Teoria bifurcaţiilor şi aplicatii în biologie
FISA DISCIPLINEI

Anul universitar 2009- 2010



  Mihaela Sterpu

Cod: CM612
Titular curs: Conf. dr. M. Sterpu
Forma de invatamant: cursuri de zi
Ciclul 2 Anul II
Semestrul 2, Curs: 28h, Seminar: 28h
Nr. credite: 8
Specializare: Matematica
Tip disciplina: obligatorie
Categoria formativa: de specialitate
Obiective: Prezentarea unor notiuni si rezultate fundamentale ale teoriei bifurcatiei sistemelor dinamice continue si discrete si aplicarea acestora in modele din biologie si economie.

Continutul cursului:
  1. Echivalenta topologica a sistemelor dinamice. Clasificare topologica a echilibrelor si punctelor fixe. Bifurcatii si diagrame de bifurcatie. Stabilitate structurala. Forme normale topologice. Varietati centrale. Modele din biologie si economie: Van der Pol, Hodgkin-Huxley, FitzHugh-Nagumo, prada-pradator.
  2. Bifurcatii de codimensiune 1 ale echilibrelor in sisteme dinamice continue: bifurcatia sa-nod, bifurcatia Hopf.
  3. Bifurcatii de codimensiune 1 ale punctelor fixe in sisteme dinamice discrete: bifurcatia fald, bifurcatia flip, bifurcatia Neimark-Sacker.
  4. Bifurcatii ale orbitelor homoclinice si heteroclinice. Teorema Andronov-Leontovich, teoremele lui Shilnikov, integrala Melnikov.
  5. Bifurcatii de codimensiune doi ale echilibrelor in sisteme dinamice continue: bifurcatia cuspidala, bifurcatia Bautin, bifurcatia Bogdanov-Takens, bifurcatia fald-Hopf, bifurcatia Hopf-Hopf.
  6. Bifurcatii de codimensiune 2 ale punctelor fixe in sisteme dinamice discrete: bifurcatia cuspidala, bifurcatia flip generalizata, bifurcatia Neimark-Sacker generalizata, rezonante, bifurcatia fald-flip.
  7. Analiza numerica a bifurcatiilor. Pachetul software XPP.

Discipline anterioare cerute:
  • Algebra liniara M1201
  • Analiza matematica M1102, M1202
  • Ecuatii diferentiale M2305
  • Sisteme dinamice CM5xx
Bibliografie:
  1. Arrowsmith D.K., Place C.M. An introduction to dynamical systems, Cambridge University Press, 1994.
  2. Chow S.N., Li C., Wang D., Normal forms and bifurcations of planar vector fields, Cambridge Univ. Press, Cambridge, 1994.
  3. Chow S.N., Hale J., Methods of bifurcation theory, Springer, New-York, 1982.
  4. Dumortier F., Roussarie R., Sotomayor J., Zoladek, H., Bifurcations of planar vector fields, nilpotent singularities and abelian integrals, Springer, Berlin, 1991.
  5. Ermentrout B. XPPAUT, http://www.math.pitt.edu
  6. Ermentrout B. Simulating, analyzing, and animating dynamical systems: a guide to XPPAUT for researchers and students, SIAM, 2002.
  7. Georgescu A., Moroianu M., Oprea I. Teoria bifurcatiei. Principii si aplicatii, Ed. Univ. Pitesti, 1999.
  8. Guckenheimer J., Holmes P. Nonlinear oscillations, dynamical systems and bifurcations of vector fields, Springer, New-York, 1983.
  9. Hale J.K., Kocak H. Dynamics and bifurcations, Springer, New York, 1991.
  10. Kuznetsov Yu. Elements of applied bifurcation theory, Springer, New York, 2004.
  11. Murray J.D. Mathematical Biology, Springer, Berlin, 1993.
  12. Rocsoreanu C., Georgescu A., Giurgiteanu N. The FitzHugh-Nagumo model. Bifurcation and dynamics, Kluwer Academic Publishers, Dordrecht, 2000.
  13. Rocsoreanu C. Bifurcatiile sistemelor dinamice continue. Aplicatii in economie si biologie, Ed. Universitaria, Craiova, 2006.
  14. Sterpu M., Rocsoreanu C. Modelarea si simularea proceselor economice, Editura Universitaria, Craiova, 2007.
  15. Tu P. Dynamical systems. An introduction with applications in economics and biology, Springer, Berlin, 1994.
Fisa disciplinei Teoria bifurcatiilor si aplicatii in biologie (pdf)

Last update: September 2009