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Abstract. The present paper is devoted to the study of the following double-phase equation

−div(|∇u|p−2∇u + με(x)|∇u|q−2∇u) + Vε(x)(|u|p−2u + με(x)|u|q−2u) = f(u) in R
N ,

where N ≥ 2, 1 < p < q < N , q < p∗ with p∗ = Np
N−p

, μ : RN → R is a continuous non-negative function, με(x) = μ(εx),

V : RN → R is a positive potential satisfying a local minimum condition, Vε(x) = V (ε x), and the nonlinearity f : R → R is
a continuous function with subcritical growth. Under natural assumptions on μ, V and f , by using penalization methods and
Lusternik–Schnirelmann theory we first establish the multiplicity of solutions, and then, we obtain concentration properties
of solutions.
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1. Introduction

In the present paper, we focus on the study of the multiplicity and concentration of solutions for the
following double-phase problem

−div(|∇u|p−2∇u + με(x)|∇u|q−2∇u) + Vε(x)(|u|p−2u + με(x)|u|q−2u) = f(u) in R
N , (1.1)

where N ≥ 2, 1 < p < q < N , q < p∗ with p∗ = Np
N−p , με(x) = μ(ε x), Vε(x) = V (ε x), μ and V satisfy

the basic assumptions below:
(A1) μ : R

N → R is a continuous and non-negative function and μ ∈ L∞(RN );
(A2) there exists V0 > 0 fulfilling V0 := infx∈RN V (x);
(A3) there exists a bounded subset Λ ⊂ R

N such that

V0 = inf
x∈Λ

V (x) < min
x∈∂Λ

V (x);

(A4) there exists xmin ∈ Λ such that V0 = V (xmin) and μ(xmin) = infRN μ(x) := μ0 ≥ 0.
Moreover, we assume that f : R → R is a continuous function, f(t) = 0 if t ≤ 0 and satisfies the following
assumptions:
(f1) limt→0+

f(t)
tp−1 = 0;

(f2) there exists r ∈ (q, p∗) such that limt→+∞
f(t)
tr−1 = 0, here p∗ = Np

N−p ;
(f3) there exists θ ∈ (q, p∗) such that

0 < θF (t) := θ

t∫

0

f(τ)dτ ≤ f(t)t for any t > 0;
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(f4) for any t ∈ (0,∞), f(t)
tq−1 is increasing.

Since the content of the paper is closely concerned with unbalanced growth, we briefly introduce in
what follows the related background, pioneering contributions and related applications.

Historical background

Equation (1.1) is driven by a differential operator with unbalanced growth due to the presence of the
(p, q)-Laplace operator. This type of problem comes from a general reaction–diffusion system:

ut = div[A(∇u)∇u] + c(x, u), and A(∇u) = |∇u|p−2 + |∇u|q−2,

where the function u is a state variable and describes the density or concentration of multicomponent
substances, div[A(∇u)∇u] corresponds to the diffusion with coefficient A(∇u), and c(x, u) is the reaction
and relates to source and loss processes. Originally, the idea to treat such operators comes from Zhikov [53]
who introduced such classes to provide models of strongly anisotropic materials, see also the monograph
of Zhikov et al. [54]. We refer to the remarkable pioneering papers by Marcellini [11,36–38], where the
author investigated the regularity and existence of solutions of elliptic equations with unbalanced growth
conditions.

The (p, q)-Laplacian equation (1.1) is also motivated by numerous models arising in mathematical
physics. For instance, we can refer to the following Born–Infeld equation [12] that appears in electromag-
netism, electrostatics and electrodynamics as a model based on a modification of Maxwell’s Lagrangian
density:

−div
( ∇u

(1 − 2|∇u|2) 1
2

)
= h(u) in Ω.

Indeed, by the Taylor formula, we have

(1 − x)− 1
2 = 1 +

x

2
+

3
2 · 22

x2 +
5!!

3! · 23
x3 + · · · +

(2n − 3)!!
(n − 1)! · 2n−1

xn−1 + · · · for |x| < 1.

Taking x = 2|∇u|2 and adopting the first-order approximation, we obtain problem (1.1) for p = 2 and
q = 4. Furthermore, the n-th-order approximation problem is driven by the multi-phase differential
operator

−Δu − Δ4u − 3
2
Δ6u − · · · − (2n − 3)!!

(n − 1)!
Δ2nu.

We also refer to the following fourth-order relativistic operator

u 	→ div
( |∇u|2

(1 − |∇u|4) 3
4
∇u

)
,

which describes large classes of phenomena arising in relativistic quantum mechanics. Again, by Taylor’s
formula, we have

x2(1 − x4)− 3
4 = x2 +

3x6

4
+

21x10

32
+ · · · .

This shows that the fourth-order relativistic operator can be approximated by the following operator

u 	→ Δ4u +
3
4
Δ8u.

For more details on the physical backgrounds and other applications, we refer to Bahrouni et al. [9](for phe-
nomena associated with transonic flows) and to Benci et al. [10](for models arising in quantum physics).

The double-phase operator

div(|∇u|p−2∇u + μ(x)|∇u|q−2∇u) (1.2)
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was originally introduced by Zhikov [52] to characterize the models of strongly anisotropic materials.
Moreover, Zhikov found that its hardening properties drastically change with the point. This is called
the Lavrentiev’s phenomenon. He considered the functional∫

Ω

(|∇u|p + μ(x)|∇u|q)dx

to describe that the integrands change their ellipticity rate according to the point. The coefficient a(x)
was used to regulating the mixture between two different materials, with power hardening of rates p
and q, respectively. The main features of operator (1.2) are that it is non-homogeneous and the function
μ : R

N → R is degenerate. It is clear that this operator is a generalization of p-Laplacian (as μ = 0) and
p&q-Laplacian (as μ = 1).

An interested phenomenon is that the relevant bound assumed

q < p∗ :=
Np

N − p
(1.3)

is equivalent to the condition on the ratio q/p
q

p
< 1 +

p

N − p
= 1 + O(N)

Up to change N with N − 1 and the strict inequality ”<”, then the relevant assumption (1.3) made in
this manuscript, which is connected with compactness properties, is well comparable with its opposite
inequality

q

p
> 1 +

N − 1
N − 1 − p

,

which is exactly the condition to show the existence of counterexamples to regularity, see [20,37]. Colombo
and Mingione [16, 17] considered the regularity of solution with some proper restrictions on p and q, which
seems to be the first research result about the solution of (1.3). Recently Colombo and Mingione [16,17]
gave a strong impulse with the introduction of the terminology (and not only terminology, but also fine
results) of double-phase integrals. However the necessity to impose ”some proper restrictions on p and
q” and the first regularity results for double-phase integrals (which is a particular case of the p, q-growth
conditions) have been first proposed and proved in the reference [37,39]. For more results on this topic,
we see [20,21].

In the last decade, many researchers investigated the existence and multiplicity of solutions for the
double-phase problem

div(|∇u|p−2∇u + μ(x)|∇u|q−2∇u) = f(x, u) in Ω, (1.4)

where Ω is a bounded domain, see [16,17,25,32,35,45,46]. More precisely, Liu and Dai [32] dealt with
the solutions of (1.4) by establishing a Musielak–Orlicz–Sobolev space and then obtained the existences
of solutions and infinite many solutions with Dirichlet boundary condition, under the conditions that
1 < p < q < N , q

p < 1 + 1
N and μ : Ω → [0,∞) is Lipschitz continuous. They also investigated some

basic properties of the double-phase operator and the corresponding spaces. After that, the research to
solutions of (1.4) by using the variational methods has become a hot topic.

In the case ε = 1, equation (1.1) boils down the equation

−div(|∇u|p−2∇u + μ(x)|∇u|q−2∇u) + V (x)(|u|p−2u + μ(x)|u|q−2u) = f(u) in R
N .

There are few works to deal with this problem. When V ≡ 1, the existence of infinitely many solutions
and some basic properties of the corresponding Musielak–Orlicz–Sobolev spaces have been studied by Liu
and Dai [33]. Furthermore, Liu and Winkert [34] investigated the existence of two non-negative solutions
with singular nonlinearity. Moreover, by using the Fountain and Dual Fountain Theorem, Stegliński [41]
researched the existence of infinitely many solutions.
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We point out when p = 2 and μ ≡ 0, by the change of variable x → x
ε , equation (1.1) turns into the

following Schrödinger equation

− ε2 Δu + V (x)u = f(u) in R
N .

Under a global minimum assumption or a local minimum assumption on V , the existence, multiplicity
and concentration of solutions have been studied by a number of authors, we only refer the readers to
[2,3,14,22,29,30] and the references therein.

It is worth noting that the multiplicity and concentration of solutions for the p&q type problem

−Δpu − Δqu + Vε(x)(|u|p−2u + |u|q−2u) = f(u) in R
N (1.5)

have aroused attentions of some researchers, where Δru = div(|∇u|r−2∇u), r ∈ {p, q}. By using per-
turbation techniques and Lusternik–Schnirelmann theory, Ambrosio and Repovs̆ [7] considered equation
(1.5) under the conditions that f is continuous, subcritical growth and V satisfies the global minimum
assumption

V∞ = lim inf
|x|→∞

V (x) > inf
x∈RN

V (x) = V0 > 0, where V∞ ≤ ∞.

After that, Zhang, Zhang, Rǎdulescu [48] considered the Choquard nonlinearity which is non-local. They
in [47] studied the case of competing potentials. Zhang, Zuo and Zhao [51] investigated the impact of
Kirchhoff term and derived a general verifying the compactness of the associated variational functional.
Now, we shortly introduce partial researches that when V satisfies the local minimum assumption (A2)
and (A3). Costa and Figueiredo [18] investigated the case that f admits critical growth, and Ambrosio
and Isernia [5] studied equation (1.5) driven by a Kirchhoff term under (A2) and (A3). Also, if the
nonlinearity f fulfills the Berestycki–Lions condition, the existence and concentration of positive solution
were investigated by Ambrosio [4]. In recent years, a number of researchers put their sight on the existence,
multiplicity and concentration of fractional p&q type problem. For the details, we just refer to [6,49,50]
and the reference therein.

Main result

Motivated by [5,7,18,31], we consider the multiplicity and concentration of solutions for equation (1.1).
Firstly, let us review the definition of the Lusternik–Schnirelmann category. Define

M = {x ∈ R
N : V (x) = V0, μ(x) = μ0} and Mδ = {x ∈ R

N : dist(x,M) ≤ δ},

where δ > 0. Letting Y be a closed subset of topological space X, then the Lusternik–Schnirelmann
category of Y in X is the least number of closed and contractible sets in X which cover Y , denoted by
catX(Y ).

Our main result establishes the following multiplicity and concentration property of solutions.

Theorem 1.1. Suppose that (A1)–(A4) and (f1)–(f4) hold. Then for any δ > 0 such that Mδ ⊂ Λ, there
exists εδ > 0 such that for any ε ∈ (0, εδ), problem (1.1) admits at least catMδ

(M) non-negative solutions.
Let uε denote one of the solutions and ηε be a global maximum point of uε. Then,

lim
ε→0

V (ε ηε) = V0.

We use the variational methods and Lusternik–Schnirelmann theory to show Theorem 1.1. To the
best of the authors’ knowledge, this is the first research result on the multiplicity and concentration of
solutions for equation (1.1).

We point out that problem (1.5) is considered in the Sobolev space. However, since the principal
operator in problem (1.1) is degenerate, this problem cannot be considered in general Sobolev space
anymore. Hence it is difficult to exploit the approaches in [2,5,47,48]. Here, we will introduce a special
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Sobolev space named Musielak–Orlicz–Sobolev spaces to tackle (1.1). This space is more complex than
usual Sobolev space and some basic properties of this space must be established to investigate the solu-
tions. To prove Theorem 1.1, at the first, we shall modify the nonlinearity in a suitable way, and we shall
handle an autonomous problem. As well, some accurate analysis are used to verify that the variational
functional Jε of the modified problem satisfies the Palais–Smale condition for any c ∈ R. Then, since
we want to obtain the multiplicity of solutions and f is only continuous, we utilize an abstract critical
point theorem developed in [42]. Note that the techniques also appear in [2,6,7] to investigate the p&q
type problem. But, the appearance of function μ makes the process rather untoward. Finally, we show
that the solutions of the modified problem are solutions of equation (1.1), where a Moser type iteration
is applied to obtain the L∞-estimates and decaying estimates at infinity of solutions for the modified
problem. Since the double-phase operator is non-homogeneous and degenerate, we stress that it seems
impossible to get the decaying estimates of the solutions by using the skills in [2,5,47,48]. In this paper, a
testing function is constructed to demonstrate the uniformly decaying estimates of solutions and several
new analysis techniques are applied, which are main novelty of our paper.

In this text, let C,C1, C2, · · · denote some fixed constants possibly different in different places; BR

denote BR(0); on(1) represent on(1) → 0 as n → ∞, and ⇀ and → denote the weak convergence and the
strong convergence in the corresponding spaces, respectively.

This paper is organized as follows. In Sect. 2, we introduce Musielak–Orlicz–Sobolev spaces. In Sect.
3, we consider the modified problem. In Sect. 4, we work with the autonomous problem. The last section
is devoted to showing Theorem 1.1.

2. Preliminaries

In this section, we start with the definition and some basic preliminary properties of Musielak–Orlicz–
Sobolev spaces. For detailed introduction on Musielak–Orlicz–Sobolev spaces, we refer to [15,27,33,40].

For any s ∈ [1,∞] and Ω ⊂ R
N , we denote by ‖u‖Ls(RN ) the standard norm of the usual Lebesgue

space Ls(RN ), and for any s ∈ (1,∞), we denote by W 1,s(RN ) the Sobolev space

W 1,s(RN ) = {u : R
N → R measurable :

∫

RN

(|u|s + |∇u|s)dx < ∞},

which is equipped with the norm

‖u‖1,s =
(

‖∇u‖s
Ls(RN ) + ‖u‖s

Ls(RN ))dx

) 1
s

,

where ‖∇u‖Ls(RN ) = ‖|∇u|‖Ls(RN ).
The following basic properties of Sobolev spaces are very important.

Lemma 2.1. (see [1]) If p ∈ (1, N), then W 1,p(RN ) is continuous embedded in Lt(RN ) for any t ∈ [p, p∗]
and compactly embedded in Lt

loc(R
N ) for any t ∈ [p, p∗).

The following Lions type result is very useful to investigate the existence of solution for the limit
problem associated with (1.1).

Lemma 2.2. (see [2]) If 1 < p < N , let {un} be a bounded sequence in W 1,p(RN ) satisfying

lim
n→∞ sup

y∈RN

∫

BR(y)

|un|pdx = 0, (2.1)

where R > 0, then un → 0 in Lt(RN ) for all t ∈ (p, p∗).
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Let 1 < p < q < N , q < p∗ with p∗ = Np
N−p . We define the functions Hμε

: R
N × [0,∞) → [0,∞) and

Hμε,Vε
: R

N × [0,∞) → [0,∞) as

Hμε
(x, t) = tp + με(x)tq and Hμε,Vε

(x, t) = Vε(x)(tp + με(x)tq).

Let LHμε (RN ) be the Musielak–Orlicz–Lebesgue space

LHμε (RN ) = {u : R
N → R measurable :

∫

RN

Hμε
(x, |u|)dx < ∞}

with respect to the Luxemburg norm

‖u‖Hμε
= inf{λ > 0 :

∫

RN

Hμε
(x, |u

λ
|)dx ≤ 1},

and let LHμε,Vε (RN ) be the Musielak–Orlicz–Lebesgue space

LHμε,Vε (RN ) = {u : R
N → R measurable :

∫

RN

Hμε,Vε
(x, |u|)dx < ∞}

equipped with the Luxemburg norm

‖u‖Hμε,Vε
= inf{λ > 0 :

∫

RN

Hμε,Vε
(x, |u

λ
|)dx ≤ 1}.

We introduce the weighted Musielak–Orlicz–Sobolev space

Xε = {u : R
N → R measurable : u ∈ LHμε,Vε (RN ) and |∇u| ∈ LHμε (RN )},

whose norm is equipped as

‖u‖ε = ‖|∇u|‖Hμε
+ ‖u‖Hμε,Vε

.

From ([41], Theorem 6), we know that Xε is a separable and reflexive Banach space.
The following embedding results hold.

Lemma 2.3. (see ([33], Theorem 2.7)) Xε is continuously embedded in W 1,p(RN ). Hence, Xε is continu-
ously embedded in Ls(RN ) for any s ∈ [p, p∗] and compactly embedded in Ls

loc(R
N ) for any s ∈ [1, p∗).

Let

	ε(u) = ‖u‖p
p,ε + ‖u‖q

q,ε,μ,

where we give

‖u‖p
p,ε =

∫

RN

(|∇u|p + Vε(x)|u|p)dx and ‖u‖q
q,ε,μ =

∫

RN

με(x)(|∇u|q + Vε(x)|u|q)dx.

The norm ‖ · ‖ε and the modular 	ε have the following relationships.

Lemma 2.4. ( ([8], Proposition 2.1) or ([32], Proposition 2.1)) Let (A1) and (A2) hold. Then, one has
that:
(i) if u �= 0, then ‖u‖ε = λ if and only if 	ε(u

λ ) = 1;
(ii) ‖u‖ε < 1 (resp.> 1, = 1) if and only if 	ε(u) < 1 (resp.> 1, = 1);
(iii) if ‖u‖ε < 1, then ‖u‖q

ε ≤ 	ε(u) ≤ ‖u‖p
ε;

(iv) if ‖u‖ε > 1, then ‖u‖p
ε ≤ 	ε(u) ≤ ‖u‖q

ε;
(v) ‖u‖ε → 0 if and only if 	ε(u) → 0;
(vi) ‖u‖ε → ∞ if and only if 	ε(u) → ∞.
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3. The modified problem

In this section, we consider a modified problem by using the penalization method proposed by del Pino
and Felmer [22].

Without loss of generality, we may suppose that

0 ∈ Λ and V0 = V (0).

Take a > 0 and k > p such that f(a)
ap−1 = V0

k . We denote the modified function f̃ : R → R as

f̃(t) =

{
f(t) t ≤ a
V0
k tp−1 t > a.

Let χΛ denote the characteristic function. Furthermore, we define the modified function

g(x, t) := χΛ(x)f(t) + (1 − χΛ(x))f̃(t) for (x, t) ∈ R
N × R,

Clearly, letting G(x, t) =
t∫
0

g(x, τ)dτ , from (f1)–(f4), we conclude that g fulfills the following properties.

(g1) limt→0+
g(x,t)
tp−1 = 0 uniformly for x ∈ R

N ;
(g2) g(x, t) ≤ f(t) for any x ∈ R

N and t ≥ 0;
(g3) (i) 0 < θG(x, t) ≤ g(x, t)t for any x ∈ Λ and t > 0, (ii) 0 ≤ pG(x, t) ≤ g(x, t)t ≤ V0

k tp for any x ∈ Λc

and t > 0;
(g4) (i) for any x ∈ Λ, g(x,t)

tq−1 is increasing, (ii) for any x ∈ Λc, t → g(x,t)
tp−1 is increasing in t ∈ (0, a).

Now, we introduce the modified problem

−div(|∇u|p−2∇u + με(x)|∇u|q−2∇u) + Vε(x)(|u|p−2u + με(x)|u|q−2u) = gε(x, u) in R
N , (3.1)

here gε(x, u) = g(ε x, u). Suppose that u is a solution of equation (3.1) and satisfies that u(x) < a in Λc
ε

with Λε = {x ∈ R
N : ε x ∈ Λ}. Then, we say that u is a solution of equation (1.1).

The variational functional of equation (3.1) is given by

Jε(u) =
1
p
‖u‖p

p,ε +
1
q
‖u‖q

q,ε,με
−

∫

RN

Gε(x, u)dx.

It is easy to deduce that Jε ∈ C1(Xε, R) and for any u, v ∈ Xε, its derivative is expressed as

〈J ′
ε(u), v〉 =

∫

RN

(
|∇u|p−2∇u∇v + με(x)|∇u|q−2∇u∇v + Vε(x)(|u|p−2uv + με(x)|u|q−2uv)

)
dx

−
∫

RN

gε(x, u)vdx.

Next we verify the condition of mountain pass theorem to Jε.

Lemma 3.1. Jε fulfills mountain pass geometry, that is
(i) there exist γ, β > 0 such that Jε(u) ≥ β for any u ∈ Xε with ‖u‖ε = γ;
(ii) there exists e ∈ Xε fulfilling ‖e‖ε > γ such that Jε(e) < 0.

Proof. In view of (g1)–(g2), one has that for any ξ > 0, there exists Cξ > 0 such that

|Gε(x, t)| ≤ ξ|t|p + Cξ|t|r for any x ∈ R
N , t ∈ R. (3.2)

By Lemma 2.3, Lemma 2.4 and (3.2), we conclude that for any u ∈ Xε with ‖u‖ε < 1,

Jε(u) ≥ 1
p
‖u‖p

p,ε +
1
q
‖u‖q

q,ε,με
−

∫

RN

(ξ|u|p + Cξ|u|r)dx
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≥ 1
2p

‖u‖p
p,ε +

1
q
‖u‖q

q,ε,με
− C1

∫

RN

|u|rdx

≥ 1
2q

‖u‖q
ε − C2‖u‖r

ε,

here we took ξ < 1
2qC1

. Thanks to q < r, then (i) holds.
It is easy from (f3) to deduce that there exists C > 0 such that

F (t) ≥ tq − C for any t ≥ 0. (3.3)

Choose u0 ∈ Xε such that supp(u0) ⊂ Λε and u0 ≥ 0. From (3.3), there holds that

Jε(tu0) ≤ tp

p
‖u0‖p

p,ε +
tq

q
‖u0‖q

q,ε,με
−

∫

Λε

(|tu0|θ − C)dx

=
tp

p
‖u0‖p

p,ε +
tq

q
‖u0‖q

q,ε,με
− tθ

∫

Λε

|u0|θdx − Cmeas(Λε).

Since θ > q, Jε(tu0) → −∞ as t → ∞. Letting t > 0 be large enough and taking e = tu0, then we have
that ‖e‖ε > γ and Jε(e) < 0. �

We say that {un} ⊂ Xε is a (PS)c sequence (Palais–Smale sequence) for Jε if Jε(un) → c and
J ′

ε(un) → 0. Recall that Jε satisfies (PS)c condition (Palais–Smale condition) if any (PS)c sequence has
a convergent subsequence.

Next, we establish the boundedness of the (PS)c sequences.

Lemma 3.2. For any c ∈ R, then any (PS)c sequence of Jε is bounded.

Proof. Let {un} be a (PS)c sequence. Then, from (g3) we have that

c + 1 + on(1)‖un‖ε

≥ Jε(un) − 1
θ
〈J ′

ε(un), un〉

=
(

1
p

− 1
θ

)
‖un‖p

p,ε +
(

1
q

− 1
θ

)
‖un‖q

q,ε,με
+

1
θ

∫

RN

(gε(x, un)un − θGε(x, un))dx

≥
(

1
p

− 1
θ

)
‖un‖p

p,ε +
(

1
q

− 1
θ

)
‖un‖q

q,ε,με
+

1
θ

∫

Λc
ε

(gε(x, un)un − θGε(x, un))dx

≥
(

1
p

− 1
θ

)
‖un‖p

p,ε +
(

1
q

− 1
θ

)
‖un‖q

q,ε,με
+

1
θ

∫

Λc
ε

(p − θ)Gε(x, un)dx

≥
(

1
p

− 1
θ

)
‖un‖p

p,ε +
(

1
q

− 1
θ

)
‖un‖q

q,ε,με
−

(
θ − p

θ

)
V0

kp

∫

RN

|un|pdx

≥
(

1
p

− 1
θ

)
(1 − p

k
)‖un‖p

p,ε +
(

1
q

− 1
θ

)
‖un‖q

q,ε,με

≥ C1 min{‖un‖p
ε , ‖un‖q

ε},

where we have used Lemma 2.4. Due to 1 < p < q, then {un} is bounded in Xε. �

The Nehari manifold of equation (1.1) is denoted as

Nε = {u ∈ Xε \ {0} : 〈J ′
ε(u), u〉 = 0}.
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Let cε = infu∈Nε
Jε(u). We introduce the following sets

X
+
ε = {u ∈ Xε : meas({u+} ∩ Λε) > 0}, and S

+
ε = Sε ∩ X

+
ε ,

where Sε represents the unit sphere in Xε. Then, S
+
ε is an incomplete C1,1 manifold of codimension one

and Xε = TuS
+
ε ⊕ Ru, where

TuS
+
ε =

{
v ∈ Xε :

∫

RN

(
(|∇u|p−2∇u + με(x)|∇u|q−2∇u)∇v + Vε(x)(|u|p−2u + με(x)|u|q−2u)v

)
dx = 0

}
.

The following results play a key role in obtaining multiple solutions of (3.1).

Lemma 3.3. Suppose that (A1)–(A4) and (f1)–(f4) hold. Then
(i) for any u ∈ X

+
ε , we define hu : [0,∞) → R as hu(t) := Jε(tu). Then, there is the unique tu > 0

such that h′
u(t) > 0 in (0, tu) and h′

u(t) < 0 in (tu,+∞);
(ii) there is τ > 0, independent on u, such that tu ≥ τ for every u ∈ S

+
ε . Moreover, for each compact

set K ⊂ S
+
ε , there is CK > 0 such that tu ≤ CK for every u ∈ K;

(iii) define the map m̂ε : X
+
ε → Nε as m̂ε(u) := tuu. Then m̂ε is continuous and mε := m̂ε|S+ε is a

homeomorphism between S
+
ε and Nε. Moreover, m−1

ε (u) = u
‖u‖ε

;
(iv) let {un} ⊂ S

+
ε be a sequence such that dist(un, ∂S

+
ε ) → 0. Then, ‖mε(un)‖ε → ∞ and Jε(mε(un)) →

∞.

Proof. (i) It follows from (g2) and (g3) that for any u ∈ X
+
ε , hu(t) → 0+ as t → 0+ and hu(t) → −∞

as t → ∞. Then, hu has a maximum point tu ∈ (0,∞) such that h′
u(tu) = 0. To finish the proof of (i),

we only need to show that there exists a unique positive number tu such that h′
u(tu) = 0. In contrary, if

there exists t1 > t2 > 0 such that h′
u(t1) = h′

u(t2) = 0, then

tp1‖u‖p
p,ε + tq1‖u‖q

q,ε,με
=

∫

RN

gε(x, t1u)t1udx (3.4)

and

tp2‖u‖p
p,ε + tq2‖u‖q

q,ε,με
=

∫

RN

gε(x, t2u)t2udx. (3.5)

By using (3.4) and (3.5), one has that(
1

tq−p
1

− 1
tq−p
2

)
‖u‖p

p,ε

=
∫

RN

(
gε(x, t1u)

tq−1
1

u − gε(x, t2u)
tq−1
2

u

)
dx

=
∫

{u>0}

(
gε(x, t1u)
(t1u)q−1

− gε(x, t2u)
(t2u)q−1

)
uqdx

≥
( ∫

{u>0}∩Λc
ε∩{t1u<a}

+
∫

{u>0}∩Λc
ε∩{t1u≥a≥t2u}

+
∫

{u>0}∩Λc
ε∩{t2u>a}

)(
gε(x, t1u)
(t1u)q−1

− gε(x, t2u)
(t2u)q−1

)
uqdx

=
∫

{u>0}∩Λc
ε∩{t1u<a}

(
f(t1u)

(t1u)q−1
− f(t2u)

(t2u)q−1

)
uqdx
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+
∫

{u>0}∩Λc
ε∩{t1u≥a≥t2u}

(
V0

k

1
(t1u)q−p

− f(t2u)
(t2u)q−1

)
uqdx

+
∫

{u>0}∩Λc
ε∩{t2u>a}

(
V0

k

1
(t1u)q−p

− V0

k

1
(t2u)q−p

)
uqdx

≥
∫

{u>0}∩Λc
ε∩{t1u≥a≥t2u}

(
V0

k

1
(t1u)q−p

− V0

k

1
(t2u)q−p

)
uqdx

+
V0

k

(
1

tq−p
1

− 1
tq−p
2

) ∫

{u>0}∩Λc
ε∩{t2u>a}

updx

=
V0

k

(
1

tq−p
1

− 1
tq−p
2

) ∫

{u>0}∩Λc
ε∩{t1u≥a≥t2u}

updx +
V0

k

(
1

tq−p
1

− 1
tq−p
2

) ∫

{u>0}∩Λc
ε∩{t2u>a}

updx

≥ 1
k

(
1

tq−p
1

− 1
tq−p
2

)
‖u‖p

p,ε,

here we applied the fact that for x ∈ Λc
ε and t2u(x) ≤ a,

f(t2u)
(t2u)q−1

=
f(t2u)

(t2u)p−1

1
(t2u)q−p

≤ V0

k

1
(t2u)q−p

.

Hence we obtain that ‖u‖p
p,ε ≤ 1

k‖u‖p
p,ε, which is a contradiction.

(ii) For any u ∈ S
+
ε , it follows from (g1) and (g2) that for any ξ > 0, there exists Cξ > 0 such that

|Gε(x, t)| ≤ ξ|t|p + Cξ|t|r for any x ∈ R
N , t ∈ R. (3.6)

Putting together 〈J ′
ε(tuu), tuu〉 = 0 and (3.6), there holds

tpu‖u‖p
p,ε + tqu‖u‖q

q,ε,με
=

∫

RN

gε(x, tuu)tuudx

≤
∫

RN

(ξ|tuu|p + Cξ|tuu|r)dx

≤ ξ

V0
tpu‖u‖p

p,ε + C1Cξt
r
u‖u‖r

ε. (3.7)

Setting ξ = V0
2 , applying Lemma 2.3 and (3.7), there holds

C0 min{tpu‖u‖p
ε , t

q
u‖u‖q

ε} ≤ tpu
2

‖u‖p
p,ε + tqu‖u‖q

q,ε,με
≤ C2t

r
u‖u‖r

ε.

Therefore there is τ > 0 independent of u, such that tu ≥ τ for every u ∈ S
+
ε .

Let K ⊂ S
+
ε be a compact set. By contradiction, suppose that there exists a sequence {un} ⊂ K such

that tn := tun
→ ∞. By the compactness of K, there exists u ∈ S

+
ε such that un → u in Xε. In view of

the proof Lemma 3.1-(ii), one has that

Jε(tnun) → −∞ as n → ∞. (3.8)

Since 〈J ′
ε(tnun), tnun〉 = 0, un → u in Xε and tn → ∞, then

Jε(tnun) = Jε(tnun) − 1
θ
〈J ′

ε(tnun), tnun〉 ≥ C0 min{tpn‖un‖p
ε , t

q
n‖un‖q

ε} → ∞. (3.9)

Comparing (3.8) and (3.9), we obtain a contradiction.
(iii) From (i), we know that m̂ε and mε are well defined. Now, we show that m−1

ε is well defined. In fact,
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for any u ∈ Nε, we can deduce that u ∈ X
+
ε . In contrary, if u /∈ X

+
ε , using u ∈ Nε and (ii) of (g3), one

has

‖u‖p
p,ε + ‖u‖q

q,ε,με
=

∫

RN

gε(x, u)udx ≤ 1
k

‖u‖p
p,ε.

Then, (1− 1
k )‖u‖p

p,ε +‖u‖q
q,ε,με

= 0, which is a contradiction due to k > 1. Thereby, there holds m−1
ε (u) =

u
‖u‖ε

∈ S
+
ε . Then, m−1

ε is well defined, continuous and a bijection.
For any u ∈ S

+
ε , we deduce that

m−1
ε (mε(u)) = m−1

ε (tuu) =
tuu

‖tuu‖ε
=

u

‖u‖ε
= u.

Then, m is a bijection. Next, we show that m̂ε is a continuous function. Suppose that there exist {un} ⊂
X

+
ε and u ∈ X

+
ε fulfilling un → u in Xε. Note that for any v ∈ X

+
ε , m̂ε(v) = m̂ε(tv) for any v ∈ X

+
ε and

any t > 0. Then, we may assume that ‖un‖ε = ‖u‖ε = 1 for any n ∈ N. It follows from (ii) that there
exists t0 > 0 such that tn := tun

→ t0. Due to {tnun} ⊂ Nε, then

tpn‖un‖p
p,ε + tqn‖un‖q

q,ε,με
=

∫

RN

gε(x, tnun)tnundx.

Letting n → ∞ in this formula, since un → u in Xε and tn → t0, one has

tp0‖u‖p
p,ε + tq0‖u‖q

q,ε,με
=

∫

RN

gε(x, t0u)t0udx.

Hence, t0u ∈ Nε. According to (i), then t0 = tu, which implies that m̂ε is continuous. Then, mε is
continuous.

(iv) Let {un} ⊂ S
+
ε be such that dist(un, ∂S

+
ε ) → 0. Then, for any s ∈ [p, p∗], one has

‖un‖Ls(Λε) ≤ inf
v∈∂S+ε

‖un − v‖Ls(Λε) ≤ Cs inf
v∈∂S+ε

‖un − v‖ε = Csdist(un, ∂S
+
ε ) → 0. (3.10)

Applying (g3) and (3.10), we deduce that for any t > 0,∫

RN

Gε(x, tun)dx =
∫

Λc
ε

Gε(x, tun)dx +
∫

Λε

Gε(x, tun)dx

≤ V0

kp

∫

Λc
ε

|tun|pdx +
∫

Λε

F (tun)dx

≤ tp

kp
‖u‖p

p,ε + C1

∫

Λε

|tun|pdx + C2

∫

Λε

|tun|rdx

≤ tp

kp
‖u‖p

p,ε + C3t
pdist(un, ∂S

+
ε )p + C4t

rdist(un, ∂S
+
ε )r.

Consequently, ∫

RN

Gε(x, tun)dx ≤ tp

kp
‖u‖p

p,ε + on(1). (3.11)

It follows from (3.11) that for any t > 1,

Jε(tun) =
tp

p
‖un‖p

p,ε +
tq

q
‖un‖q

q,ε,με
−

∫

RN

Gε(x, tun)dx
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≥ tp

p

(
1 − 1

k

)
‖un‖p

p,ε +
tq

q
‖un‖q

q,ε,με
+ on(1)

≥ C0t
p + on(1),

where C0 = min{ 1
p (1 − 1

k ), 1
q }. Then for any t > 1,

lim inf
n→∞ Jε(tun) ≥ C0t

p. (3.12)

From (3.12), one has that for any t > 1,

lim inf
n→∞ Jε(mε(un)) ≥ lim inf

n→∞ Jε(tun) ≥ C0t
p.

Since t > 1 is arbitrary, lim infn→∞ Jε(mε(un)) = ∞. Observe that

1
p
‖mε(un)‖p

p,ε +
1
q
‖mε(un)‖q

q,ε,με
≥ Jε(mε(un)) → ∞ as n → ∞,

which combined with Lemma 2.4 suggests that ‖mε(un)‖ε → ∞. �

Let us denote the maps

ψ̂ε : X
+
ε → R and ψε : S

+
ε → R

as

ψ̂ε = Jε(m̂ε(u)) and ψε = ψ̂ε|S+ε .

As in ([42],Corollary 10), by virtue of Lemma 3.3, we can directly obtain the next result.

Proposition 3.1. Suppose that (A1)–(A4) and (f1)–(f4) hold. Then,

(i) ψ̂ε ∈ C1(X+
ε , R) and

〈ψ̂′
ε(u), v〉 =

‖m̂ε(u)‖ε

‖u‖ε
〈J ′

ε(m̂ε(u)), v〉 for every u ∈ X
+
ε and v ∈ Xε;

(ii) ψε ∈ C1(S+
ε , R) and 〈ψ′

ε(u), v〉 = ‖mε(u)‖ε〈J ′
ε(mε(u)), v〉 for every v ∈ TuS

+
ε ;

(iii) if {un} is a (PS)d sequence for ψε, then {mε(un)} is a (PS)d sequence for Jε. Moreover, if {un} ⊂
Nε is a bounded (PS)d sequence for Jε, then {m−1

ε (un)} is a (PS)d sequence for ψε;
(iv) u is a critical point of ψε if and only if mε(u) is a non-trivial critical point of Jε. Moreover, the

corresponding critical value coincides and

inf
u∈S

+
ε

ψε(u) = inf
u∈Nε

Jε(u).

Remark 3.1. Clearly, from Lemma 3.3 and Proposition 3.1, Jε satisfies the following property

cε := inf
u∈Nε

Jε(u) = inf
u∈X

+
ε

max
t≥0

Jε(tu) = inf
u∈S

+
ε

max
t≥0

Jε(tu).

The following result is a consequence of ([23],Lemma 3) or the proof of ([32], (ii) of Proposition 3.1).

Lemma 3.4. Let {un} ⊂ Xε be a bounded (PS)c sequence. Then, up to a subsequence, there exists u ∈ Xε

such that ∇un → ∇u a.e. in R
N .

At the end of this section, we demonstrate the compactness of Jε and ψε. Let 	̃ε(u) = |∇u|p +
με(x)|∇u|q + Vε(x)(|u|p + με(x)|u|q).
Lemma 3.5. Jε satisfies (PS)c condition for any c ∈ R.
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Proof. Suppose that {un} is a (PS)c sequence. Then, by Lemma 3.2, we deduce that there exists u ∈ Xε

such that un ⇀ u in Xε. Using Lemma 3.4, we may assume that up to a subsequence,

un → u in Lr
loc(R

N ), un → u a.e. in R
N and ∇un → ∇u a.e. in R

N . (3.13)

To complete the proof, we only demand to show that

	ε(un) → 	ε(u) as n → ∞. (3.14)

We claim that there exists R = R(ξ) > 0 such that

lim sup
n→∞

∫

Bc
R

	̃ε(un)dx ≤ ξ. (3.15)

For any R > 0, take ϕR ∈ C∞(RN ) such that ϕR = 0 in BR
2
, ϕR = 1 in Bc

R, 0 ≤ ϕR ≤ 1 and |∇ϕR| ≤ C
R .

Since {unϕR} is bounded in Xε, taking R is large such that Λε ⊂ BR
2
, then from 〈J ′

ε(un), unϕR〉 = on(1),
Hölder inequality and (g3), there holds that∫

RN

	̃ε(un)ϕRdx

= −
∫

RN

un|∇un|p−2∇un∇ϕRdx −
∫

RN

με(x)un|∇un|q−2∇un∇ϕRdx +
∫

RN

gε(x, un)unϕRdx + on(1)

≤ C

R

∫

RN

|un||∇un|p−1dx +
C

R

∫

RN

με(x)|un||∇un|q−1dx +
1
k

∫

RN

Vε(x)|un|pϕRdx + on(1)

≤ C

R

( ∫

RN

|un|pdx

) 1
p
( ∫

RN

|∇un|pdx

) p−1
p

+
C

R

( ∫

RN

με(x)|un|qdx

) 1
q
( ∫

RN

με(x)|∇un|qdx

) q−1
q

+
1
k

∫

RN

Vε(x)|un|pϕRdx + on(1)

≤ C

R
+

1
k

∫

RN

	ε(un)ϕRdx + on(1).

Consequently, (
1 − 1

k

) ∫

Bc
R

	̃ε(un)dx ≤
(

1 − 1
k

) ∫

RN

	̃ε(un)ϕRdx ≤ C

R
+ on(1).

Then, for any ξ > 0, we can take R large enough such that (3.15) holds.
Now, we prove that un → u in Lp(RN ). Since un → u in Lp(BR), using (3.14), we deduce that

‖un − u‖p
Lp(RN )

= ‖un − u‖p
Lp(BR) + ‖un − u‖p

Lp(Bc
R)

≤ ξ + 2p−1‖un‖p
Lp(Bc

R) + 2p−1‖u‖p
Lp(Bc

R)

≤ 2ξ +
2p−1

V0

∫

Bc
R

	ε(un)dx

≤ 3ξ.
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By the arbitrariness of ξ, we have un → u in Lp(RN ). Then, un → u in Lr(RN ). From (g2), we conclude
that ∫

RN

gε(x, un)undx →
∫

RN

gε(x, u)udx. (3.16)

We can easily obtain from (3.13) and J ′
ε(un) → 0 that J ′

ε(u) = 0. Then,

	ε(u) =
∫

RN

gε(x, u)udx. (3.17)

Since 〈J ′
ε(un), un〉 → 0, there holds that

	ε(un) =
∫

RN

gε(x, un)undx + on(1). (3.18)

Putting together (3.16), (3.17) and (3.18), then (3.14) holds. �

Proposition 3.2. ψε satisfies (PS)c condition for any c ∈ R.

Proof. Suppose that {un} ⊂ S
+
ε is a (PS)c sequence for Jε, that is

ψε(un) → c and ψ′
ε(un) → 0 in (Tun

S
+
ε )∗.

Recalling (iii) of Proposition 3.1, we have that {mε(un)} is a (PS)c sequence for Jε. From Lemma 3.5
and (iii) of Lemma 3.3, we conclude that there exists u ∈ S

+
ε such that mε(un) → mε(u) in Xε. It follows

from (iii) of Lemma 3.3 that un → u in Xε. �

4. The autonomous problem

In this section, we consider the autonomous problem

−div(|∇u|p−2∇u + μ0|∇u|q−2∇u) + V0(|u|p−2u + μ0|u|q−2u) = f(u) in R
N . (4.1)

Let Yμ0,V0 denote the space W 1,p(RN ) if μ0 = 0 and Yμ0,V0 denote the space W 1,p(RN ) ∩ W 1,q(RN )
if μ0 > 0, which is equipped with the norm

‖u‖μ0,V0 = ‖u‖p,V0 + μ0‖u‖q,V0 ,

where

‖u‖p
p,V0

=
∫

RN

(
|∇u|p + V0|u|p

)
dx and ‖u‖q

q,V0
=

∫

RN

(
|∇u|q + V0|u|q

)
dx.

Observe that the corresponding variational functional for equation (4.1) is expressed as

Iμ0,V0(u) =
1
p
‖u‖p

p,V0
+

μ0

q
‖u‖q

q,V0
−

∫

RN

F (u)dx.

From (f1) and (f2), we can easily deduce that Iμ0,V0 ∈ C1(Yμ0,V0 , R) and for any u, v ∈ Yμ0,V0 ,

〈I ′
μ0,V0

(u), v〉 =
∫

RN

(|∇u|p−2∇u∇v + V0|u|p−2uv)dx

+ μ0

∫

RN

(|∇u|q−2∇u∇v + V0|u|q−2uv)dx −
∫

RN

f(u)vdx.
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We define the following Nehari manifold

Mμ0,V0 = {u ∈ Yμ0,V0\{0} : 〈I ′
μ0,V0

(u), u〉 = 0}.

As the above section, we define that cμ = infu∈Mμ0,V0
Iμ0,V0(u) and

Y
+
μ0,V0

= {u ∈ Yμ0,V0 : meas({u+}) > 0}.

Let S
+
μ0,V0

= Sμ0,V0 ∩ Y
+
μ0,V0

, where Sμ0,V0 represents the unit sphere in Yμ0,V0 . We know that S
+
μ0,V0

is
an incomplete C1,1 manifold of codimension one and Yμ0,V0 = TuS

+
μ0,V0

⊕ Ru, where

TuS
+
μ0,V0

=
{

v ∈ Yμ0,V0 :
∫

RN

(
(|∇u|p−2∇u + μ0|∇u|q−2∇u)∇v + V0(|u|p−2u + μ0|u|q−2u)v

)
dx = 0

}
.

It is easy to deduce that any (PS)c sequence for Iμ0,V0 is bounded due to (f3).
Proceeding as in the previous section, we can set up the following conclusion.

Lemma 4.1. Suppose that μ0 ≥ 0, V0 > 0 and (f1)–(f4) hold. Then,
(i) for any u ∈ Y

+
μ0,V0

, we define hu : [0,∞) → R as hu(t) := Iμ0,V0(tu). Then, there is the unique
tu > 0 such that h′

u(t) > 0 in (0, tu) and h′
u(t) < 0 in (tu,+∞);

(ii) there is τ > 0 independent on u, such that tu ≥ τ for every u ∈ S
+
μ0,V0

. Moreover, for each compact
set K ⊂ S

+
μ0,V0

, there is CK > 0 such that tu ≤ CK for every u ∈ K;
(iii) define the map m̂μ0,V0 : Y

+
μ0,V0

→ Mμ0,V0 as m̂μ0,V0(u) := tuu. Then, m̂μ0,V0 is continuous and
mμ0,V0 := m̂μ0,V0 |S+μ0,V0

is a homeomorphism between S
+
μ0,V0

and Mμ0,V0 . Moreover, m−1
μ0,V0

(u) =
u

‖u‖μ0,V0
;

(iv) let {un} ⊂ S
+
μ0,V0

be a sequence such that dist(un, ∂S
+
μ0,V0

) → 0. Then, ‖mμ0,V0(un)‖μ0,V0 → ∞ and
Iμ0,V0(mμ0,V0(un)) → ∞.

Now, we define the functionals

ψ̂μ0,V0 : Y
+
μ0,V0

→ R and ψμ0,V0 : S
+
μ0,V0

→ R

as

ψ̂μ0,V0 = Iμ0,V0(m̂μ0,V0(u)) and ψμ0,V0 = ψ̂μ0,V0 |S+μ0,V0
.

It follows from Lemma 4.1 that the following relationships hold.

Proposition 4.1. Suppose that μ0 ≥ 0, V0 > 0 and (f1)–(f4) hold. Then,

(i) ψ̂μ0,V0 ∈ C1(Y+
μ0,V0

, R) and

〈ψ̂′
μ0,V0

(u), v〉 =
‖m̂μ0,V0(u)‖μ0,V0

‖u‖μ0,V0

〈I ′
μ0,V0

(m̂μ0,V0(u)), v〉 for every u ∈ Y
+
μ0,V0

and v ∈ Yμ0,V0 ;

(ii) ψμ0,V0 ∈ C1(S+
μ0,V0

, R) and 〈ψ′
μ0,V0

(u), v〉 = ‖mμ0,V0(u)‖μ0,V0〈I ′
μ0,V0

(mμ0,V0(u)), v〉 for every v ∈
TuS

+
μ0,V0

;
(iii) if {un} is a (PS)d sequence for ψμ0,V0 , then {mμ0,V0(un)} is a (PS)d sequence for Iμ0,V0 . Moreover,

if {un} ⊂ Mμ0,V0 is a bounded (PS)d sequence for Mμ0,V0 , then {m−1
μ0,V0

(un)} is a (PS)d sequence
for ψμ0,V0 ;

(iv) u is a critical point of ψμ0,V0 if and only if mμ0,V0(u) is a non-trivial critical point of Iμ0,V0 . Moreover,
the corresponding critical value coincides and

inf
u∈S

+
μ0,V0

ψμ0,V0(u) = inf
u∈Mμ0,V0

Iμ0,V0(u).
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Remark 4.1. As Remark 3.1, the following relationship holds:

cμ0,V0 := inf
u∈Mμ0,V0

Iμ0,V0(u) = inf
u∈Y

+
μ0,V0

max
t≥0

Iμ0,V0(tu) = inf
u∈S

+
μ0,V0

max
t≥0

Iμ0,V0(tu).

The following alternative lemma is particular important for deriving the existence of ground state
solution to equation (4.1).

Lemma 4.2. Let {un} ⊂ Yμ0,V0 be a (PS)c sequence for Iμ0,V0 at the level c ∈ R. Then, one of the
following alternatives holds:

(i) un → 0 in Yμ0,V0 ;
(ii) there exist a sequence {yn} ⊂ R

N and constants R, β > 0 such that

lim inf
n→∞

∫

BR(yn)

|un|pdx ≥ β.

Proof. By the assumptions of this lemma, one derives that {un} is bounded in Yμ0,V0 ,

Iμ0,V0(un) → cμ0,V0 and 〈I ′
μ0,V0

(un), un〉 = on(1). (4.2)

We suppose that (ii) cannot occur. Then, for any R > 0,

lim
n→∞ sup

y∈RN

∫

BR(y)

|un|pdx = 0, (4.3)

Combined with Lemma 2.2 and (4.3), there holds that for any s ∈ (p, p∗),

un → 0 in Ls(RN ). (4.4)

Obviously, one can derive from (f1) and (f2) that for any ∈ R,

|f(t)t| ≤ C(|t|q + |t|r).
This together with p < q < r < p∗ and (4.4) imply that∫

RN

|f(un)un|dx ≤ ‖un‖q
Lq(RN )

+ ‖un‖r
Lr(RN ) = on(1).

Hence, ∫

RN

f(un)undx = on(1). (4.5)

In the light of (4.2) and (4.5), we have

‖un‖p
p,V0

+ μ0‖un‖q
q,V0

=
∫

RN

f(un)undx = on(1).

So (i) holds. �

Lemma 4.3. Problem (4.1) admits a positive ground state solution.

Proof. Arguing directly as Lemma 3.1, Iμ0,V0 has a mountain pass geometry (see [44]). Then, there exists
{un} ⊂ Xε such that

Iμ0,V0(un) → cμ0,V0 and I ′
μ0,V0

(un) → 0. (4.6)



ZAMP Concentration of solutions for non-autonomous... Page 17 of 30 148

Observing that cμ0,V0 > 0, we conclude from Lemma 4.2 that there exists a sequence {yn} ⊂ R
N and

constants R, β > 0 such that

lim inf
n→∞

∫

BR(yn)

|un|pdx ≥ β. (4.7)

Otherwise, we have from Lemma 4.2 that ‖un‖μ0,V0 → 0. Then Iμ0,V0(un) → 0. This contradicts to (4.6)
thanks to cμ0,V0 > 0. Let vn = un(· + yn). Then, {vn} is bounded in Yμ0,V0 and there exists v ∈ Yμ0,V0

such that vn ⇀ v in Yμ0,V0 . Moreover, we can obtain that

vn → v in Lp
loc(R

N ) and vn → v a.e. in R
N .

One can derive from (4.7) that v �= 0. Applying (4.6), we deduce that

Iμ0,V0(vn) → cμ0,V0 and I ′
μ0,V0

(vn) → 0. (4.8)

It is easy to derive that I ′
μ0,V0

(v) = 0 due to (4.8). Hence, v ∈ Mμ0,V0 . By Fatou’s lemma, v ∈ Mμ0,V0 ,
(f3) and (4.8), we conclude that

cμ0,V0 = lim inf
n→∞

(
Iμ0,V0(vn) − 1

θ
〈I ′

μ0,V0
(vn), vn〉

)

= lim inf
n→∞

((
1
p

− 1
θ

)
‖vn‖p

p,V0
+ μ0

(
1
q

− 1
θ

)
‖vn‖q

q,V0
+

1
θ

∫

RN

(f(vn) vn − θF (vn))dx

)

≥
(

1
p

− 1
θ

)
‖v‖p

p,V0
+ μ0

(
1
q

− 1
θ

)
‖v‖q

q,V0
+

1
θ

∫

RN

(f(v)v − θF (v))dx

= Iμ0,V0(v) − 1
θ
〈I ′

μ0,V0
(v), v〉

≥ cμ0,V0 .

This suggests that vn → v in Yμ0,V0 . Then, from (4.8) one has that Iμ0,V0(v) = cμ0,V0 and I ′
μ0,V0

(v) = 0.
So v is a ground state solution of (4.1). Since f(t) = 0 for t ≤ 0 and 〈I ′

μ0,V0
(v), v−〉 = 0, we conclude

that v ≥ 0 in R
N . It can be deduced from the regularity results (see [28]) that v ∈ L∞(RN ) ∩ C1

loc(R
N ).

Further, we deduce from the Harnack inequality (see [43]) that v > 0 in R
N . �

Lemma 4.4. Assume that {un} ⊂ Mμ0,V0 , Iμ0,V0(un) → cμ0,V0 and un ⇀ u in Yμ0,V0 . If u �= 0, then
un → u in Yμ0,V0 .

Proof. Let vn = m−1
μ0,V0

(un) = un

‖un‖μ0,V0
∈ S

+
μ0,V0

. By using the facts that {un} ⊂ Mμ0,V0 , Iμ0,V0(un) →
cμ0,V0 and Remark 4.1, we have that

ψμ0,V0(vn) = Iμ0,V0(un) → cμ0,V0 = inf
v∈S

+
μ0,V0

ψμ0,V0 .

We define the functional Φμ0,V0 : S
+

μ0,V0
→ [−∞,∞] as

Φμ0,V0 =

{
ψμ0,V0(v) if v ∈ S

+
μ0,V0

+∞ if v ∈ ∂S
+
μ0,V0

.

Observe that
• (S

+

μ0,V0
, dμ0,V0) with dμ0,V0(u, v) = ‖u − v‖μ0,V0 is a complete metric space;

• ψμ0,V0 ∈ C(S
+

μ0,V0
, [−∞,∞]), see Lemma 4.1-(iv);

• ψμ0,V0 is bounded below, see Proposition 4.1-(iv).
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By the Ekeland variational principle in [24], then there exists a sequence {ṽn} ⊂ S
+
μ0,V0

such that

‖ṽn − vn‖μ0,V0 → 0, ψμ0,V0(ṽn) → mμ0,V0 and ψμ0,V0 → 0 in (Tṽn
S

+
μ0,V0

)∗.

Proceeding as in the proof of Proposition 3.2, by Lemma 4.1 and Proposition 4.1, we can conclude that
{un} admits a convergent subsequence. �

5. The multiplicity of solutions for the modified problem

In this section, by using the Lusternik–Schnirelmann category theory, we establish the multiplicity of
non-negative solutions for the modified problem (3.1).

Let δ > 0 such that

Mδ = {x ∈ R
N : dist(x,M) ≤ δ} ⊂ Λ, (5.1)

and take η ∈ C∞([0,∞), [0, 1]) being non-increasing and satisfying η(t) = 1 for t ∈ [0, δ
2 ], η(t) = 0 for

t ∈ [δ,∞) and |η′(t)| ≤ 4
δ . Suppose that w is a positive ground state solution of problem (4.1). For any

y ∈ M , we denote

Ψε,y(x) = η(| ε x − y|)w
(

ε x − y

ε

)
.

Then, there exists the unique tε > 0 such that

Jε(tεΨε,y) = max
t≥0

Jε(tΨε,y).

Let us define the map Φε : M → Nε as Φε = tεΨε,y.
To obtain the multiplicity of solutions, we give some preliminary results.

Lemma 5.1. There holds that

lim
ε→∞ Jε(Φε(y)) = cμ0,V0 uniformly in y ∈ M.

Proof. Arguing by contradiction, there exist β0 > 0, {yn} ⊂ M and εn → 0 such that

|Jεn
(Φεn

(yn)) − cμ0,V0 | ≥ β0 for any n ∈ N. (5.2)

By the change of variable z = εn x−yn

εn
and the dominated convergence theorem, one has that

‖Ψεn,yn
‖p

p,εn
=

∫

RN

(
|∇(η(| εn z|)w(z))|p + V (εn z + yn)|η(| εn z|)w(z)|p

)
dz → ‖w‖p

p,V0
. (5.3)

Similarly, we also conclude that

‖Ψεn,yn
‖q

q,εn,μεn

=
∫

RN

μ(εn z + yn)
(

|∇(η(| εn z|)w(z))|q + V (εn z + yn)|η(| εn z|)w(z)|q
)

dz → μ0‖w‖q
q,V0

. (5.4)

Now, we prove the boundedness of {tεn
}. Otherwise, we may suppose that tεn

→ ∞. Since 〈J ′
εn

(Φεn
(yn)),Φεn

(yn)〉 = 0, by the change of variable z = εn x−yn

εn
, we conclude that

tpεn
‖Ψεn,yn

‖p
p,εn

+ tqεn
‖Ψεn,yn

‖q
q,εn,μεn

=
∫

RN

g(εn z + yn, tεn
η(| εn z|)w(z))tεn

η(| εn z|)w(z)dz

=
∫

RN

f(tεn
η(| εn z|)w(z))tεn

η(| εn z|)w(z)dz, (5.5)
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here we used the fact that εn z + yn ∈ Mδ ⊂ Λ if | εn z| ≤ δ. Recalling (f2), we conclude that there exists
C > 0 such that

f(t)t ≥ tθ − C. (5.6)

One can derive from (5.6) that∫

RN

f(tεn
η(| εn z|)w(z))tεn

η(| εn z|)w(z)dz ≥
∫

B δ
2

f(tεn
w(z))tεn

w(z)dz

≥ tθεn

∫

B δ
2

w(z)θdz − Cmeas(B δ
2
). (5.7)

Putting together (5.5) and (5.7), we have that

1
tq−p
εn

‖Ψεn,yn
‖p

p,εn
+ ‖Ψεn,yn

‖q
q,εn,μεn

≥ tθ−q
εn

∫

B δ
2

w(z)θdz − 1
tqεn

Cmeas(B δ
2
). (5.8)

Since θ > q, using (5.3), (5.4) and tεn
→ ∞, we get a contradiction in (5.8). Thereby, {tεn

} is bounded.
Then, there exists t0 ≥ 0 such that tεn

→ t0. In the light of 〈J ′
εn

(Φεn
(yn)),Φεn

(yn)〉 = 0, (5.3), (5.4),
(f1) and (f2), one can derive that t0 > 0. Again using the dominated convergence theorem, there holds∫

RN

f(tεn
η(| εn z|)w(z))tεn

η(| εn z|)w(z)dz →
∫

RN

f(t0w)t0wdz. (5.9)

By virtue of (5.3), (5.4), (5.5), (5.9) and tεn
→ t0, we have

‖t0w‖p
p,V0

+ ‖t0w‖q
q,V0

=
∫

RN

f(t0w)t0wdz.

So t0w ∈ Mμ0,V0 . Then, we conclude that t0 = 1 due to w ∈ Mμ0,V0 . by the change of variable z = εn x−yn

εn
,

it can be deduced from the dominated convergence theorem and tεn
→ 1 that∫

RN

G(εn x,Φεn(yn))dx →
∫

RN

F (w)dw.

This combined with (5.3), (5.4) and tεn
→ 1 implies that

Jεn
(Φεn

(yn)) → Iμ0,V0 = cμ0,V0 ,

which contradicts to (5.2). �

For δ > 0 fulfilling (5.1), we take ρ > 0 such that Mδ ⊂ Bρ, and we introduce the map Υ : R
N → R

N

as

Υ (x) =
{

x if |x| < ρ
ρx
|x| if |x| ≥ ρ.

The barycenter map βε : Nε → R
N is defined as

βε(u) =

∫

RN

Υ (ε x)|u(x)|2 dx

∫

RN

|u(x)|2 dx

.
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Lemma 5.2. We have the following limits:

lim
ε→0

βε(Φε(y)) = y uniformly in y ∈ M.

Proof. By contradiction, we suppose that there exist εn → 0, {yn} ⊂ M and C0 > 0 such that

|βεn
(Φεn

(yn)) − yn| ≥ C0. (5.10)

Noting that εn z + yn ∈ Mδ for | εn z| ≤ δ
2 , then applying the definition of Φεn

(yn) and the change of
variable z = εn x−yn

εn
, one can derive that

βεn
(Φεn

(yn)) = yn +

∫
RN

[Υ(εn z + yn) − yn]|η(| εn z|)|2|w(z)|2dz

∫
RN

|η(| εn z|)|2|w(z)|2 dz

= yn +

∫
RN

εn z|η(| εn z|)|2|w(z)|2dz

∫
RN

|η(| εn z|)|2|w(z)|2 dz
.

By using the dominated convergence theorem in the above formula, we conclude that

|βεn
(Φεn

(yn)) − yn| = on(1).

This contradicts to (5.10). �

Now, we establish the following compactness lemma, which is very important to verify that the solu-
tions of equation (3.1) are the solutions of equation (1.1).

Proposition 5.1. Let εn → 0. Suppose that {un} := {uεn
} ⊂ Nεn

such that Jεn
(un) → cμ0,V0 . Then there

exists {ỹn} ⊂ R
N such that by defining vn(x) = un(x + ỹn), then {vn} has a convergent subsequence in

Yμ0,V0 . Furthermore, there exists y0 ∈ M such that yn := εn ỹn → y0 in the sense of a subsequence.

Proof. Since 〈J ′
εn

(un), un〉 = 0 and Jεn
(un) → cμ0,V0 , similar to Lemma 3.2, we can deduce that {un} is

uniformly bounded in Xεn
. Further, one can derive from mμ0,V0 > 0 that ‖un‖εn

� 0. Then, by a direct
argument (see Lemma 4.2), we conclude that there exist ỹn ⊂ R

N and R, β > 0 such that

lim inf
n→∞

∫

BR(ỹn)

|un|pdx ≥ β. (5.11)

Taking ũn(x) = un(x+ỹn), then {ũn} is bounded in Yμ0,V0 due to the fact that {un} is uniformly bounded
in Xεn

. So we may assume that ũn ⇀ ũ in Yμ0,V0 . One can derive from (5.11) that u �≡ 0. Observe that
there exists a sequence {tn} ⊂ (0,∞) such that {tnũn} ⊂ Mμ0,V0 . Fix ṽn = tnũn and yn = εn ỹn. Since
Gεn

(x, t) ≤ F (t) for any x ∈ R
N and t ∈ R, by (A2), (A4), ṽn ⊂ Mμ0,V0 and {un} ⊂ Nεn

, there holds

cμ0,V0 ≤ Iμ0,V0(ṽn)

=
tpn
p

‖ũn‖p
p,V0

+ μ0
tqn
q

‖ũn‖q
q,V0

−
∫

RN

F (tnũn)dx

≤ tpn
p

‖un‖p
p,εn

+
tqn
q

‖un‖q
q,εn,μεn

−
∫

RN

Gε(x, tnun)dx

= Jεn
(tnun) ≤ Jεn

(un) ≤ cμ0,V0 + on(1).
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Thereby, one has that

Iμ0,V0(ṽn) → cμ0,V0 and {ṽn} ⊂ Mμ0,V0 . (5.12)

Obviously, by (5.12), we deduce that {ṽn} is bounded in Yμ0,V0 . then there exists t0 ≥ 0 such that tn → t0.
If t0 = 0, then we can conclude that Iμ0,V0(ṽn) → 0, which contradicts to (5.12) due to cμ0,V0 > 0. Hence,
t0 > 0 and ṽn ⇀ ṽ := t0ũ. Applying Lemma 4.4 and (5.12), we have that ṽn → ṽ. By this fact, one has
that ũn → ũ in Yμ0,V0 .

Now, we demonstrate that there exists y0 ∈ M such that yn → y0 up to a subsequence. First we claim
that {yn} is bounded. Otherwise, we have that |yn| → ∞ in the sense of a subsequence. Take R > 0 such
that Λ ⊂ BR. Then we may assume that |yn| ≥ 2R. So, for any x ∈ B R

εn
, one has

| εn x + yn| ≥ |yn| − | εn x| > R. (5.13)

Since ũn → ũ in Yμ0,V0 , it follows from this fact, (5.13) and 〈J ′
εn

(un), un〉 = 0 that

‖ũn‖p
p,V0

+ μ0‖ũn‖q
q,V0

≤
∫

RN

g(εn x + yn, ũn)ũndx

=
∫

B R
εn

g(εn x + yn, ũn)ũndx +
∫

Bc
R
εn

g(εn x + yn, ũn)ũndx

≤ V0

k
‖ũn‖p

Lp(RN )
+ on(1). (5.14)

Thereby, (
1 − 1

k

)
‖ũn‖p

p,V0
+ ‖ũn‖q

q,V0
→ 0.

This is a contradiction due to ũn → ũ in Yμ0,V0 with ũ �≡ 0. Then {yn} is bounded. We may assume that
there exists y0 ∈ Λ such that yn → y0. Suppose by contradiction that y0 �∈ Λ. Then there exists R0 > 0
such yn ∈ BR0

2
(y0) ⊂ Λc. Hence for any x ∈ BR0

εn

, we have εn x + yn ∈ Λc. Proceeding as (5.14), we

can obtain a contradiction. Then, y0 ∈ Λ. If V (y0) �= V0, then V0 < V (y0). By (g2), (5.12) and Fatou’s
lemma, we conclude that

cμ0,V0 ≤ Iμ0,V0(ṽ)

< lim inf
n→∞

(
1
p

∫

RN

|∇ṽn|pdx +
1
p

∫

RN

V (εn x + yn)|ṽn|pdx

+
1
q

∫

RN

μ(εn x + yn)|∇ṽn|qdx +
1
2

∫

RN

μ(εn x + yn)V (εn x + yn)|ṽn|qdx −
∫

RN

F (ṽn)dx

)

≤ lim inf
n→∞ Jεn

(tnun) ≤ lim inf
n→∞ Jεn

(un) = cμ0,V0 .

Obviously, this is a contradiction. Then, we have concluded that y0 ∈ M and yn → y0. �

We define the function hε : R
+ → R

+ by hε = supy∈M |Jε(Φε(y)) − cμ0,V0 |. Recalling Lemma 5.1, we
have that hε → 0 as ε → 0. Now, let us introduce the subset of Nε as

Ñε =
{

u ∈ Nε : Jε(u) ≤ cμ0,V0 + hε

}
.

It is clear that Φε(y) ∈ Ñε for any y ∈ M . Then, Ñε is not empty.
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Lemma 5.3. Let δ > 0 such that (5.1) holds. Then,

lim
ε→0

sup
u∈Ñε

dist(βε(u),Mδ) = 0.

Proof. Let εn → 0. Then, there exists a sequence {un} ⊂ Ñε such that

sup
u∈Ñεn

inf
y∈Mδ

|βεn(u) − y| = inf
y∈Mδ

|βεn(un) − y| + on(1).

To complete the proof, we only demand to show that there exists a sequence {yn} ⊂ Mδ such that

|βεn(un) − yn| → 0 as n → ∞. (5.15)

We can derive from {un} ⊂ Ñεn
⊂ Nεn

that

cμ0,V0 ≤ max
t≥0

Iμ0,V0(tun) ≤ max
t≥0

Jεn(tun) ≤ Jεn(un) ≤ cμ0,V0 + hεn ,

which suggests that Jεn(un) → cμ0,V0 . It follows from Proposition 5.1 that there exists a sequence
{ỹn} ⊂ R

N such that yn = εn ỹn ⊂ Mδ. Note that

βεn
(un) = yn +

∫
RN

[Υ(εn x + yn) − yn]|un(x + ỹn)|2 dx

∫
RN

|un(x + ỹn)|2dx
.

Since un(· + ỹn) is strongly convergent in Yμ0,V0 and εn z + yn → y0 ∈ Mδ, we conclude that βεn
(un) =

yn + on(1). This implies that (5.15) holds. �

Combining the above lemmas, we can derive the multiplicity of solutions for the modified equation
(3.1).

Theorem 5.1. Suppose that (A1)–(A4) and (f1)–(f4) hold. Then for any δ > 0 such that Mδ ⊂ Λ, there
exists εδ > 0 such that for any ε ∈ (0, εδ), equation (3.1) admits at least catMδ

(M) non-negative solutions.

Proof. For any ε > 0, let αε : M → S
+
ε be defined as αε := m−1

ε (Φε(y)). One can derive from Lemma 5.1
that

lim
ε→0

ψε(αε(y)) = lim
ε→0

Jε(Φε(y)) = cμ0,V0 uniformly in y ∈ M. (5.16)

Further, let us define the subset S̃
+
ε of S

+
ε as

S̃
+
ε = {u ∈ S

+
ε : ψε(u) ≤ cμ0,V0 + hε},

where hε = supy∈M |ψε(αε(y))−cμ0,V0 | = supy∈M |Jε(Φε(y))−cμ0,V0 | → 0 (see (5.16)). Then, αε(y) ∈ S̃
+
ε

for any y ∈ M . This implies that S̃
+
ε �= ∅.

Putting together Lemma 3.3-(iii), Lemma 5.1, Lemma 5.2 and Lemma 5.3, we conclude that there
exists εδ > 0 such that for any ε ∈ (0, εδ), the following diagram

M
Φε−→ Φε(M)

m−1
ε−→ αε(M) mε−→ Φε(M)

βε−→ Mδ

is well defined. From Lemma 5.2, we conclude that the map βε(Φε(y)) = y + θε(y) with |θε(y)| ≤ δ
2 for

any ε ∈ (0, εδ) and y ∈ M , here we take εδ small enough if necessary. Let Hε(t, y) = y + tθε(y) for any
t ∈ [0, 1] and y ∈ M . Then, Hε is a homology between the including map id : M → Mδ and βε ◦ Φε. By
virtue of ([14], Lemma 5.2), one has that for any ε ∈ (0, εδ),

catαε(M)(αε(M)) ≥ catMδ
(M). (5.17)
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It can be deduced from Proposition 3.2 and ([42], Theorem 2.7) that ψε admits at least catαε(M)(αε(M))
critical points. Using (5.17) and Proposition 3.1-(iv), we deduce that Jε has at least catMδ

(M) critical
points. Since f(t) ≤ 0 for t ≤ 0, then every critical point of Jε is non-negative. Thereby we complete the
proof. �

6. Proof of Theorem 1.1

In Sect. 5, we show the multiplicity of solutions of the modified problem (3.1). In the last section, we shall
demonstrate the solutions obtained for modified problem are actually solutions of problem (1.1) when ε
is small enough.

Inspired by [26,28,29], we establish the following estimates. Since the double-phase operator is non-
homogeneous and may be degenerate, we construct a new testing function to obtain the decaying estimates
of solutions.

Lemma 6.1. Let εn → 0. Suppose that un ∈ Ñεn
is a solution of equation (3.1). Taking vn = un(· + ỹn),

then there exists a constant C > 0 independent of n such that

‖vn‖L∞(RN ) ≤ C for any n ∈ N,

where {ỹn} is given by Proposition 5.1. Furthermore, one has

lim
|x|→∞

vn(x) = 0 uniformly for n ∈ N.

Proof. By the standard Moser iteration method (see ([26],Theorem 3.1)), we have that there exists C > 0
such that

‖vn‖L∞(RN ) ≤ C uniformly for n ∈ N. (6.1)

Now we show the decay estimate. For any R > 0, we take 0 < r ≤ R
2 . Further, we introduce the

function η ∈ C∞(RN ) such that η = 1 in Bc
R, η = 0 in BR−r and |∇η| ≤ 2

r . For any n ∈ N, let L > 0
and β > 1 to be determined later. Take vL,n(x) = min{vn(x), L}. we denote the functions

zL,n = ηqvnv
p(β−1)
L,n and wL,n = ηvnvβ−1

L,n ,

Testing (3.1) with zL,n, we conclude that
∫

RN

(|∇vn|p−2∇vn∇zL,n + μ(εn x + yn)|∇vn|q−2∇vn∇zL,n)dx

+
∫

RN

V (εn x + yn)(|vn|p−2vnzL,n + μ(εn x + yn)|vn|q−2vnzL,n)dx

=
∫

RN

g(εn x + yn, vn)zL,ndx. (6.2)

By a direct computation, we have

∇zL,n = qηq−1vnv
p(β−1)
L,n ∇η + ηqv

p(β−1)
L,n ∇vn + p(β − 1)ηqvnv

p(β−1)−1
L,n ∇vL,n. (6.3)
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One can derive from (6.2) and (6.3) that

∫

RN

ηq|∇vn|pvp(β−1)
L,n dx + q

∫

RN

ηq−1vnv
p(β−1)
L,n ∇η|∇vn|p−2∇vndx + V0

∫

RN

ηqvp
nv

p(β−1)
L,n dx

+
∫

RN

μ(εn x + yn)ηq|∇vn|qvp(β−1)
L,n dx + q

∫

RN

μ(εn x + yn)ηq−1vnv
p(β−1)
L,n ∇η|∇vn|q−2∇vndx

+ V0

∫

RN

μ(εn x + yn)ηqvq
nv

p(β−1)
L,n dx

≤
∫

RN

f(vn)ηqvnv
p(β−1)
L,n dx. (6.4)

By the Young inequality, there hold that
∣∣∣∣
∫

RN

ηq−1vnv
p(β−1)
L,n |∇vn|p−2∇vn∇ηdx

∣∣∣∣

≤ 1
2q

∫

RN

η
q−1
p−1pv

p(β−1)
L,n |∇vn|pdx + C

∫

RN

vp
nv

p(β−1)
L,n |∇η|pdx

≤ 1
2q

∫

RN

ηqv
p(β−1)
L,n |∇vn|pdx + C

∫

RN

vp
nv

p(β−1)
L,n |∇η|pdx, (6.5)

here we used the fact q−1
p−1p ≥ q due to q ≥ p. Again by the Hölder inequality, we have

∣∣∣∣
∫

RN

μ(εn x + yn)ηq−1vnv
p(β−1)
L,n ∇η|∇vn|q−2∇vndx

∣∣∣∣

≤ 1
q

∫

RN

μ(εn x + yn)ηqv
p(β−1)
L,n |∇vn|qdx + C

∫

RN

μ(εn x + yn)vq
nv

p(β−1)
L,n |∇η|qdx

≤ 1
q

∫

RN

μ(εn x + yn)ηqv
p(β−1)
L,n |∇vn|qdx + C

∫

RN

vq
nv

p(β−1)
L,n |∇η|qdx (6.6)

Putting together (6.4), (6.5) and (6.6), we deduce that

∫

RN

ηq|∇vn|pvp(β−1)
L,n dx + V0

∫

RN

ηqvp
nv

p(β−1)
L,n dx

≤ C

∫

RN

vp
nv

p(β−1)
L,n |∇η|pdx + C

∫

RN

vq
nv

p(β−1)
L,n |∇η|qdx +

∫

RN

ηqf(vn)vnv
p(β−1)
L,n dx. (6.7)

It follows from (f1) and (f2) that

f(vn) ≤ V0v
p−1
n + Cvp∗−1

n .
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This fact combined with (6.7) implies that
∫

RN

ηq|∇vn|pvp(β−1)
L,n dx ≤ C

∫

RN

vp
nv

p(β−1)
L,n |∇η|pdx + C

∫

RN

vq
nv

p(β−1)
L,n |∇η|qdx + C

∫

RN

ηqvp∗
n v

p(β−1)
L,n dx.

By the Sobolev inequality and the above formula, we conclude that

‖η
q
p vnvβ−1

L,n ‖p

Lp∗ (RN )

≤ C

∫

RN

|∇(η
q
p vnvβ−1

L,n )|pdx

≤ Cβp

( ∫

RN

vp
nv

p(β−1)
L,n |∇η|pdx +

∫

RN

vq
nv

p(β−1)
L,n |∇η|qdx +

∫

RN

ηqvp∗
n v

p(β−1)
L,n dx

)

≤ Cβp

( ∫

RN

vp
nv

p(β−1)
L,n |∇η|pdx +

∫

RN

vp
nv

p(β−1)
L,n |∇η|qdx +

∫

RN

ηqvp∗
n v

p(β−1)
L,n dx

)
(6.8)

Let β = p∗ t−1
pt with t = (p∗)2

p(p∗−p) . Then vn ∈ L
βpt
t−1 (RN ) and β > 1. Applying (6.4), we deduce

( ∫

|x|>R

(vnvβ−1
L,n )p∗

dx

) p
p∗

≤ Cβp

((
1
rp

+
1
rq

) ∫

R>|x|>R−r

(vnvL,n)pdx +
∫

|x|>R−r

vp∗−p
n (vnvβ−1

L,n )pdx

)
.

Furthermore, by the Hölder inequality, we conclude that

‖vnvβ−1
L,n ‖p

Lp∗ (|x|>R)
≤ C

(
1
rp

+
1
rq

){
1
rp

[ ∫

R>|x|>R−r

vβp
n

t

t − 1
dx

] t−1
t

[ ∫

R>|x|>R−r

dx

] 1
t

+
[ ∫

|x|>R−r

v(p∗−p)t
n dx

] 1
t
[ ∫

|x|>R−r

v
βp t

t−1
n dx

]}
.

Due to (p∗ − p)t = (p∗)2

p and vn ∈ L
(p∗)2

p (|x| > R − r), one has that

‖vnvβ−1
L,n ‖p

Lp∗ (|x|>R)
≤ Cβp

(
1 +

R
N
t

rp
+

R
N
t

rq

)( ∫

|x|>R

v
βp t

t−1
n dx

)
.

Let L → ∞. we can deduce from the Fatou’s lemma that

‖vn‖βp

Lβp∗ (|x|>R)
≤ Cβp

(
1 +

R
N
t

rp
+

R
N
t

rq

)
‖vn‖βp

L
βp t

t−1 (|x|>R−r)
.

This implies that

‖vn‖Lβp∗ (|x|>R) ≤ C
1

βp β
1
β

(
1 +

R
N
t

rp
+

R
N
t

rq

) 1
βp

‖vn‖
L

βp t
t−1 (|x|>R−r)

.
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Let X = p∗(t−1)
pt , s = pt

t−1 , β = X m and rm = R
2m+1 for m = 1, 2, · · · . Then, we can derive that

‖v‖LXm+1s(|x|>R−rm+1)
≤ CX −mX mX −m

(
1 +

R
N
t

rp
m

+
R

N
t

rq
m

) 1
pXm

‖vn‖LXs(|x|>R−rm). (6.9)

Since p > N
t and q > N

t , we conclude from (6.9) that

‖v‖LXm+1s(|x|>R) ≤ C
∑m

i=1 X −iX
∑m

i=1 iX−i

e
∑m

i=1
ln(1+2p(i+1)+2q(i+1))

pXi ‖vn‖LXs(|x|>R−r1). (6.10)

Letting m → ∞ in (6.10), there holds that

‖vn‖L∞(|x|>R) ≤ C‖vn‖Lp∗ (|x|> R
2 ). (6.11)

Noting that vn → v in Yμ0,V0 , by (6.11), we derive that

lim
|x|→∞

vn(x) = 0 uniformly in n ∈ N.

�

At the end of this section, we complete the proof of Theorem 1.1.

Proof of theorem 1.1. First, we shall show that for any δ > 0 such that Mδ ⊂ Λ, there exists εδ > 0 such
that for any ε ∈ (0, εδ), if uε ∈ Ñε is a solution of equation (3.1), then

|uε(x)| < a for any x ∈ Λc
ε. (6.12)

Arguing by contradiction, there exists εn → 0 and un := uεn
∈ Ñεn

is a solution of equation (3.1) such
that

‖un‖L∞(Λc
εn

) ≥ a. (6.13)

Clearly, from the proof of Proposition 5.1, we have Jεn
(un) → cμ0,V0 . By Proposition 5.1, we have that

there exists {ỹn} ⊂ R
N . Taking vn = un(· + ỹn), then vn → v in Yμ0,V0 with v �= 0 and yn = εn ỹn →

y0 ∈ M . Noting that εn ỹn → y0 ∈ M , then there exists r > 0 such that Br(εn ỹn) ⊂ Λ, and for any
R > 0, there holds that up to a subsequence

BR(ỹn) ⊂ B r
εn

(ỹn) ⊂ Λεn . (6.14)

In view of Lemma 6.1, we deduce that there exists R > 0 large enough such that

vn(x) < a in Bc
R(0).

This implies that

un(x) < a in Bc
R(ỹn). (6.15)

By (6.14), we derive that

Λc
εn

⊂ Bc
r

εn
(ỹn) ⊂ Bc

R(ỹn).

By this and (6.15), one can deduce that

un(x) < a in Λc
εn

.

This is a contradiction due to (6.12). Hence, (6.12) holds.
From (6.12), we know that for any ε ∈ (0, εδ), if uε ∈ Ñε is a solution of equation (3.1), then uε is a

solution of equation (1.1). By this fact and Lemma 5.1, we conclude that equation (1.1) admits at least
catMδ

(M) non-negative solutions.
Then, we show that the concentration of solutions. Let εn → 0 and the sequence {un} ⊂ Xε be

solutions of equation (3.1). By virtue of (g1), we can obtain that there exists γ ∈ (0, a) such that

gε(x, t)t ≤ V0

k
tp for any x ∈ R

N , 0 ≤ t ≤ γ. (6.16)
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Arguing as before, there exists R > 0 such that

‖un‖L∞(Bc
R(ỹn)) < γ. (6.17)

By a direct way, we can show that

‖un‖L∞(BR(ỹn)) ≥ γ. (6.18)

Indeed, if (6.18) is false, it follows from (6.17) that

‖un‖L∞(RN ) < γ.

In the light of this fact, (6.16) and 〈J ′
εn

(un), un〉 = 0, we have

‖un‖p
p,εn

+ ‖un‖q
q,εn,μεn

=
∫

RN

gεn
(x, un)undx ≤ V0

k

∫

RN

|un|pdx,

which implies that ‖un‖εn
= 0. This contradicts to (6.18).

Let ηεn
be a global maximum point of un. One can derive from (6.17) and (6.18) that ηεn

= ỹn + pn

with |pn| ≤ R. Since εn ỹn → y0 ∈ M and |pn| ≤ R, we have εn ηεn → y0. It follows from the continuity
of V that

lim
n→∞ V (εn ηεn

) = V (y0) = V0.

So far, the proof of Theorem 1.1 is completed. �
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[11] Bögelein, V., Duzaar, F., Marcellini, P., Scheven, C.: Boundary regularity for elliptic systems with p, q-growth. J. Math.

Pures Appl. (9) 159, 250–293 (2022)
[12] Bonheure, D., d’Avenia, P., Pomponio, A.: On the electrostatic Born–Infeld equation with extended charges. Commun.

Math. Phys. 346, 877–906 (2016)
[13] Cherfils, L., Il’yasov, Y.: On the stationary solutions of generalized reaction diffusion equations with p&q-Laplacian.

Commun. Pure Appl. Anal. 4(1), 9–22 (2005)
[14] Cingolani, S., Lazzo, M.: Multiple positive solutions to nonlinear Schrödinger equations with competing potential

functions. J. Differ. Equ. 160(1), 118–138 (2000)
[15] Colasuonno, F., Squassina, M.: Eigenvalues for double phase variational integrals. Ann. Mat. Pura Appl. 195(6), 1917–

1959 (2016)
[16] Colombo, M., Mingione, G.: Bounded minimisers of double phase variational integrals. Arch. Ration. Mech. Anal.

218(1), 219–273 (2015)
[17] Colombo, M., Mingione, G.: Regularity for double phase variational problems. Arch. Ration. Mech. Anal. 215(2), 443–

496 (2015)
[18] Costa, G.S., Figueiredo, G.M.: Existence and concentration of positive solutions for a critical p&q equation. Adv.

Nonlinear Anal. 11(1), 243–267 (2022)
[19] Cherfils, L., Il’yasov, Y.: On the stationary solutions of generalized reaction diffusion equations with p&q -Laplacian.

Commun. Pure Appl. Anal. 4(1), 9–22 (2004)
[20] Cupini, G., Marcellini, P., Mascolo, E.: Nonuniformly elliptic energy integrals with p, q-growth. Nonlinear Anal. 177,

312–324 (2018)
[21] Cupini, G., Marcellini, P., Mascolo, E.: Local boundedness of weak solutions to elliptic equations with p, q-growth.

Math. Eng. 5(3), Paper No. 065 (2023)
[22] del Pino, M., Felmer, P.L.: Local mountain passes for semilinear elliptic problems in unbounded domains. Calc. Var.

4(2), 121–137 (1996)
[23] Du, Y., Su, J.B., Wang, C.: On a quasilinear Schrödinger–Poisson system. J. Math. Anal. Appl. 505(1), 125446 (2022)
[24] Ekeland, I.: On the variational principle. J. Math. Anal. Appl. 47, 324–353 (1974)
[25] Farkas, C., Fiscella, A., Winkert, P.: On a class of critical double phase problems. J. Math. Anal. Appl. 515(2), 126420

(2022)
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Department of Mathematics
University of Craiova
Street A.I. Cuza 13
200585 Craiova
Romania
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