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A dynamical system possessing an equilibrium point with two zero eigenvalues is considered. We
assume that a degenerate Bogdanov-Takens bifurcation with symmetry of order two is present
and, in the parameter space, a curve of double heteroclinic bifurcation values emerges from the
codimension two bifurcation point. Using a blow-up transformation and a perturbation method,
we obtain second-order approximations both for the heteroclinic orbits and for the curve of
heteroclinic bifurcation values. Applications of our results for the truncated normal form and
for the Liénard equation are presented. Some numerical simulations illustrating the accuracy of
our results are performed.
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1. Introduction

The double-zero bifurcation with Z2 -symmetry is a codimension two bifurcation of equilibria of a family
of planar vector fields that are invariant under a central symmetry. The Poincaré normal form of such a
family is [Khorosov, 1979], [Chow et al., 1994]:

ẋ = y, (1)

ẏ = µ1x+ µ2y + a3x
3 + b3x

2y +
∑
k≥2

(a2k+1x
2k+1 + b2k+1x

2ky),

where µ1, µ2, ak, bk are real parameters and a3b3 6= 0.
Remark that using transformations of time and variables, system (1) with a3b3 < 0 can be written as

ẋ = y, (2)

ẏ = β1x+ β2y + x3 − x2y +O(|(x, y)|5),
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Fig. 1. The bifurcation diagram for the double-zero bifurcation with symmetry of order two, for system 2.

The parametric portrait around the origin of the parameter plane (β1, β2) includes four bifurcation curves
at which pitchfork, Hopf, double heteroclinic bifurcation occur [Chow et al., 1994], as follows from Theorem
1 bellow.

Theorem 1. [Chow et al., 1994] The parametric portrait of system (2) is divided in 9 different strata by
the origin and the following curves:

(i) R+ = {β | β1 = 0, β2 > 0}; R− = {β | β1 = 0, β2 < 0};
(ii) H = {β | β2 = 0, β1 < 0};
(iii) HL = {β | β2 = −1

5β1 +O(β3/2
1 ), β1 < 0};

The bifurcation diagram for (2) around the origin is given in Figure 1.
Thus, the following bifurcations are present in the (β1, β2) - parameter plane of system (2):
(i) a pitchfork bifurcation of the origin for (β1, β2) ∈ R+ ∪ R−: while in region (1) (for β1 > 0) the

origin is the only equilibrium point (a saddle), when β1 < 0, together with the origin which becomes a
focus, two new equilibria

(
±
√
−β1, 0

)
appear; these two equilibria are hyperbolic saddles;

(ii) a supercritical Hopf bifurcation of the origin for (β1, β2) ∈ H;
(iii) a double heteroclinic connection between the two saddles, for (β1, β2) ∈ HL.
While expressions for the pitchfork and Hopf bifurcation values are easy to derive analytically, the

heteroclinic bifurcation values can be determined only numerically.
In most cases, the homoclinic and heteroclinc orbits of continuous dynamical systems are difficult

to find analytically. Several asymptotic methods such as the regular perturbation method, the elliptic
averaging method, the elliptic Lindstedt-Poincaré method, the hyperbolic perturbation method, allow to
detect the presence of these orbits. Such results can be found in [Belhaq et al., 2000], [Belhaq & Lakrad,
2000], [Chen & Chen, 2009], [Chen et al., 2009].

There exist some bifurcations of equlibria which involve the presence in the parameter space, near the
bifurcation value, of parameters corresponding to homoclinic or heteroclinic orbits. In such cases, asymp-
totic prediction of the curve of heteroclinic bifurcation values can be obtained. The double-zero bifurcation
is such an example. Thus, for the nondegenerated Bogdanov-Takens bifurcation, a strata of homoclinic
bifurcation values emerges at the codimension two bifurcation point. Predictors of the homoclinic orbits in
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this case can be found in [Al-Hdaibat et al., 2016], [Kuznetsov et. al, 2014], [Kuznetsov et. al, 2015]. For
a degenerate Bogdanov-Takens bifurcation, asymptotic approximations of homoclinics near a double-zero
bifurcation point with symmetry of order two are found in [Rocşoreanu & Sterpu, 2017]. Approximations of
heteroclinic connections in the 1:3 and 1:4 resonance problems are done in [Fahsi & Belhaq, 2012], [Chung
et al., 2014], [Qin et al., 2016].

The paper is organized as follows. In Section 2, we derive explicit first and second order approximations
of double heteroclinic solutions of system (3), using the regular perturbation method, in terms of hyperbolic
functions. In addition, we find a more accurate approximation of the bifurcation curve HL corresponding
to parameters at which such solutions exist. In Section 3, the results obtained in Section 2 are used to
obtain approximations of heteroclinic orbits for the truncated normal form (2) of double-zero bifurcation
with symmetry of order two. Some numerical simulations illustrating the efficiency of our theoretical results
are performed. In Section 4, our theoretical results from Section 2 are applied to obtain approximations of
heteroclinic orbits for the Liénard system. Finally, some conclusions are formulated.

2. First and second order approximations of heteroclinic orbits for the
parametric-dependent normal form by regular perturbation method

In (1), consider µ1, µ2 as bifurcation parameters and the coefficients ai, bi, depending on them. As around
(µ1, µ2) = (0, 0), we have a3 = a+a10µ1+a01µ2+O(|µ|2), b3 = −b−b10µ1−b01µ2+O(|µ|2), a5 = c+O(|µ|),
b5 = −d+O(|µ|), system (1) is written into the form

ẋ = y, (3)

ẏ = µ1x+ µ2y + ax3 − bx2y + g (µ1, µ2, x, y) + ...,

where g (µ1, µ2, x, y) = (a10µ1 +a01µ2)x3− (b10µ1 + b01µ2)x2y+ cx5−dx4y and µ1, µ2 are real parameters,
while a, b, c, d, a10, a01, b10, b01 are real constants and a > 0, b > 0.

Following the lines in [Chow et al., 1994], we apply a blow-up transformation for system (3):

x =
ε√
a
u, y =

ε2√
a
v, (4)

µ1 = −ε2, µ2 =
b

a
ε2 θ,

and consider ε ≥ 0 and s = εt the new time. Thus, system (3) becomes:

du

ds
= v, (5)

dv

ds
= −u+ u3 +

b

a
εv(θ − u2) + g1 +O

(
ε4
)

where g1 = ε2

a2u
3
(
−aa10 + ba01θ + cu2

)
+ ε3

a2u
2v
(
ab10 − bb01θ − du2

)
.

For ε = 0, system (5) is Hamiltonian

u̇ = v, (6)

v̇ = −u+ u3,

with the first integral

H(u, v) =
v2

2
+
u2

2
− u4

4
.

This system possesses three equilibrium points, namely E0 = (0, 0) (which is a nonlinear center), E+ = (1, 0)
and E− = (−1, 0) (which are hyperbolic saddles). The level curve H(u, v) = 0 contains a pair of heteroclinic
orbits between the two saddles.

For ε 6= 0 and each θ, the ε-perturbed system (5) still possesses three equilibria, one of them being
the origin (which is either an attractor or a repeller) and two saddles. It also has two heteroclinic orbits,
symmetric with respect to the origin of the phase plane.
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One of these orbits parameterized by ε is given by

u = u0 + εu1 + ε2u2 + ...+ εkuk + ... (7)

v = v0 + εv1 + ε2v2 + ...+ εkvk + ...

with θ = θ0 + εθ1 + ε2θ2 + ...+ εkθk + ...

where k stands for the order of approximation. The other heteroclicnic orbit can be obtained by symmetry
with respect to the origin. We require that lims→∞ u(s) and lims→−∞ u(s) are finite and

lim
s→∞

v(s) = lim
s→−∞

v(s) = 0. (8)

We also fix that u(0) = 0. Next, we replace (7) into system (5) and collect the εk terms.
For k = 0, we get:

·
u0 = v0,
·
v0 = −u0 + u3

0,

that is the hamiltonian system (6). Its solution satisfying the initial conditions u0(0) = 0, v0(0) = 1/
√

2
can be written as

u0(s) = tanh
s√
2
, (9)

v0(s) =
1√
2

(
1− tanh2 s√

2

)
=

1√
2

sech2 s√
2
.

Remark that we chose v0(0), such that H(u0(0), v0(0)) = 0.
For k = 1, 2, 3, we get the linear non-homogeneous systems

u̇k = vk, (10)

v̇k = −(1− 3u2
0)uk + hk(s),

with h1(s) = b
av0(θ0 − u2

0),

h2(s) = 3u0u
2
1 +

b

a
v0(θ1 − 2u0u1) +

b

a
v1(θ0 − u2

0) +
u3

0

a

(
−a10 +

b

a
a01θ0 +

c

a
u2

0

)
,

h3(s) = u3
1 + 6u0u1u2 +

b

a
v2(θ0 − u2

0) +
b

a
v1(θ1 − 2u0u1) +

b

a
v0(θ2 − u2

1 − 2u0u2)

+
u3

0

a2
(a01θ1b+ 2cu0u1) +

3u2
0u1

a2

(
−a10a+ a01bθ0 + cu2

0

)
+
u2

0v0
a2

(
ab10 − bb01θ0 − du2

0

)
.

The homogenous part of (10) leads to the second order equation ük = −(1− 3u2
0)uk, k = 1, 2, 3. It has the

particular independent solutions:

ϕ1(s) = sech2 s√
2
,

ϕ2(s) = 3s
√

2 sech2 s√
2

+ 2 sinh(s
√

2) + 6 tanh
s√
2
,

with the Wronskian W (ϕ1, ϕ2) = 8
√

2.
By the variation of constants method we obtain the general solution of (10):

uk(s) = c1k(s)ϕ1(s) + c2k(s)ϕ2(s),
vk(s) = c1k(s)ϕ′1(s) + c2k(s)ϕ′2(s),

with

c1k(s) = c1k −
1

8
√

2

∫
hk(s)ϕ2(s)ds, c2k(s) = c2k +

1
8
√

2

∫
hk(s)ϕ1(s)ds
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for k = 1, 2, 3.
Next we compute the values for c1k, c2k, θk−1, k = 1, 2, ...
For k = 1, we obtain

lim
s→∞

v1(s) =
(

60
√

2ac21 + b (5θ0 − 1)
)
∞,

lim
s→−∞

v1(s) =
(

60
√

2ac21 − b (5θ0 − 1)
)
∞.

Since lims→∞ v1(s) and lims→−∞ v1(s) are finite, we get

c21 = 0 and θ0 =
1
5
.

The condition u1(0) = 0 gives c11 +
√

2
20 = 0, so we get

c11 = −
√

2
20

b

a
.

Thus, u1 and v1 are completely determined, into the form:

u1 (s) =
√

2
5
b

a
ln cosh

s√
2
· sech2 s√

2
, (11)

v1 (s) = −1
5
b

a

[
−1 + 2 ln cosh

s√
2

]
sech2 s√

2
tanh

s√
2
.

Similarly, for k = 2, we have

lim
s→∞

v2(s) =
(

12a
√

2c22 + bθ1

)
∞,

lim
s→−∞

v2(s) =
(

12a
√

2c22 − bθ1
)
∞.

As lims→∞ v2(s) and lims→−∞ v2(s) are finite, we get

c22 = θ1 = 0,

while from u2 (0) = 0 we obtain c12 = 0. Thus, the non-homogenous system (10), with k = 2, has the
solution

u2(s) =
1

300a2
sech2 s√

2
{3
√

2s(25c− 2b2) + tanh
s√
2

[75aa10 − 15a01b+ 16b2 − 175c (12)

+ 15 cosh(
√

2s)(5aa10 − a01b− 5c) + 24b2 ln cosh
s√
2
− 24b2 ln2 cosh

s√
2

]},

v2(s) = −
√

2
600a2

sech4 s√
2
{−75a a10 + 15a01b− 14b2 + 200c− 72b2 ln cosh

s√
2

+ 48b2 ln2 cosh
s√
2

+− cosh(
√

2s)[5(15aa10 − 3a01b− 2b2 + 20c)

− 48b2 ln cosh
s√
2

+ 24b2 ln2 cosh
s√
2

] + 3
√

2s(25c− 2b2) sinh(
√

2s)}.

From system (10) with k = 3, u3 (s) , v3 (s) and θ2 can be obtained. As we intend to find only second
order approximations of the heteroclinics and of the heteroclinic bifurcation curve, only the value of θ2 is
necessary, so the expressions of u3 (s) , v3 (s) will be omitted here. As lims→∞ v3(s) and lims→−∞ v3(s) are
finite, we get:

θ2 =
75a(35a10b+ 7bb01 + 15d)− b

(
525a01b− 16b2 + 2425c

)
− 2625a2b10

13125a2b
. (13)



March 27, 2018 13:25 IJBC-heteroclinice
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Thus, the second order approximation of the curve containing heteroclinic bifurcation values is also
completely determined. The above expressions were simplified using the software Mathematica [Wolfram,
2010].

The following results are thus obtained.

Theorem 2. The second order approximations of the heteroclinic orbits in the normal form (3) are:

x (t) =
1√
a

[
εu0 (εt) + ε2u1 (εt) + ε3u2 (εt)

]
, (14)

y (t) =
1√
a

[
ε2v0 (εt) + ε3v1 (εt) + ε4v2 (εt)

]
,

where u0, u1, u2 and v0, v1, v2 are given by (9), (11), (12) above.

Theorem 3. The second order approximation of the curve of double heteroclinic bifurcation values is

µ2 = − b
a
µ1

[
1
5
− θ2µ1

]
, (15)

where θ2 is given by (13).

3. Second order aproximation of heteroclinic orbits for the truncated normal
form

In this section we apply the results from Section 2 in the particular case of the truncated system (2)

ẋ = y, (16)

ẏ = β1x+ β2y + x3 − x2y,

The blow-up transformation x = εu, y = ε2v, β1 = −ε2, β2 = ε2θ maps (16) into
du

ds
= v, (17)

dv

ds
= −u+ u3 + εv(θ − u2).

In this case the second order approximation of the heteroclinic orbit reads

x (t) = εu0 (εt) + ε2u1 (εt) + ε3u2 (εt) , (18)

y (t) = ε2v0 (εt) + ε3v1 (εt) + ε4v2 (εt) ,

where the expressions of ui, vi, i = 1, 2, simplify as follows:

u1(s) =
√

2
5

ln cosh
s√
2

sech2 s√
2
,

v1(s) = −1
5

[
−1 + 2 ln cosh

s√
2

]
sech2 s√

2
tanh

s√
2

u2(s) =
1

150
sech2 s√

2

[
−3
√

2s+ tanh
s√
2

(
8 + 12 ln cosh

s√
2
− 12 ln2 cosh

s√
2

)]
,

v2(s) =
1

300

√
2 sech4 s√

2

[
7 + 36 ln cosh

s√
2
− 24 ln2 cosh

s√
2

+ cosh
s√
2

(
−5− 24 ln cosh

s√
2

+ 12 ln2 cosh
s√
2

)
+

6s√
2

sinh(
√

2s)
]
.

In addition, the second order approximation (15) of the curve of heteroclinic bifurcation values reads
in this particular case:

β2 = −1
5
β1 +

16
13125

β2
1 .
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Fig. 2. Hamiltonian, first and second order approximations of the heteroclinic orbit for ε = 1.

Fig. 3. Heteroclinic orbits for ε = 1 obtained numerically.

As an example, for ε = 1 we get β1 = −1. From the above formula the first approximation of β2 is
0.2, while the second approximation is β2 = 0.201219. The numerically obtained bifurcation values are
β1 = −1, β2 = 0.20115.

In Fig. 2, the Hamiltonian (black line), first (red dotted line) and second order approximations (blue
line) of the heteroclinic orbit with y > 0 are represented. Remark that in Fig. 2 there is small difference
between the first and second order approximation of the heteroclinic orbit. These two approximations
almost collide with the heteroclinic orbit obtained numericaly by the Runge-Kutta method, plotted in Fig.
3, using [Ermentrout, 2002].

For bigger values of ε, the second order approximated orbit is much more accurate than the first order
one. For instance, as ε = 1.8 we obtain β1 = −3.24, and β2 = 0.648 for the first approximation, while
β2 = 0.660797 for the second one. The numerical parameter values are β1 = −3.24, β2 = 0.659238.

The heteroclinic orbits for ε = 1.8 are represented in Fig. 4. As we see in this figure, the second order
approximation of the heteroclinic orbit almost collides with the numerical computed one (for this reason
they were drawn separately), while the first order approximation is quite different.

4. Double-zero bifurcation for a generalized Liénard equation

As an application of the above presented technique the following generalized Liénard equation is studied

ẍ+ c1x+ c3x
3 = δ

(
m0 −m1x

2 −m2ẋ
2
)
ẋ, (19)
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Fig. 4. Heteroclinic orbits for of system (16) for ε = 1.8: (i) numerical approximation; (ii) Hamiltonian, first and second
order approximations.

where the dot over quantities stands for differentiation with respect to the time τ.
Denoting x1 = x, x2 = ẋ, equation (19) transforms into the system

ẋ1 = x2, (20)

ẋ2 = −c1x1 + δm0x2 − c3x3
1 − δm1x

2
1x2 − δm2x

3
2,

This system is invariant with respect to the symmetry (x1, x2) −→ (−x1,−x2) .
A bifurcation study of the above system as three parameters vary is done in [Khibnik et. al, 1998].
System (20) has an unique equilibrium point E0 = (0, 0) for c1c3 ≥ 0, while for c1c3 < 0 two additional

equilibria E1 =
(√
− c1

c3
, 0
)

and E2 =
(
−
√
− c1

c3
, 0
)

appear.

Using techniques from dynamical system theory [Kuznetsov, 2004], the stability of these equilibria is
established as follows. The equilibrium E0 is a hyperbolic saddle for c1 < 0, while for c1 > 0 it is an
attractor for δm0 < 0, a repeller for δm0 > 0, and nonhyperbolic of Hopf type for δm0 = 0.

The symmetric equilibria E1 and E2 are hyperbolic saddles for c1 > 0, while for c1 < 0, these equilibria
are attractors for δm0 + δm1

c1
c3
< 0, repellers for δm0 + δm1

c1
c3
< 0, and nonhyperbolic of Hopf type for

δm0 + δm1
c1
c3

= 0.
As c1 = 0, and δm0 = 0, the equilibrium E0 is nonhyperbolic, with two zero eigenvalues. In this case

the normal form corresponds to a double-zero with Z2-symmetry singularity. This implies the presence of
homoclinic and heteroclinic orbits.

In [Chen & Chen, 2009], for certain values of the parameters, approximations of homoclinic or hetero-
clinic solutions were find using the hyperbolic perturbation method.

In the following, we first obtain the normal form of system (20) close to the origin E0, then using
our results from Section 2, we derive second order approximations for the curve of heteroclinic bifurcation
values and for the double heteroclinic connections.

In order to derive the normal form, we have to eliminate the term δm2x
3
2. To this aim, we consider

first a new time t, such that

dτ =
(
1 + t1x

2
1 + t2x

2
2

)
dt, (21)
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where t1, t2 will be determined later. System (20) written with the new time t becomes

dx1

dt
=
(
1 + t1x

2
1 + t2x

2
2

)
x2, (22)

dx2

dt
=
(
1 + t1x

2
1 + t2x

2
2

) (
−c1x1 + δm0x2 − c3x3

1 − δm1x
2
1x2 − δm2x

3
2

)
.

Next, we perform the variables transformation

y1 = x1 (23)
y2 =

(
1 + t1x

2
1 + t2x

2
2

)
x2

with the local inverse

x1 = y1 (24)

x2 = y2 − t1y2
1y2 − t2y1y

2
2 + t21y

4
1y2 + 3t1t2y3

1y
2
2 + 2t22y

2
1y

3
2 +O

(
|y|7
)
.

System (22) transforms into

dy1

dt
= y2, (25)

dy2

dt
= −c1y1 + δm0y2 − (c3 + 2c1t1)y3

1 − (δm1 + 3c1t2 − δm0t1) y2
1y2

+ 2 (t1 + δm0t2) y1y
2
2 + (t2 − δm2) y3

2 +O
(
|y|5
)
.

Choosing t1, t2 to anihilate the last two third-order terms in (25), we get

t2 = δm2, t1 = −δ2m0m2.

Thus, the time transformation (21) is completely determined, and system (25) reads

dy1

dt
= y2, (26)

dy2

dt
= −c1y1 + δm0y2 + a3y

3
1 + b3y

2
1y2 + a5y

5
1 + b5y

4
1y2 +O

(
|y|5
)
.

The above system is Poincaré normal for for the Liénard system up to five-order terms. Here the
bifurcation parameters are µ1 = −c1 and µ2 = δm0. In addition, we have

a3 = −c3 + 2c1δ2m0m2 = −c3 − 2µ1µ2δm2,

b3 = −δm1 − 3c1δm2 − δ3m2
0m2 = −δm1 + 3δm2µ1 − δm2µ

2
2,

a5 = 2c3δ2m0m2 − c1δ4m2
0m

2
2 = 2c3δm2µ2 + δ2m2

2µ1µ
2
2,

b5 = −3c3δm2 + δ3m0m1m2 = −3c3δm2 + δ2m1m2µ2.

At the bifurcation values −c1 = 0 and δm0 = 0, we obtain a3 = −c3, b3 = −δm1, a5 = 0, b5 = −3c3δm2.
Consequently, as δm1c3 6= 0, a double-zero bifurcation with symmetry of order two is present in the

two-dimensional system associated to the Liénard equation (19).
In the case δm1c3 < 0, we are in the hypothesis of Theorem 1. Taking into account the expressions of

a3, b3, a5, b5, the coefficients involved in the computations in Section 2 are

a = −c3, a10 = 0, a01 = 0, b = δm1, b10 = −3δm2, b01 = 0, c = 0, d = 3c3δm2.

Thus, the equations of second order approximations of the heteroclinic orbits in the variables y1 and
y2 are obtained as in Theorem 2:

y1(t) =
1√
−c3

(
εu0 (εt) + ε2u1 (εt) + ε3u2 (εt)

)
, (27)

y2(t) =
1√
−c3

(
εu0 (εt) + ε2u1 (εt) + ε3u2 (εt)

)
,
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where the functions ui, vi have the expressions (9), (11), (12) given in Section 2.
Applying Theorem 3, the curve of second order approximation of the heteroclinic bifurcation values

(15) is written as

c3m0 + c1m1

(
1
5

+ c1θ2

)
= 0, (28)

where

θ2 =
1

13125

(
16δ2m2

1

c23
+

4500m2

m1

)
.

For, example, consider c1 = 1, c3 = −2, m1 = 3, m2 = 4, and δ = 1.5. Using the first approximation of the
curve of heteroclinic bifurcation values, we obtain m0 = 0.3, while using the second approximation (28) we
obtain m0 = 0.99497. This last value is very close to the numerically obtained value, namely m0 = 1.01464.
For the above values, in [Chen & Chen, 2009] using the hyperbolic perturbation method, it is found the
approximated bifurcation value m0 = 0.98571, which is less accurate than our second approximation. It is
shown once again that the second approximation is good also far away from the bifurcation point.

5. Conclusions

The present study concerns with the heteroclinic orbits corresponding to a double-zero bifurcation with
symmetry of order two. Using the regular perturbation method, we obtained the second order approxima-
tions of the curve of heteroclinic bifurcation values (Theorem 3) and of the heteroclinic orbits (Theorem
2). The numerical simulations from Section 3 show the accuracy of our approximations. An application
was done in Section 4 for a generalized Liénard equation. Our theoretical results are in good accordance
with the numerical ones.
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