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1. Introduction

Let Ω be a smooth bounded domain in R
N and a ∈ C(Ω) such that inf

x∈Ω
a(x) > 0. In this paper, we

investigate the existence of nontrivial solutions to the following problem:

(Pλ)
{

Δ2
p(x)u + a(x)|u|p(x)−2u = λ(V1(x)|u|q(x)−2u − V2(x)|u|α(x)−2u) in Ω,

u = Δu = 0, on ∂Ω,

where p ∈ C(Ω) with 1 < p− := inf
x∈Ω

p(x) ≤ p+ := sup
x∈Ω

p(x) <
N

2
, V1 and V2 are functions in some

generalized Sobolev spaces, and Δ2
p(x)u = Δ(|Δu|p(x)−2Δu) is the p(x)-biharmonic operator of fourth

order.
If p is a constant function, problem (Pλ) has a solid theoretical significance and a sharp physical

background. For instance, this problem describes the surface tension of the height of a thin liquid film on
a solid surface in lubrication approximation (see [18]). If p ≡ 2, problem (Pλ) becomes the generalized
Cahn–Hilliard equation. Problem (Pλ) is not a trivial generalization of related problems in the constant
case. The main difficulties in the study of this problem are the lack of the maximum principle and the
complicated nonlinearities. In particular, the presence of several variable exponents produces difficulties
in establishing a priori estimates.

In the sequel, X will denote the function space W 2,p(x)(Ω) ∩ W
1,p(x)
0 (Ω).

A weak solution of (Pλ) is any u ∈ X \ {0} such that Δu = 0 on ∂Ω and∫
Ω

|Δu|p(x)−2ΔuΔv + a(x)|u|p(x)−2uvdx = λ

∫
Ω

(V1(x)|u|q(x)−2 − V2(x)|u|α(x)−2)uvdx,

for all v ∈ X.
The energy functional corresponding to problem (Pλ) is defined on X as

Ψλ(u) = J(u) − λΦ1(u) + λΦ2(u),
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where

J(u) =
∫
Ω

1
p(x)

(|Δu|p(x) + a(x)|u|p(x))dx,

Φ1(u) =
∫
Ω

V1(x)
q(x)

|u|q(x)dx and Φ2(u) =
∫
Ω

V2(x)
α(x)

|u|α(x)dx.

The study of this kind of nonlinear problems described by non-homogeneous differential operators
has been an interesting topic in relationship with several relevant applications, such as electrorheological
fluids (see [27]). The first major discovery in electrorheological fluids was due to Willis Winslow in 1949.
These fluids have the interesting property that their viscosity depends on the electric field in the fluid.
Winslow noticed that in such fluids (for instance, lithium polymetacrylate) viscosity in an electrical field
is inversely proportional to the strength of the field. The field induces string-like formations in the fluid,
which are parallel to the field. They can raise the viscosity by as much as five orders of magnitude. This
phenomenon is known as the Winslow effect. We refer to [26] for more details.

We also refer to elastic mechanics (see [29]), stationary thermo-rheological viscous flows of non-
Newtonian fluids, image processing (see [6]) as well as the mathematical description of the filtration
process of a barotropic gas through a porous medium (see [1]). Problems of this type are characterized
by the fact that the associated energy density changes its ellipticity and growth properties according to
the point. These non-homogeneous problems with one or more variable exponents have been intensively
studied starting with the pioneering contributions of Halsey [15] and Zhikov [29–31] in relationship with
the analysis of the behavior of strongly anisotropic materials in the context of the homogenization and
nonlinear elasticity.

We also point out that fourth-order elliptic equations arise in many domains like microelectromechan-
ical systems, surface diffusion on solids, thin film theory, flow in Hele-Shaw cells and phase field models
of multiphasic systems (see [13]). For recent contributions concerning this type of equations, we refer to
[3,25,26].

Problem (Pλ) has been investigated by Baraket and Rădulescu [3] in the particular case when V1(x) =
V2(x) ≡ 1. The main results in [3] establish the existence of a continuous spectrum of eigenvalues,
respectively. the existence of a solution for λ large enough. Ayoujil and Amrouss [2] studied problem
(Pλ), when V1(x) ≡ 1 and V2(x) ≡ 0 and max

x∈Ω
q(x) < min

x∈Ω
p(x). The authors proved that the energy

functional associated to problem (Pλ) has a nontrivial minimum for any positive λ. Our problem was
also studied by Ge, Zhou and Wu [14], in the particular case when V2(x) ≡ 0 and a(x) ≡ 0. The authors
showed the existence of a continuous family of eigenvalues, more precisely they proved the existence of a
positive λ∗ such the problem has a solution for all λ < λ∗.

Finally, Kong [19] considers problem (Pλ) in the case when V1 and V2 are continuous functions on
Ω such that inf

x∈Ω
V1(x) > 0 and inf

x∈Ω
V2(x) ≥ 0. The main result in [19] establishes the existence of a

nontrivial weak solution for any λ > λ∗. Recent contributions concerning this type of problems can be
found in [17].

Inspired by the above-mentioned papers, we study problem (Pλ) under more general conditions than
in [14] and [19]. In this new abstract setting, we show the existence of a weak solution for the problem
(Pλ) and we impose less regularity for the potentials V1 and V2; moreover, V1 may change sign in Ω. Due
to the fact that we find a solution for all λ > 0, our result is better than in the papers [14] and [19].

The paper is organized as follows. In Sect. 2, we recall the definition of variable exponent Lebesgue
spaces Lp(x)(Ω), as well as of Sobolev spaces W k,p(x)(Ω). Moreover, some properties of these spaces will
be also exhibited to be used later. In Sect. 3, we give the main results and their proofs. Remarks and
some open problems are included in the final part of this paper.
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2. Abstract setting

To study p(x)-biharmonic problems, we need some results on the spaces Lp(x)(Ω), W 1,p(x)(Ω) and
W k,p(x)(Ω); see [16,23,25,26] for details, complements and proofs.

Let

C+(Ω) :=
{
h : h ∈ C(Ω), h(x) > 1, for all x ∈ Ω

}
.

For any p ∈ C+(Ω), we set 1 < p− := min
x∈Ω

p(x) ≤ p+ = max
x∈Ω

p(x) < ∞ and

Lp(x)(Ω) =

⎧⎨
⎩u : Ω → R measurable and

∫
Ω

|u(x)|p(x)dx < ∞
⎫⎬
⎭ .

These spaces Lp(x)(Ω) have been introduced by Orlicz [24].
We recall the Luxemburg norm on this space, which is defined by

|u|p(x) = inf

⎧⎨
⎩μ > 0 :

∫
Ω

|u(x)
μ

|p(x)dx ≤ 1

⎫⎬
⎭ .

Clearly, when p(x) ≡ p, the space Lp(x)(Ω) reduces to the classical Lebesgue space Lp(Ω) and the norm
|u|p(x) reduces to the standard norm ‖u‖Lp = (

∫
Ω

|u|pdx)
1
p in Lp(Ω).

For any positive integer k, let

W k,p(x)(Ω) = {u ∈ Lp(x)(Ω) : Dαu ∈ Lp(x)(Ω), |α| ≤ k},

where α = (α1, α2, . . . , αn) is a multi-index, |α| =
∑n

i=1 αi and Dαu = ∂|α|u
∂α1x1.....∂αN xN

. Then W k,p(x)(Ω)
is a separable and reflexive Banach space equipped with the norm

‖u‖k,p(x) =
∑

|α|≤k

|Dαu|p(x).

The space W
k,p(x)
0 (Ω) is the closure of C∞

0 (Ω) in W k,p(x)(Ω).
Let Lp′(x)(Ω) be the conjugate space of Lp(x)(Ω) with 1

p + 1
p′ = 1. Then the following Hölder-type

inequality ∣∣∣∣∣∣
∫
Ω

uvdx

∣∣∣∣∣∣ ≤
(

1
p− +

1
(p′)−

)
|u|p(x)|v|p′(x), u ∈ Lp(x)(Ω), v ∈ Lp′(x)(Ω). (2.1)

holds. Moreover, if h1, h2 and h3 : Ω → (1,∞) are Lipschitz continuous functions such that 1/h1(x) +
1/h2(x) + 1/h3(x) = 1, then for any u ∈ Lh1(x)(Ω), v ∈ Lh2(x)(Ω) and w ∈ Lh3(x)(Ω) the following
inequality holds (see [12, Proposition 2.5]):∣∣∣∣∣∣

∫
Ω

uvw dx

∣∣∣∣∣∣ ≤
(

1
h−

1

+
1

h2
− +

1
h3

−

)
|u|h1(x)|v|h2(x)|w|h3(x). (2.2)

Inequality (2.1) and its generalized version (2.2) are due to Orlicz [24].
The modular on the space Lp(x)(Ω) is the map ρp(x) : Lp(x)(Ω) → R defined by

ρp(x)(u) :=
∫
Ω

|u|p(x)dx.
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Proposition 2.1. (See [22]) For all u, v ∈ Lp(x)(Ω), we have
1. |u|p(x) < 1 (resp. = 1, > 1) ⇔ ρp(x)(u) < 1 (resp. = 1, > 1).

2. min(|u|p−

p(x), |u|p+

p(x)) ≤ ρp(x)(u) ≤ max(|u|p−

p(x), |u|p+

p(x)).
3. ρp(x)(u − v) → 0 ⇔ |u − v|p(x) → 0.

Proposition 2.2. (See [8]) Let p and q be measurable functions such that p ∈ L∞(Ω), and 1 ≤ p(x)q(x) ≤
∞, for a.e. x ∈ Ω. Let u ∈ Lq(x)(Ω), u �= 0. Then

min
(
|u|p+

p(x)q(x), |u|p−

p(x)q(x)

)
≤ ||u|p(x)|q(x) ≤ max

(
|u|p−

p(x)q(x), |u|p+

p(x)q(x)

)
.

Definition 2.3. Assume that spaces E, F are Banach spaces, we define the norm on the space X := E ∩F
as ‖u‖X = ‖u‖E + ‖u‖F .

In order to discuss problem (Pλ), we need some properties of the space X := W
1,p(x)
0 (Ω)∩W 2,p(x)(Ω).

From Definition 2.3, we know that for any u ∈ X we have ‖u‖ = ‖u‖1,p(x) + ‖u‖2,p(x), thus ‖u‖ =
|u|p(x) + |∇u|p(x) +

∑
|α|=2

|Dαu|p(x). In Zang and Fu [28], the equivalence of the norms was proved, and it

was even proved that the norm |Δu|p(x) is equivalent to the norm ‖u‖ (see [28, Theorem 4.4]). Note that
(X, ‖.‖) is a separable and reflexive Banach space.

Let

‖u‖a = inf

⎧⎨
⎩μ > 0 :

∫
Ω

(∣∣∣∣Δu

μ

∣∣∣∣
p(x)

+ a(x)
∣∣∣∣uμ

∣∣∣∣
p(x)

)
dx ≤ 1

⎫⎬
⎭ for u ∈ X.

In view of a− > 0, it is easy to see that ‖u‖a is equivalent to the norms ‖u‖ and |Δu|p(x) in X. In
our paper, we will use the norm ‖u‖a. The modular on X is the mapping ρp(x) : X → R defined by
ρp(x)(u) =

∫
Ω

|Δu|p(x) + a(x)|u|p(x)dx. This mapping satisfies the same properties as in Proposition 2.4.

More precisely, we have the following result (see [10]).

Proposition 2.4. For all u ∈ Lp(x)(Ω), we have
1. ‖u‖a < 1 (resp. = 1, > 1) ⇔ ρp(x)(u) < 1 (resp. = 1, > 1).
2. min(‖u‖p−

a , ‖u‖p+

a ) ≤ ρp(x)(u) ≤ max(‖u‖p−
a , ‖u‖p+

a ).

We recall that the critical Sobolev exponent is defined as follows:⎧⎪⎨
⎪⎩

p∗(x) =
Np(x)

N − 2p(x)
, p(x) <

N

2
,

p∗(x) = +∞, p(x) ≥ N

2
.

Remark 2.5. Assume that q ∈ C+(Ω) and q(x) < p∗(x) for any x ∈ Ω. Then, by Theorem 3.2 in [2], the
function space X is continuously and compactly embedded in Lq(x)(Ω).

As pointed out in [26], the function spaces with variable exponent have some striking properties, such
as:

(i) If 1 < p− ≤ p+ < ∞ and p : Ω → [1,∞) is smooth, then the formula
∫
Ω

|u(x)|pdx = p

∞∫
0

tp−1 |{x ∈ Ω; |u(x)| > t}|dt

has no variable exponent analogue.
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(ii) Variable exponent Lebesgue spaces do not have the mean continuity property. More precisely, if
p is continuous and nonconstant in an open ball B, then there exists a function u ∈ Lp(x)(B) such that
u(x + h) �∈ Lp(x)(B) for all h ∈ R

N with arbitrary small norm.
(iii) The function spaces with variable exponent are never translation invariant. The use of convolution

is also limited, for instance, the Young inequality

|f ∗ g|p(x) ≤ C |f |p(x) ‖g‖L1

holds if and only if p is constant.

3. Main result

Throughout this section, the letters c, ci, i = 1, 2, . . . . denote positive constants which may change from
line to line.

In the sequel, we impose the following hypothesis:
(H) 1 < q(x) < α(x) < p(x) < N

2 < min{s1(x), s2(x)}, for all x ∈ Ω, where s1, s2 ∈ C(Ω),
V1 ∈ Ls1(x)(Ω) such that V1 > 0 in Ω0 ⊂⊂ Ω, with |Ω0| > 0 and V2 ∈ Ls2(x)(Ω) such that V2 ≥ 0 in Ω.

The main result of this paper is the following.

Theorem 3.1. Assume that hypothesis (H) holds. Then for all λ > 0, problem (Pλ) has at least one
nontrivial weak solution with negative energy.

We denote by s′
1(x), respectively, s′

2(x) the conjugate exponents of the functions s1(x), respectively,
s2(x), r1(x) := s1(x)q(x)

s1(x)−q(x) and r2(x) := s2(x)α(x)
s2(x)−α(x) . Then the following embedding properties hold.

Remark 3.2. Under assumption (H), we have max(r1(x), s′
1(x)q(x)) < p∗(x), for all x ∈ Ω. It follows

that the embeddings X ↪→ Ls′
1(x)q(x)(Ω) and X ↪→ Lr1(x)(Ω) are compact and continuous. In addition,

max(r2(x)s′
2(x)α(x)) < p∗(x), for all x ∈ Ω. Consequently, the embeddings X ↪→ Ls′

2(x)α(x)(Ω) and
X ↪→ Lr2(x)(Ω) are compact and continuous.

Note that under Remark 3.2, we have for all u ∈ X

|Φ1(u)| ≤ 1
q− |V1|s1(x)||u|q(x)|s′

1(x) ≤
{

1
q− |V1|s1(x)|u|q−

s′
1(x)q(x), if |u|s′

1(x)q(x) ≤ 1,

1
q− |V1|s1(x)|u|q+

s′
1(x)q(x), if |u|s′

1(x)q(x) > 1.

and

|Φ2(u)| ≤ 1
α− |V2|s2(x)||u|α(x)|s′

2(x) ≤
{

1
α− |V2|s(x)|u|α−

s′
2(x)α(x), if |u|s′

2(x)α(x) ≤ 1,
1

α− |V2|s(x)|u|α+

s′
2(x)α(x), if |u|s′

2(x)α(x) > 1.

Using Proposition 2.2, we deduce that Ψλ is well defined on X. On the other hand, in [9] it is proved
the following property.

Proposition 3.3. The energy functional J : X → R is sequentially weakly lower semi-continuous and of
class C1. Moreover, the mapping J ′ : X → X∗ is a strictly monotone bounded homeomorphism and is of
type (S+), that is, if un ⇀ u and lim sup

n→+∞
J ′(un)(un − u) ≤ 0, then un → u.

By Proposition 3.3, we obtain that J ∈ C1(X,R). Moreover, under assumption (H), Proposition 2 in
[5] implies that Φ1, Φ2 ∈ C1(X,R). Thus, Ψλ ∈ C1(X,R) and for all u, v ∈ X

〈dΨλ(u), v〉 =
∫
Ω

(
|Δu|p(x)−2 ΔuΔv + a(x)|u|p(x)−2uv

)
dx − λ

∫
Ω

(
V1(x)|u|q(x)−2 − V2(x)|u|α(x)−2

)
uvdx.
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3.1. Proof of Theorem 3.1

By Remark 3.2, we observe that

|u|s′
1(x)q(x) ≤ c‖u‖a and |u|s′

2(x)α(x) ≤ c1‖u‖a, for all u ∈ X. (3.1)

We establish in what follows some qualitative properties of the Euler–Lagrange functional Ψλ.

Lemma 1. Assume that hypothesis (H) is fulfilled. Then the functional Ψλ is coercive on X.

Proof. By virtue of assumption (H), Remark 3.2 and Proposition 2.4, we have for all u ∈ X with ‖u‖a > 1

Ψλ(u) ≥
∫
Ω

1
p(x)

(|Δu|p(x)dx + a(x)|u|p(x)) − λ

q−

∫
Ω

|V1(x)||u|q(x)dx +
λ

α+

∫
Ω

|V2(x)||u|α(x)dx,

≥ 1
p+

ρp(x)(u) − λ

q− |V1|s(x)|uq(x)|s′
1(x),

≥ 1
p+

‖u‖p−
a − λ

q− |V1|s(x) min
(
cq−‖u‖q−

a , cq+

1 ‖u‖q+

a

)
.

Since q+ < p−, we infer that Ψλ(u) → ∞ as ‖u‖ → ∞; in other words, Ψλ is coercive on X. �

In the sequel, we set α−
0 = inf

x∈Ω0

α(x), q−
0 = inf

x∈Ω0

q(x) and p−
0 = inf

x∈Ω0

p(x). The following result asserts

the existence of a “valley” for Ψλ near the origin.

Lemma 2. Assume that hypothesis (H) is fulfilled. Then there exists u0 ∈ X such that u0 ≥ 0, u0 �= 0 and
Ψλ(tu0) < 0, for t > 0 small enough.

Proof. Since q−
0 < α−

0 , let ε0 > 0 be such that q−
0 + ε0 < α−

0 . Since q ∈ C(Ω0), there exists an open set
Ω1 ⊂⊂ Ω0 such that |q(x) − q−

0 | < ε0 for all x ∈ Ω1. Thus, q(x) ≤ q−
0 + ε0 < α−

0 for all x ∈ Ω1.
Let u0 ∈ C∞

0 (Ω) be such that supp (u0) ⊂ Ω1 ⊂ Ω0, u0 = 1 in a subset Ω′
1 ⊂ supp (u0), 0 ≤ u0 ≤ 1 in

Ω1. Therefore

Ψλ(tu0) =
∫
Ω

tp(x)

p(x)
(|Δu0|p(x) + a(x)|u0|p(x)dx) − λ

∫
Ω

tq(x)

q(x)
V1(x)|u0|q(x)dx

+λ

∫
Ω

tα(x)

α(x)
V2(x)|u0|α(x)dx

=
∫
Ω0

tp(x)

p(x)
(|Δu0|p(x) + a(x)|u0|p(x)dx) − λ

∫
Ω1

tq(x)

q(x)
V1(x)|u0|q(x)dx

+λ

∫
Ω0

tα(x)

α(x)
V2(x)|u0|α(x)dx

≤ tp
−
0

p−
0

∫
Ω0

(|Δu0|p(x) + a(x)|u0|p(x)dx) − λtq
−
0 +ε0

q−
0

∫
Ω1

V1(x)|u0|q(x)

+λ
tα0

−

α−
0

∫
Ω0

V2(x)|u0|α(x)dx
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≤ tα
−
0

α−
0

⎡
⎣∫
Ω0

(
|Δu0|p(x) + a(x)|u0|p(x)dx)

)
dx + λ

∫
Ω0

V2(x)|u0|α(x)dx

⎤
⎦

− λtq
−
0 +ε0

q+
0

∫
Ω1

V1(x)|u0|q(x)dx

It follows that

Ψλ(tu0) < 0,

for t < δ1/(α−
0 −q−

0 −ε0) with

0 < δ < min

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

1,

λα−
0

∫
Ω1

V1(x)|u0|q(x)

q+
0

[∫
Ω0

(
(|Δu0|p(x) + a(x)|u0|p(x)dx)

)
dx + λ

∫
Ω0

V2(x)|u0|α(x)dx

]

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

.

Finally, we point out that∫
Ω0

(
|Δu0|p(x) + a(x)|u0|p(x)dx

)
dx + λ

∫
Ω0

V2(x)|u0|α(x)dx > 0.

In fact, if ∫
Ω0

(
|Δu0|p(x) + a(x)|u0|p(x)dx

)
dx + λ

∫
Ω

V2(x)|u0|α(x)dx = 0,

then ∫
Ω0

(|Δu0|p(x) + a(x)|u0|p(x)dx) = 0.

It follows that ‖u0‖a = 0, hence u0 = 0 in Ω which is a contradiction. The proof of lemma is now
complete. �

Proof of Theorem 3.1 completed. Since Ψλ is coercive and weakly lower semi-continuous, it admits a
global minimizer u, which is a critical point of Ψλ. By Lemma 2, we have u �= 0.

In order to show that u is a solution of problem (Pλ), it remains to show that Δu = 0 on ∂Ω. Since
u ∈ X \ {0} is a critical point of Ψλ, it follows that∫

Ω

|Δu|p(x)−2ΔuΔvdx =
∫
Ω

m(x)vdx for all v ∈ X, (3.2)

where

m(x) = λ(V1(x)|u|q(x)−2u − V2(x)|u|α(x)−2u) − a(x)|u|p(x)−2u.

Relation (3.2) implies that∫
Ω

|Δu|p(x)−2ΔuΔvdx =
∫
Ω

m(x)vdx for all v ∈ C∞
0 (Ω). (3.3)

Let ζ be the unique solution of the problem{
Δζ = m(x) in Ω
ζ = 0 on ∂Ω.
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Relation (3.3) yields

∫
Ω

|Δu|p(x)−2ΔuΔvdx =
∫
Ω

(Δζ)vdx for all v ∈ C∞
0 (Ω).

Using the Green formula, we have

∫
Ω

(Δζ)vdx =
∫
Ω

ζΔvdx.

Therefore ∫
Ω

|Δu|p(x)−2ΔuΔvdx =
∫
Ω

ζΔvdx for all v ∈ C∞
0 (Ω). (3.4)

On the other hand, for all w ∈ C∞
0 (Ω) there exists a unique v ∈ C∞

0 (Ω) such that Δv = w in Ω. Thus,
relation (3.4) can be rewritten as

∫
Ω

(|Δu|p(x)−2Δu − ζ)wdx = 0 for all w ∈ C∞
0 (Ω).

Applying the fundamental lemma of the calculus of variations, we deduce that

|Δu|p(x)−2Δu − ζ = 0 in Ω.

Since ζ = 0 on ∂Ω, we conclude that Δu = 0 on ∂Ω. The proof is now complete. �

3.2. An alternative proof for small perturbations

We state in what follows a weaker version of Theorem 3.1, which establishes the existence of solutions to
problem (Pλ) in the case of small perturbations.

Theorem 3.4. Assume that hypothesis (H) is fulfilled. Then there exists λ∗ > 0 such that for all λ ∈ (0, λ∗)
problem (Pλ) has a solution.

The key argument in the proof is related to Ekeland’s variational principle [11]. This approach was
introduced for the first time in [23] in the framework of problems with variable exponent.

We start with some preliminary results. The following property shows the existence of a mountain for
Ψλ near the origin.

Lemma 3. Assume that hypothesis (H) is fulfilled. Then for all ρ ∈ (0, 1) there exist λ∗ > 0 and b > 0
such that for all u ∈ X with ‖u‖ = ρ we have Ψλ(u) ≥ b > 0, for any λ ∈ (0, λ∗).

Proof. Let us assume that ‖u‖a < min(1, 1/c), where c is the positive constant given in (3.1). It follows
that |u|s′

1(x)q(x) < 1.
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Using assumption (H), Hölder inequality (2.1), Proposition (2.2) and relation (3.1), we deduce that
for any u ∈ X with ‖u‖a = ρ the following inequalities hold true:

Ψλ,μ(u) ≥ 1
p+

∫
Ω

(|Δu|p(x) + a(x)|u|p(x))dx − λ

q−

∫
Ω

V1(x)|u|q(x)dx +
λ

α+

∫
Ω

V2(x)|u|α(x)dx

≥ 1
p+

ρp(x)(u) − λ

q−

∫
Ω

V1(x)|u|q(x)dx

≥ 1
p+

‖u‖p+

a − λ

q− |V1|s1(x)||u|q(x)|s′
1(x)

≥ 1
p+

‖u‖p+

a − λ

q− |V1|s1(x)|u|q−

s′
1(x)q(x)

≥ 1
p+

‖u‖p+

a − λ

q− |V1|s1(x)c
q−‖u‖q−

a

≥ 1
p+

ρp+ − λ

q− |V1|s1(x)c
q−

ρq−
= ρq−

(
1

p+
ρp+−q− − λ

q− |V1|s1(x)c
q−

)
.

This inequality shows that if we define

λ∗ =
q−

2p+|V1|s1(x)cq− ρp+−q−
, (3.5)

then for all λ ∈ (0, λ∗) and for all u ∈ X with ‖u‖a = ρ, there exists b > 0 such that

Ψλ(u) ≥ b > 0.

The proof of Lemma 3 is complete. �

Let λ∗ be defined as in (3.5) and λ ∈ (0, λ∗). By Lemma 3, it follows that on the boundary of the ball
centered at the origin and of radius ρ in X, denoted by Bρ(0), we have

inf
∂Bρ(0)

Ψλ > 0. (3.6)

On the other hand, Lemma 2 yields the existence of φ ∈ X such that Ψλ(tφ) < 0 for all t > 0 small
enough. This shows the existence of a valley for the Euler–Lagrange functional Ψλ, hence problem (Pλ)
does not have a mountain pass geometry.

Using assumption (H), the Hölder inequality (2.1), Proposition 2.2 and relation (3.1), we deduce that
for any u ∈ X with ‖u‖a = ρ the following inequality holds true:

Ψλ(u) ≥ 1
p+

‖u‖p+

a − λ

q− |V1|s1(x)c
q−‖u‖q−

a .

It follows that

−∞ < c := inf
Bρ(0)

Ψλ < 0.

Fix 0 < ε < inf∂Bρ(0) Ψλ−infBρ(0) Ψλ. Using the above information, the functional Ψλ,μ : Bρ(0) −→ R,

is bounded from below on Bρ(0) and Ψλ ∈ C1(Bρ(0),R). Thus, by the Ekeland variational principle, there
exists uε ∈ Bρ(0) such that{

c ≤ Ψλ,μ(uε) ≤ c + ε,
0 < Ψλ(u) − Ψλ(uε) + ε· ‖ u − uε ‖a, u �= uε.

Since
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Ψλ(uε) ≤ inf
Bρ(0)

Ψλ + ε ≤ inf
Bρ(0)

Ψλ + ε < inf
∂Bρ(0)

Ψλ,μ,

we deduce that uε ∈ Bρ(0).
Now, we define Iλ : Bρ(0) −→ R by Iλ(u) = Ψλ(u) + ε· ‖ u − uε ‖a . Then uε is a minimum point of

Iλ and thus

Iλ(uε + t · v) − Iλ(uε)
t

≥ 0,

for small t > 0 and any v ∈ B1(0). The above relation yields

Ψλ(uε + t · v) − Ψλ(uε)
t

+ ε· ‖ v ‖a≥ 0.

Letting t → 0, it follows that 〈dΨλ(uε), v〉 + ε ‖ v ‖a≥ 0 and we infer that ‖ dΨλ(uε) ‖a≤ ε.
We deduce that there exists a sequence {un} ⊂ Bρ(0) such that

Ψλ(un) −→ c and dΨλ(un) −→ 0X∗ . (3.7)

The sequence {un} is bounded in X. Thus, there exists a subsequence again denoted by {un}, and u
in X such that, {un} converges weakly to u in X. Since r1(x), r2(x) < p∗(x), for all x ∈ Ω, then X is
compactly embedded in Lr1(x)(Ω) and Lr2(x)(Ω). It follows that {un} converges strongly to u in Lr1(x)(Ω)
and Lr2(Ω), respectively.

In order to establish the strong convergence of {un} on X, we need the following auxiliary property.

Proposition 3.5. We have

(i) lim
n→∞

∫
Ω

V1(x)|un|q(x)−2un(un − u)dx = 0.

(ii) lim
n→∞

∫
Ω

V2(x)|un|α(x)−2un(un − u)dx = 0.

Proof. Using the generalized Hölder inequality (2.2), we have∫
Ω

V1(x)|un|q(x)−2un(un − u)dx ≤ |V1|s1(x)||un|q(x)−2un| q(x)
q(x)−1

|un − u|r1(x),

Next, by Proposition 2.2, if

||un|q(x)−2un| q(x)
q(x)−1

> 1

then

||un|q(x)−2un| q(x)
q(x)−1

≤ |un|q+

q(x).

Using the compact embedding X ↪→ Lq(x)(Ω), we conclude the proof of (i).
Using a similar arguments on the functions V2, α and r2 we get (ii). �

The above information and relation (3.7) imply

|〈dΨλ(un) − dΨλ(u), un − u〉| −→ 0 as n −→ ∞. (3.8)

Therefore

lim
n→∞

∫
Ω

(
|Δun|p(x)−2Δun(Δun − Δw) + a(x)|un|p(x)−2un(un − u)

)
dx = 0.

Now, Proposition 3.3 ensures that {un} converges strongly to w in X. Since Ψλ ∈ C1(X,R), we conclude
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dΨλ(un) → dΨλ(u), (3.9)

as n → ∞.
Since Ψλ ∈ C1(X,R), we obtain

dΨλ(un) → dΨλ(u) as n → ∞. (3.10)

Relations (3.7) and (3.10) show that dΨλ(u) = 0 and thus u is a weak solution for problem (Pλ).
Moreover, by relation 3.7 it follows that Ψλ(u) < 0, hence u is nontrivial. Since Ψλ(|u|) = Ψλ(u) then
problem (Pλ) has a positive solution. This completes the proof of Theorem 3.4. �

3.3. Final comments

(i) Problem (Pλ) corresponds to a subcritical setting, as described by Remark 3.2. We consider that
valuable research directions correspond either to the critical or to the supercritical framework (in the
sense of Sobolev variable exponents). No results are known even for the almost critical case with lack of
compactness. More precisely, with the same notations as in Remark 3.2, a very interesting open problem
is to study the qualitative analysis of solutions of (Pλ) provided that there exists z1, z2 ∈ Ω such that

max(r1(z1), s′
1(z1)q(z1)) = p∗(z1) and max(r2(z2)s′

2(z2)α(z2)) = p∗(z2)

but

max(r1(x), s′
1(x)q(x)) < p∗(x) for all z ∈ Ω \ {z1}

and

max(r2(x)s′
2(x)α(x)) < p∗(x) for all z ∈ Ω \ {z2}.

(ii) Another very interesting research direction is to extend the approach developed in this paper to the
abstract setting recently studied by Mingione et al. [4,7], namelydouble-phase problems with associated
energies of the type

u �→
∫
Ω

[|Δu|p1(x) + V (x)|Δu|p2(x)]dx

and

u �→
∫
Ω

[|Δu|p1(x) + V (x)|Δu|p2(x) log(e + |x|)]dx,

where p1(x) ≤ p2(x), p1 �= p2, and V (x) ≥ 0. Considering two different materials with power hardening
exponents p1(x) and p2(x), respectively, the coefficient V (x) dictates the geometry of a composite of the
two materials. When V (x) > 0 then p2(x)-material is present, otherwise the p1(x)-material is the only
one making the composite.

These problems extend to a biharmonic setting with variable exponents the pioneering papers by
Marcellini [20,21] on (p, q)-problems, which involve integral functionals of the type

u �→
∫
Ω

F (x,∇u)dx.

The integrand F : Ω × R
N → R satisfied unbalanced polynomial growth conditions of the type

|ξ|p � F (x, ξ) � |ξ|q with 1 < p < q,

for every x ∈ Ω and ξ ∈ R
N .
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(iii) We suggest to extend the methods developed in this paper to the more general framework of
Musielak–Orlicz–Sobolev spaces (see [26, Chaper 4] for a collection of stationary problems studied in
these function spaces).
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