ(0), by Lebesgue dominated convergence theorem we have

|βεn(Φεn(yn))− yn| → 0

as n→ ∞, a contradiction.

Lemma 4.3. Let εn → 0 and {un} ⊂ Sa be such that Iε(un) → m0,a as n → ∞. Then, there exists
{yn} ⊂ RN such that vn(x) := un(x + yn) → v in Hs(RN )\{0} as n → ∞. Furthermore, up to a
subsequence, ỹn := εnyn → y ∈M as n→ ∞.

Proof. By Remark 2.2, {un} is bounded in Hs(RN ). We claim that there exist R, α > 0 and yn ∈ RN

such that ∫
BR(yn)

|un|2dx ≥ α, ∀n ∈ N.

Otherwise, by Lemma 2.3 in [36] we have un → 0 in Lt(RN ) for all t ∈ (2, 2∗s). It follows from (1.6)
that

∫
RN F (un)dx→ 0 as n→ ∞. Then,

mV0,a = lim
n→∞

Iεn(un)

= lim
n→∞

[1
2

∫
RN

|(−∆)
s
2un|2dx+

1

2

∫
RN

V (εnx)|un|2dx−
∫
RN

F (un)dx
]

≥0,

a contradiction to Lemma 2.3. Set vn(x) := un(x + yn). Then, up to a subsequence, there exists
v ∈ Hs(RN )\{0} such that vn ⇀ v in Hs(RN ). Noting that

mV0,a ≤ IV0
(vn) = IV0

(un) ≤ Iεn(un) → mV0,a

as n→ ∞, that is to say, IV0
(vn) → mV0,a as n→ ∞. By Lemma 2.5, vn → v in Hs(RN ) and v ∈ Sa.

Set ỹn = εnyn. In the following, we prove that {ỹn} is bounded in RN . Indeed, if the conclusion is false,
up to a subsequence, we may assume that |ỹn| → +∞ as n→ ∞. Then, there holds that

mV0,a = lim
n→∞

Iεn(un)

= lim
n→∞

[
1

2

∫
RN

|(−∆)
s
2un|2dx+

1

2

∫
RN

V (εnx)|un|2dx−
∫
RN

F (un)dx

]
= lim

n→∞

[
1

2

∫
RN

|(−∆)
s
2 vn|2dx+

1

2

∫
RN

V (εnx+ ỹn)|vn|2dx−
∫
RN

F (vn)dx

]
=
1

2

∫
RN

|(−∆)
s
2 v|2dx+

1

2

∫
RN

V∞|v|2dx−
∫
RN

F (v)dx

=I∞(v) ≥ m∞,a,

which contradicts to (3.1). Consequently, up to a subsequence, there exists y ∈ RN such that ỹn → y in
RN . With a similar arguments as the above inequality we obtain

mV0,a ≥1

2

∫
RN

|(−∆)
s
2 v|2dx+

1

2
V (y)

∫
RN

v2dx−
∫
RN

F (v)dx

=IV (y)(v) ≥ mV (y),a.

Noting that V (y) ≥ V0. If V (y) > V0, by Corollary 2.8, mV (y),a > mV0,a, a contradiction. Therefore,
V (y) = V0, and so y ∈M .
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Let h(τ) be a positive function tending to 0 as τ → 0. Define the set

S̃a = {u ∈ Sa : Iε(u) ≤ mV0,a + h(ε)}.

For each y ∈M , we can use Lemma 4.1 to deduce that h(ε) := |Iε(Φε(y))−mV0,a| satisfying h(ε) → 0

as ε→ 0. Then, Φε(y) ∈ S̃a and S̃a ̸= ∅ for ε > 0.

Lemma 4.4. For any δ > 0, there holds that lim
ε→0

sup
v∈S̃a

inf
y∈Mδ

|βε(v)− y| = 0.

Proof. By the definition of supremum, let εn → 0 and un ∈ S̃a be such that

dist(βεn(un),Mδ) = inf
z∈Mδ

|βεn(un)− z| = sup
u∈S̃a

inf
z∈Mδ

|βεn(u)− z|+ on(1).

Then, it suffices to find a sequence {yn} ⊂Mδ such that

lim
n→∞

|βεn(un)− yn| = 0.

Indeed, since un ∈ S̃a,

mV0,a ≤ IV0
(un) ≤ Iεn(un) ≤ mV0,a + h(εn),∀ n ∈ N.

Hence, un ∈ Sa, Iεn(un) → mV0,a. From the above lemma, we can see that there exists {yn} ⊂ RN

such that ỹn := εnyn → y ∈M as n→ ∞ and vn(x) := un(x+ yn) → v in Hs(RN )\{0} as n→ ∞.
As a result, {ỹn} ⊂Mδ for large n and

βεn(un)− ỹn =

∫
RN [χ(εnz + ỹn)− ỹn]|vn|2dz

a2
→ 0

as n→ ∞.

Proof of Theorem 1.1. (i) We divide the proof into two parts.

Part 1): Multiplicity of solutions.

For any y ∈M , by Lemmas 4.1 and 4.4, we know that there exists εδ > 0 such that for any ε ∈ (0, εδ),
the diagram

βε ◦ Φε :M → Sa →Mδ

is well defined and βε ◦ Φε is homotopically equivalent to the inclusion map id : M → Mδ . Then,
by Lemma 4.3 of [2] we get catMδ

(Mδ) ≥ catMδ
(M). Furthermore, by Lemma 3.4 we obtain that

Iε satisfies the (PS)c condition for c ∈ (mV0,a,mV0,a + h(ε)). Consequently, standard Ljusternik-
Schnirelmann category theory (Refs. [17]) gives that Iε admits at least catMδ

(M) critical points on Sa.

Part 2): Concentration of the maximum points.

For any {εn} → 0+, let (uεn , λn) ∈ S̃a × R+ solve (Pa) and ξn ∈ RN be a global maximum of
|uεn |. Then,

mV0,a ≤ IV0(uεn) ≤ Iεn(uεn) ≤ mV0,a + h(εn),

i.e., Iεn(uεn) → mV0,a as n→ ∞. By Lemma 4.3, there exists {yn} ⊂ RN with ỹn := εnyn → y ∈M
such that vn(x) := uεn(x+ yn) → v ∈ Hs(RN )\{0}. It is easy to see that

(−∆)svn + V (εnx+ ỹn)vn + λnvn = f(vn), x ∈ RN .

Similar to the proof of Lemma 3.3, by (1.9) we get lim
n→∞

λn ≥ − 2mV0,a

a2 > 0. Since vn → v in Hs(RN ),

we can prove that lim
|x|→+∞

vn(x) = 0 uniformly in n ∈ N. Then, for given τ > 0, there exist R1 > 0
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and n0 ∈ N+ such that |vn(x)| ≤ τ for |x| ≥ R1 and n ≥ n0. Clearly, ∥vn∥∞ ̸→ 0 as n → ∞.
Otherwise, vn → 0 in Hs(RN ), which contradicts to vn ∈ Sa. In the following, let us fix τ > 0 such that
∥vn∥∞ ≥ 2τ and zn ∈ RN satisfying |vn(zn)| = ∥vn∥∞ for all n ∈ N. Then, |zn| ≤ R1, ξn = zn + yn
and

lim
n→∞

V (εnξn) = lim
n→∞

V (εnzn + εnyn) = V (y) = V0.

(ii) In what follows, we shall study the decay behavior of uε. Noting that by Lemma 4.3 in [15],
there exists a function w such that

0 < w(x) ≤ C

1 + |x|N+2s
,

and
(−∆)sw +

V0
2
w ≥ 0, ∀|x| ≥ R̄, (4.2)

where R̄ > 0 is a suitable constant. Assume that ξε ∈ RN is the global maximum of |uε|. Set vε(x) :=
uε(x + ξε). Then, lim

|x|→+∞
vε(x) = 0, it follows from (f1) and (V ) that there exists some large R1 > 0

such that
(−∆)svε +

V0
2
vε =(−∆)svε + V (εx+ εξε)vε − [V (εx+ εξε)−

V0
2
]vε

=f(vε)− λεvε −
V0
2
vε

≤f(vε)−
V0
2
vε

≤0

(4.3)

for x ∈ RN\BR1
(0). Now we take R2 := max{R̄, R1} and set

b := inf
BR2

(0)
w > 0, zε := (k + 1)w − bvε,

where k := sup ∥vε∥L∞ < +∞. We assert that zε ≥ 0 in RN . Indeed, if the conclusion is false, there
exists xj,ε ∈ RN such that

inf
x∈RN

zε(x) = lim
j→+∞

zε(xj,ε) < 0. (4.4)

Since
lim

|x|→+∞
w(x) = 0 = lim

|x|→+∞
vε(x) = 0,

then, we have that
lim

|x|→+∞
zε(x) = 0.

Consequently, {xj,ε} is bounded in RN . Up to a subsequence, we may assume that xj,ε → xε ∈ RN as
j → +∞. Hence, by (4.4) one has

inf
x∈RN

zε(x) = lim
j→+∞

zε(xj,ε) = zε(xε) < 0. (4.5)

Taking into account the continuity property of xε and the integral representation of the fractional
Laplacian of zε at the point xε we deduce that

(−∆)szε(xε) =
1

2
CN,s

∫
R2N

2zε(xε)− zε(xε + y)− zε(xε − y)

|y|N+2s
dy ≤ 0 (4.6)

Therefore,
zε = (k + 1)w − bvε ≥ kb+ w − kb = w > 0
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in BR2
(0). By use of (4.5) we have xε ∈ RN\BR2

(0). It follow from (4.2) and (4.3) that

(−∆)szε +
V0
2
zε =(−∆)s[(k + 1)w − bvε] +

V0
2
[(k + 1)w − bvε]

=(k + 1)(−∆)sw + (k + 1)
V0
2
w − b(−∆)svε − b

V0
2
vε

=(k + 1)[(−∆)sw +
V0
2
w]− b[(−∆)svε +

V0
2
vε]

≥0

in RN\BR2
(0). As a result, by (4.5) and (4.6) we get that

0 ≤ (−∆)szε(xε) +
V0
2
zε(xε) < 0

a contradiction. As a consequence, zε(x) ≥ 0 in RN . Namely,

vε(x) ≤
k + 1

b
w ≤ C

1 + |x|N+2s
.

And so
uε(x) = vε(x− ξε) ≤

C

1 + |x− ξε|N+2s
.

2

5 Sobolev supercritical case
In this section, we consider the Sobolev supercritical case. To the best of our knowledge, there is no
paper considering the Sobolev supercritical case to the study of normalized solutions. Precisely, we shall
investigate the existence and multiplicity of normalized solutions for the following fractional Schrödinger
equation with Sobolev supercritical growth{

(−∆)su+ V (εx)u+ λu = f(u) + η|u|p−2u, in RN ,∫
RN |u|2dx = a2,

(Qa)

where p > 2∗s . Suppose that (V ), (f1), (f̃2) and (f3) hold. It is easy to see that the solutions of problem
(Qa) are critical points of the energy functional

Jε(u) =
1

2

∫
RN

|(−∆)
s
2u|2dx+

1

2

∫
RN

V (εx)u2dx−
∫
RN

F (u)dx− η

p

∫
RN

|u|pdx

restricted on Sa. But the functional Jε is not well defined on Hs(RN ), since p > 2∗s . To do this, we
will introduce a cutoff function and use the truncation technique to overcome the difficulty caused by the
Sobolev supercritical growth.

Define the following cutoff function

ϕ(t) =

{
|t|p−2t, |t| ≤M,
Mp−q|t|q−2t, |t| > M,

where M > 0. Then ϕ ∈ C(R,R), ϕ(t)t ≥ qΦ(t) := q
∫ t

0
ϕ(s)ds ≥ 0 and |ϕ(t)| ≤ Mp−q|t|q−1 for all

t ∈ R. Set hη(t) = ηϕ(t) + f(t) for all t ∈ R. Then hη(t) possesses the following properties:

(h1) hη ∈ C(R,R) is odd and lim
t→0

|hη(t)|
|t|r−1 = α.

(h2) |hη(t)| ≤ ηMp−q|t|q−1 + C1 + C2|t|q−1 for all t ∈ R.
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(h3)
hη(t)
tq−1 is an increasing function of t on (0,+∞).

(h4) hη(t)t ≥ qHη(t) := q
∫ t

0
hη(τ)dτ ≥ 0 for all t ∈ R.

Fixed 0 < ε < ε0 and ∥V ∥∞ < V∗, where ε0 and V∗ appear in Theorem 1.1, taking into account (V )
and (h1)-(h3) and Theorem 1.1, the following problem{

(−∆)su+ V (εx)u+ λu = hη(u), in RN ,∫
RN |u|2dx = a2,

(5.1)

admits at least catMδ
(M) couples (uη, λ) ∈ Hs(RN )× R+ of weak solutions. Let

Jε,η(u) =
1

2

∫
RN

|(−∆)
s
2u|2dx+

1

2

∫
RN

V (εx)u2dx−
∫
RN

Hη(u)dx

=
1

2

∫
RN

|(−∆)
s
2u|2dx+

1

2

∫
RN

V (εx)u2dx− η

∫
RN

Φ(u)dx−
∫
RN

F (u)dx.

Then Jε,η|′Sa
(uη) = 0 and Jε,η(uη) = mV0,a,η := inf

u∈Sa

JV0,η(u), where

JV0,η(u) =
1

2

∫
RN

|(−∆)
s
2u|2dx+

1

2

∫
RN

V0u
2dx−

∫
RN

Hη(u)dx.

Furthermore, it is easy to see that mV0,a,η ≤ mV0,a.

Lemma 5.1. The solution uη satisfies ∥(−∆)
s
2uη∥22 ≤ 2(qmV0,a+λa2)

q−2 .

Proof. By (5.1), we can infer that

0 =

∫
RN

|(−∆)
s
2uη|2dx+

∫
RN

V (εx)|uη|2dx+ λ

∫
RN

|uη|2dx−
∫
RN

hη(uη)uηdx

=

∫
RN

|(−∆)
s
2uη|2dx+

∫
RN

V (εx)|uη|2dx+ λ

∫
RN

|uη|2dx− η

∫
RN

ϕ(uη)uηdx

−
∫
RN

f(uη)uηdx.

It follows from (1.9) that

qmV0,a ≥ qmV0,a,η =
q

2

∫
RN

|(−∆)
s
2uη|2dx+

q

2

∫
RN

V (εx)|uη|2dx− ηq

∫
RN

Φ(uη)dx

− q

∫
RN

F (uη)dx−
∫
RN

|(−∆)
s
2uη|2dx−

∫
RN

V (εx)|uη|2dx

− λ

∫
RN

|uη|2dx+ η

∫
RN

ϕ(uη)uηdx+

∫
RN

f(uη)uηdx

=
q − 2

2

∫
RN

|(−∆)
s
2uη|2dx+

q − 2

2

∫
RN

V (εx)|uη|2dx− λ

∫
RN

|uη|2dx

+ η

∫
RN

[ϕ(uη)uη − qΦ(uη)]dx+

∫
RN

[f(uη)uη − qF (uη)]dx

≥q − 2

2

∫
RN

|(−∆)
s
2uη|2dx− λ

∫
RN

|uη|2dx

=
q − 2

2

∫
RN

|(−∆)
s
2uη|2dx− λa2,

which implies that the lemma holds.
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Lemma 5.2. There exist two constants B,D > 0 independent on η such that ∥uη∥L∞ ≤ B(1 + η)D.

Proof. For any L > 0 and β > 1, set

γ(uη) := γη,L(uη) = uη|uη,L|2(β−1) ∈ Hs(RN ),

where uη,L := min{uη, L}. Since γ is an increasing function, we can deduce that

(a− b)[γ(a)− γ(b)] ≥ 0, ∀ a, b ∈ R.

Set Ψ(t) = |t|2
2 and Γ(t) =

∫ t

0
(γ′(τ))

1
2 dτ for t ≥ 0. We claim that

Ψ′(a− b)[γ(a)− γ(b)] ≥ |Γ(a)− Γ(b)|2

for all a, b ∈ R. Indeed, if a > b we obtain

Ψ′(a− b)[γ(a)− γ(b)] =(a− b)[γ(a)− γ(b)] = (a− b)

∫ a

b

γ′(t)dt

=(a− b)

∫ a

b

(Γ′(t))2dt ≥ (

∫ a

b

Γ′(t)dt)2

=|Γ(a)− Γ(b)|2.

If a ≤ b, the proof is similar. Hence, the assertion is true. It results that

|Γ(uη)(x)− Γ(uη)(y)|2 ≤ [(uη)(x)− (uη)(y)] · [(uη|uη,L|2(β−1))(x)− (uη|uη,L|2(β−1))(y)]. (5.2)

As a consequence, taking γ(uη) = uη|uη,L|2(β−1) as a test function, in the light of (5.2) we see that

CN,s

2
[Γ(uη)]

2
Hs(RN ) +

∫
RN

V (εx)u2η|uη,L|2(β−1)dx

≤CN,s

2

∫
R2N

[(uη)(x)− (uη)(y)] · [(uη|uη,L|2(β−1))(x)− (uη|uη,L|2(β−1))(y)]

|x− y|N+2s
dxdy

+

∫
RN

V (εx)u2η|uη,L|2(β−1)dx+ λ

∫
RN

u2η|uη,L|2(β−1)dx

=

∫
RN

hη(uη)uη|uη,L|2(β−1)dx.

(5.3)

It follow from (h1) and (h2),for fixed η > 0 we can prove

|hη(t)| = |f(t) + ηϕ(t)| ≤ V0|t|+ (1 + η)C|t|q−1 (5.4)

for all t ∈ R. Simultaneously, |Γ(uη)| ≥ 1
βuη|uη,L|

β−1 and

CN,s

2
[Γ(uη)]

2
Hs(RN ) = ∥Γ(uη)∥2Ds,2(RN ) ≥ S∥Γ(uη)∥22∗s ≥ 1

β2
S∥uη|uη,L|β−1∥22∗s . (5.5)

Therefore, taking into account (5.3)-(5.5) and (V ) we infer that

1

β2
S∥uη|uη,L|β−1∥22∗s ≤ CN,s

2
[Γ(uη)]

2
Hs(RN )

≤
∫
RN

[f(uη) + ηϕ(uη)]uη|uη,L|2(β−1)dx−
∫
RN

V (εx)u2η|uη,L|2(β−1)dx

≤
∫
RN

V0u
2
η|uη,L|2(β−1)dx+ (1 + η)C

∫
RN

|uη|q|uη,L|2(β−1)dx

−
∫
RN

V (εx)u2η|uη,L|2(β−1)dx

≤C(1 + η)

∫
RN

|uη|q|uη,L|2(β−1)dx.
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Consequently,

∥uη|uη,L|β−1∥22∗s ≤ C(1 + η)β2

∫
RN

|uη|q|uη,L|2(β−1)dx.

Set wη,L = uη|uη,L|β−1, by virtue of the Hölder inequality one has

∥wη,L∥22∗s ≤ C(1 + η)β2

∫
RN

|uη|q−2|uη|2|uη,L|2(β−1)dx

≤ C(1 + η)β2(

∫
RN

|uη|2
∗
sdx)

q−2
2∗s · (

∫
RN

|wη,L|α
∗
sdx)

2
α∗
s ,

where α∗
s =

22∗s
2∗s−(q−2) ∈ (2, 2∗s).

By Lemma 5.1 one has
∥wη,L∥22∗s ≤ C(1 + η)β2∥wη,L∥2α∗

s
. (5.6)

Now we observe that if uβη ∈ Lα∗
s (RN ), from the definition of {uη,L} and by using of the fact |uη,L| ≤

|uη| and (5.6) we see that

∥wη,L∥22∗s ≤ C(1 + η)β2(

∫
RN

|uη|βα
∗
sdx)

2
α∗
s < +∞.

Let L→ +∞, it follows from the Fatou lemma that

∥uη∥β2∗s ≤ C
1
β (
√

1 + η)
1
β β

1
β ∥uη∥βα∗

s
, (5.7)

whenever |uη|βα
∗
s ∈ L1(RN ).

Now, set β :=
2∗s
α∗

s
> 1. By the fact that uη ∈ L2∗s (RN ) we know that the above inequality holds for

this choice of β. Then, observing that β2α∗
s = β2∗s , it follows that (5.7) holds with β replaced by β2.

Therefore,
∥uη∥β22∗s

≤ C
1
β2 (

√
1 + η)

1
β2 β

2
β2 ∥uη∥β2α∗

s

= C
1
β2 (

√
1 + η)

1
β2 β

2
β2 ∥uη∥β2∗s

≤ C
1
β2 (

√
1 + η)

1
β2 β

2
β2 C

1
β (
√
1 + η)

1
β β

1
β ∥uη∥βα∗

s

= C
1
β+ 1

β2 (
√

1 + η)
1
β+ 1

β2 β
1
β+ 2

β2 ∥uη∥βα∗
s
.

Interating this process, and recalling that βα∗
s = 2∗s , we can conclude that for every m ∈ N

∥uη∥βm2∗s
≤ C

m∑
i=1

1

βi
(
√

1 + η)

m∑
i=1

1

βi
β

m∑
i=1

i

βi ∥uη∥2∗s .

Set

dm =

m∑
i=1

1

βi
and em =

m∑
i=1

i

βi
.

Then, we have dm → σ1 > 0 and em → σ2 > 0 as m→ ∞. Let m→ +∞, by Lemma 5.1 we get

∥uη∥L∞ ≤ Cσ1(
√
1 + η)σ1βσ2A

1
2 := B(1 + η)D,

where B := Cσ1βσ2A
1
2 > 0 and D := σ1

2 are independent on η.

Proof of Theorem 1.2. For large M > 0, we can choose small η0 > 0 such that

∥uη∥L∞ ≤ B(1 + η)D ≤M for all η ∈ (0, η0].

Hence, hη(uη) = η|uη|p−2uη + f(uη) for all η ∈ (0, η0]. As a consequence, problem (Qa) possesses at
least catMδ

(M) couples (uη, λ) ∈ Hs(RN )× R+ of weak solutions. 2
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