Professor Emeritus Constantin P. Niculescu
A selected list of scientific publications


 Departament Home
For other publications see:
2018
  1. Convex Functions and Their Applications. A Contemporary Approach, Second edition. CMS Books in Mathematics vol. 23, xvii + 415 pp., Springer International Publishing AG, 2018. ISBN-13: 978-3319783369 (In collab. with Lars-Erik Persson)
2017
  1. Hardy-Littlewood-Pólya theorem of majorization in the framework of generalized convexity, Carpathian Journal of Mathematics 33 (2017), No. 1, 87-95. (In collab. with Ionel Roventa)
  2. The Steffensen-Popoviciu measures in the context of quasiconvex functions , J. Math. Inequal. 11 (2017), No. 2, 469--483. (In collab. with Marius Marinel Stanescu)
  3. A Note on Abel's Partial Summation Formula , Aequationes Math. 91 (2017), No. 6, 1009- 1024. (In collab. with Marius Marinel Stanescu)
2016
  1. A simple proof of the Jensen type inequality of Fink and Jodeit . Mediterranean Journal of Mathematics 13 (2016), 119-126. DOI: 10.1007/s00009-014-0480-4 (In collab. with Marcela Mihai)
  2. The Integral Version of Popoviciu's Inequality on Real Line. Annals of the Academy of Romanian Scientists, Series on Mathematics and its Applications, 8 (2016), No. 1, 56-67. (In collab. with Gabriel Prajitura)
2015
  1. A short proof of Burnside's asymptotic formula. Banach J. Math. Anal. 9 (2015) No. 2, 196-200. DOI: 10.15352/bjma/09-2-14 (In collab. with Florin Popovici)
  2. Relative Convexity and Its Applications. Aequationes Math. 89 (2015), Issue 5, 1389-1400. DOI: 10.1007/s00010-014-0319-x (In collab. with Ionel Roventa)
  3. Relative convexity on global NPC spaces. Math. Inequal. Appl. 18 (2015), No. 3, 1111–1119. DOI:10.7153/mia-18-85 (In collab. with Ionel Roventa)
2014
  1. Real Analysis on Intervals. Springer New Delhi Heidelberg New York Dordrecht London, 2014. xi + 525 pp. (In collaboration with Alla Ditta Raza Choudary) ISBN 978-81-322-2147-0; ISBN 978-81-322-2148-7 (eBook)
  2. An Approach of Majorization in Spaces with a Curved Geometry. J. Math. Anal. Appl. 411 (2014), Issue 1, 119-128. DOI: 10.1016/j.jmaa.2013.09.038 (In collab. with Ionel Roventa)
  3. Some open problems concerning the convergence of positive series. Annals of the Academy of Romanian Scientists, Series on Mathematics and its Applications 6 (2014), No. 1, 85-99. (In collab. with Gabriel Prajitura)
  4. Relative Convexity and Its Applications. ArXiv preprint arXiv:1409.2772, 2014 (In collab. with Ionel Roventa)
2013
  1. An extension of Chebyshev's algebraic inequality. Math. Reports 15 (65) (2013), No. 1, 91-95. (In collab. with Ionel Roventa)
  2. A short proof of Stirling's formula. American Mathematical Monthly 120 (2013), No. 8, 733-736 (In collab. with Dorin Ervin Dutkay and Florin Popovici)
  3. New Jensen-type inequalities. J. Math. Anal. Appl. 401 (2013), No. 1, 343–348. DOI: 10.1016/j.jmaa.2012.11.051 (In collab. with Catalin Irinel Spiridon) Available also at http://arxiv.org/abs/arXiv:1207.6877
  4. The asymptotic behavior of integrable functions. Real Analysis Exchange, Vol. 38 (1), 2012/2013, 157-168. (In collab. with Florin Popovici)
  5. Lagrange's Barycentric Identity From An Analytic Viewpoint. Bull. Math. Soc. Sci. Math. Roumanie, 56 (104), no. 4, 2013, 487-496. (In collab. with Holger Stephan)
  6. A Note on Jensen's inequality for 2D-Convex Functions. Annals of the University of Craiova - Mathematics and Computer Science Series 40 (2013), Issue 2, 1-4. (In collab. with Khuram Ali Khan and Josip Pecaric)
2012
  1. Generalized convexity and the existence of finite time blow-up solutions for an evolutionary problem. Nonlinear Analysis 75 (2012), 270–277. (In collab. with Ionel Roventa) DOI: 10.1016/j.na.2011.08.031 Available at http://arxiv.org/abs/1107.5647v1
  2. The Hermite-Hadamard inequality for log-convex functions. Nonlinear Analysis 75 (2012), 662-669.
    DOI: 10.1016/j.na.2011.08.066
  3. A brief account on Lagrange's identity, The Mathematical Intelligencer, 34 (2012), No. 3, 55-61. DOI: 10.1007/s00283-012-9305-0 (In collab. with Marian Gidea)
  4. Strong and weak-type weighted norm inequalities for the geometric fractional maximal operator, Bulletin of the Australian Mathematical Society 86 (2012), 2015-215. (In collab. with Sorina Barza)
  5. The Behavior at Infinity of an Integrable Function, Expositiones Mathematicae 30 (2012) 277–282 (In collab. with Florin Popovici) DOI: 10.1016/j.exmath.2012.03.002
  6. A note on Stirling's formula for the Gamma function. Journal of Prime Research in Mathematics 8 (2012), 1-4. (In collab. with Dorin Ervin Dutkay and Florin Popovici)
  7. A generalization of Lagrange's algebraic identity and connections with Jensen's inequality. WIAS Preprint List No. 1756 (2012) (In collab. with Holger Stephan)
2011
  1. Weak solutions via bipotentials in mechanics of deformable solids, J. Math. Anal. Appl. 379 (2011), No. 1, 15-25. (In collab. with Andaluzia Cristina Matei)
  2. A note on the behavior of integrable functions at infinity, J. Math. Anal. Appl. 381 (2011), Issue 2, 742-747. (In collab. with Florin Popovici)
  3. Young Gauss Meets Dynamical Systems, The Mathematical Intelligencer 33 (2011), No. 1, 2-4. DOI: 10.1007/s00283-010-9178-z
  4. A new look at the Lyapunov inequality, Annals of the Academy of Romanian Scientists, Series on Mathematics and its Applications 3 (2011), 207-217.
  5. The Monotone Convergence Theorem for the Riemann Integral, Annals of the University of Craiova - Mathematics and Computer Science Series XXXVIII (2011), Issue 2, 55-58. (In collab. with Florin Popovici)
  6. An Extension of Young's Inequality, Abstract and Applied Analysis, Volume 2011, Article ID 162049, 18 pages. DOI:10.1155/2011/162049. See also http://arxiv.org/abs/arXiv:1106.5444 (In collab. with Corina-Flavia Mitroi)
  7. On a result of G. Bennett, Bull. Math. Soc. Sci. Math. Roumanie 54 (102), no. 3, 261-267, 2011.
  8. Some open problems concerning the convergence of positive series. arXiv:1201.5156 (In collab. with Gabriel Prajitura)
2010
  1. The equivalence of Chebyshev's inequality with the Hermite-Hadamard inequality. Math. Reports, 12 (62), No. 2, 2010, pp. 145-156. (In collab. with Josip Pečarić)
  2. Popoviciu's inequality for functions of several variables. J. Math. Anal. Appl., 365 (2010), Issue 1, 399–409. DOI:10.1016/j.jmaa.2009.10.069m (In collab. with Mihail Bencze and Florin Popovici)
  3. Large solutions for semilinear parabolic equations involving some special classes of nonlinearities, Discrete Dynamics in Nature and Society, Volume 2010 (2010), Article ID 491023, 11 pages. DOI:10.1155/2010/491023. (In collab. with Ionel Roventa)
2009
  1. An overview of absolute continuity and its applications. In vol. Inequalities and Applications (Proceedings of the Conference in Inequalities and Applications, Noszvaj (Hungary), September 2007), International Series of Numerical Mathematics, vol. 157 , pp. 201-214, Birkhäuser Verlag, 2009 (Editors, Catherine Bandle, Attila Gilányi, László Losonczi, Zsolt Páles and Michael Plum). ISBN 978-3-7643-8772-3.
  2. An ergodic characterization of uniformly exponentially stable evolution families. Bull. Math. Soc. Sci. Math. Roumanie 52 (100), no. 1, 2009, pp. 33-40. (In collab. with Constantin Buse)
  3. The integral version of Popoviciu's inequality. Journal Math. Inequal. 3 (2009), no. 3, 323-328.
  4. The Hermite-Hadamard inequality for convex functions on a global NPC space. J. Math. Anal. Appl. 356 (2009), no. 1, 295-301. DOI:10.1016/j.jmaa.2009.03.007
  5. Fan's inequality in geodesic spaces. Appl. Math. Letters, 22 (2009), no. 10, 1529-1533. DOI:10.1016/j.aml.2009.03.020 (In collab. with Ionel Roventa)
  6. The existence of a global attractor for a class of rational maps. Annals of the Academy of Romanian Scientists, Series on Mathematics and its Applications 1 (2009), no. 2, 215-227. (In collab. with Ionel Roventa)
  7. Schauder fixed point theorem in spaces with global nonpositive curvature. Fixed Point Theory and Appl. vol. 2009 (2009), Article ID 906727, 8 pages. doi:10.1155/2009/906727. (In collab. with Ionel Roventa)
2008
  1. A condition of uniform exponential stability for semigroups, Math. Inequal. Appl. 11 (2008), No. 3, 529-536. (In collab. with Constantin Buse)
2007
  1. Fan's Inequality in the Context of Mp-Convexity. In vol. Applied Analysis and Differential Equations. Proc. ICAADE 2006, pp. 267-274, World Scientific, Singapore, 2007 (Editors, Ovidiu Carja and Ioan I. Vrabie). ISBN 978-981-270-594-5, ISSN 981-270-594-5. (In collab. with Ionel Roventa) Revised, February 12, 2009.
  2. An extension of the Hermite-Hadamard inequality through subharmonic functions, Glasgow. Math. J. 49 (2007), 509-514. (In collab. with Mihai Mihailescu)
  3. A Hermite-Hadamard inequality for convex-concave symmetric functions, Bull. Math. Soc. Sci. Math. Roumanie 50 (98), no. 2, 2007, pp. 149-156. (In collab. with Aurelia Florea)
  4. The Krein-Milman Theorem in Global NPC Spaces, Bull. Math. Soc. Sci. Math. Roumanie 50 (98), no. 4, 2007, pp. 343-346.
2006
  1. Integral inequalities for concave functions, Publ. Math. Debrecen 68 (2006), No. 1-2, 139-142. (In collab. with Sorina Barza)
  2. Convex Functions and Their Applications. A Contemporary Approach, CMS Books in Mathematics vol. 23, Springer-Verlag, New York, 2006. xvi + 256 pp. ISBN 0-387-24300-3 (In collab. with Lars-Erik Persson)
  3. An extension of two basic results in real analysis. In vol.: Mathematical Analysis and Applications , International Conference on Mathematical Analysis and Applications, Craiova, Romania, 23-24 September 2005. AIP Conference Proceedings, Vol. 835, pp. 48-57, American Institute of Physics, Melville, New York, 2006 (V. D. Radulescu and C. P. Niculescu, Editors). ISBN 0-7354-0328-7. ISSN 0094-243X. (In collab. with Dorin Ervin Dutkay and Florin Popovici)
  4. An antiplane contact problem for viscoelastic materials with long-term memory, Math. Modeling and Analysis 11 (2006), No. 2, 213-228. (In collab. with Mircea Sofonea and Andaluzia Matei)
  5. The extension of majorization inequalities within the framework of relative convexity, Journal of Inequalities in Pure and Applied Mathematics (JIPAM) 7 (2006), Issue 1, Article No. 27, 6pp. (In collab. with Florin Popovici)
  6. A Refinement of Popoviciu's inequality, Bull. Math. Soc. Sci. Math. Roumanie 49 (97), 2006, No. 3, 285-290. (In collab. with Florin Popovici)
  7. An invitation to convex functions theory. In vol.: Order Structures in Functional Analysis), vol. 5, pp. 1-16, Ed. Academiei, Bucharest, 2006. (R. Cristescu Editor)
2005
  1. Asymptotic stability and integral inequalities for solutions of linear systems on Radon-Nikodym spaces, Math. Inequal. Appl. 8 (2005), 347-356. (In collab. with Constantin Buse)
  2. A Note on Ostrowski's Theorem, J. Ineq. Appl. 2005 , Issue 5, 459-468. (In collab. with Florea Aurelia)
  3. An Introduction to Mathematical Analysis, Universitaria Press, Craiova, 2005. ISBN 0-973-742-138-8.
  4. Special Topics in Functional Analysis, Universitaria Press, Craiova, 2005. ISBN 0-973-742-137-X. (Romanian)
2004
  1. A Note on the Denjoy-Bourbaki Theorem, Real Analysis Exchange 29 (2003/2004), No. 2, 639-646. (In collab. with Florin Popovici)
  2. Old and new on the Hermite-Hadamard inequality, Real Analysis Exchange 29 (2003/2004), No. 2, 663-686. (In collab. with Lars-Erik Persson)
  3. An Extension of the Mazur-Ulam Theorem. In: Global Analysis and Applied Mathematics, Intern. Workshop on Global Analysis, Ankara, Turkey, 15-17 April, 2004. AIP Conference Proceedings Vol. 729, pp. 248-256, American Institute of Physics, Melville, New York, 2004 (K. Tas, D. Krupka, O. Krupkova and D. Baleanu, Editors). ISBN 0-354-0209-4. ISSN 0094-243X. Revised, March 30, 2008.
  4. Interpolating Newton's Inequalities, Bull. Math. Soc. Sci. Math. Roumanie 47 (95),2004, No. 1-2, 67-83.
  5. A Two-Sided Estimate of e^x-(1+x/n)^n, Journal of Inequalities in Pure and Applied Mathematics (JIPAM) 5 (2004), Issue 3, Article 55, 4 pp. (In collab. with Andrei Vernescu)
2003
  1. Non-commutative extensions of classical and multiple recurrence theorems, J. Operator Theory 50 (2003), No. 1, 3-52. (In collab. with Anton Stroh and Laszlo-Zsido)
  2. Convex Functions. Basic Theory and Applications. Universitaria Press, Craiova, 2003, xiv+185 pp. ISBN 973-8043-389-9 (In collab. with Lars-Erik Persson)
  3. Convexity according to means, Math. Inequal. Appl. 6 (2003), 571-579.
  4. The Hardy-Landau-Littlewood inequalities with less smoothness, Journal of inequalities in pure and Applied Mathematics (JIPAM), 4 (2003), Issue 3, Article 51, 8 p. (In collab. with Constantin Buse)
  5. On the Algebraic Character of Blundon's Inequalities. In Vol.: Inequality Theory and Applications Mathematics (Y. J. Cho, S. S. Dragomir and J. Kim Editors), Vol. 3, pp. 139-144, Nova Science Publishers, New York, 2003. ISBN 1-59033-891-X.
2002
  1. Choquet's theory for signed measures, Math. Inequal. Appl. 5 (2002), 479-489.
  2. A generalization of a theorem of Bernard concerning the frontal sets. Proc. of the 4th International Conference on Functional Analysis and Approximation Theory, Acquafredda di Maratea (Potenza, Italy), September 22-28, 2000. In: Redinconti del Circolo Matematico di Palermo, Serie II, Suppl. 68 (2002), 699-710. (In collab. with Gavriil Paltineanu and Dan Tudor Vuza).
  3. Chaotic Dynamical Systems. An Introduction. Universitaria Press, Craiova, 2002, xvi + 239 pp. ISBN 973-8043-159-9. (In collab. with Marian Gidea)
  4. The Integral Calculus of Functions of Several Variables. Theory and Applications. Universitaria Press, Craiova, 2002, viii + 221 pp. ISBN 973-8043-155-5. (Romanian)
  5. Analysis on Real Line. A Contemporary Approach. Second edition with corrections, Universitaria Press, Craiova 2002, x + 277 pp. ISBN 973-8043-154-4. (Romanian)
  6. A note on the Ky Fan inequality, Analele Universitatii din Craiova, seria matematica-informatica XXIX (2002), 47-51. (In collab. with Florea Aurelia)
2001
  1. What is chaos and why should we mind of it? In: Order Structures in Functional Analysis vol. 4 (R. Cristescu editor), pp. 103-123, Ed. Academiei Romane, Bucharest, 2001. ISBN 973-27-0820-4.
  2. An extension of Chebyshev's inequality and its connection with Jensen's inequality, Journal of Inequalities and Applications 6, (2001), No. 4, 451-462.
  3. A multiplicative mean value and its applications. In: Theory of Inequalities and Applications, vol. 1 (Y. J. Cho, S. S. Dragomir and J. Kim, editors), pp, 243-255, Nova Science Publishers, Huntington, New York, 2001. ISBN 1-59033-188-5.
  4. Analysis on Real Line. A Contemporary Approach, Universitaria Press, Craiova 2001, x + 264 pp. ISBN 973-8043-87-7. (Romanian)
  5. A note on the Hermite-Hadamard inequality, The Math. Gazette, July 2001, Note 85.42, pp. 48-50.
2000
  1. Convexity according to the geometric mean, Math. Inequal. Appl. 3 (2000), No. 2, 155-167.
  2. A new look at Newton's inequalities, Journal of Inequalities in Pure and Applied Mathematics (JIPAM) 1 (2000), Issue 2, Article No. 17.
  3. On the Riemann-Lebesgue Lemma. In: Proceedings of the 3rd Annual Conference of Romanian Mathematical Society , Craiova, May 26-29, Vol. 1, Scientific Communications, pp. 151-156, Ed. Reprograph, Craiova, 2000. ISBN (Romanian) (In collab. with Dan Tudor Vuza)
  4. Function spaces attached to elliptic operators. In: Proc. of the National Conference on Mathematical Analysis and Applications, Timisoara, December 12-13, 2000, pp. 239-250, University of West, Timisoara, 2000.
Before 2000
  1. Converses of the Cauchy-Schwarz inequality in the C*-framework, Analele Universitatii din Craiova, seria matematica-informatica 25 (1999), 22-28.
  2. Applications of Elliptic Operator Methods to C^{infinity}-Convergence Problem. Rev. Roumaine Math. Pures et Appl. 44 (1999), No. 5-6, pp. 793-798.
  3. A Hilbert Space Approach of Poincare's Recurrence Theorem. Rev. Roumaine Math. Pures et Appl. 44 (1999), No. 5-6, pp. 799-805.
  4. Solvability of an Elliptic System with Discontinuous Nonlinearity and L^1 -data. Comm. on Applied Nonlinear Analysis 6 (1999), No. 3, pp. 449-458. (In collab. with Nicolae Tarfulea)
  5. A class of Dirichlet Boundary value problems which admit infinitely many solutions. Scientiae Mathematicae 1 (1998), No. 3, pp. 483-487. (In collab. with Nicolae Tarfulea)
  6. Topological transitivity and recurrence as a source of chaos. In vol.: Functional Analysis and Economics Theory, (Y. Abramovich, Y. Avgerinos and N. C. Yannelis editors), pp. 101-108, Springer-Verlag, Berlin, 1998.
  7. Birkhoff Recurrence Theorem and Combinatorial Properties of Abelian Semigroups, Rev. Roum. Math. Pures Appl. 41 (1996), 675-686. MR1647675
  8. A saddle point theorem for non-smooth functionals and problems at resonance, Annales Acad. Sci. Fennicae, Series A, 21 (1996), 117-131. (In collab. with Vicentiu Radulescu) MR1375511
  9. Chaos and fine observables, Analele Universitatii din Craiova, seria matematica-informatica 23 (1996), 1-8.
  10. A combinatorial property of abelian semigroups, Rev. Roum. Math. Pures Appl. 40 (1995), 669-679. MR1405106
  11. Facial structures from the order theoretical point of view, Math. Reports 46 (1995), 417-451. MR1682880
  12. On L-M duality in real Banach spaces, Rev. Roum. Math. Pures Appl. 38 (1993), 275-279. (In collab. with Dan Tudor Vuza) MR1324281
  13. Interpolation and approximation from the M-theory point of view, Rev. Roum. Math. Pures Appl. 38 (1993), 531-544. (In collab. with Gavriil Paltineanu and Dan Tudor Vuza) MR1258054
  14. A note on <<- ideals, Rev. Roum. Math. Pures Appl. 37 (1992), 717-726. MR1188625
  15. Ideals associated to Boolean algebras of projections, Math. Reports 44 (1992), 435-448. MR1194869
  16. The Evolution of the Notion of Ideal in Functional Analysis. In vol.: Order Structures in Functional Analysis, vol. 3 (R. Cristescu editor), pp. 65-120, Ed. Academiei, Bucharest, 1992. ISBN 973-27-0334-2. MR1194869
  17. Commutative Convexity. An Introduction. In vol.: Order Structures in Functional Analysis, vol. 2 (R. Cristescu editor), pp. 83-115, Ed. Academiei, Bucharest, 1989. ISBN 973-27-0054-8. MR1194869
  18. A commutative extremal extension of the Hilbert-Schmidt theorem, Rev. Roum. Math. Pures Appl. 34 (1989), 247-261. MR1006646
  19. Alfsen-Effros type order relations defined by vector norms, Rev. Roum. Math. Pures 33 (1988), 751-766. (In collab. with Dan Tudor Vuza) MR0979706
  20. Cunningham projections associated to an Alfsen-Effros type order relation. In vol.: Operators in Indefinite metric Spaces, Scattering Theory and Other Topics, 10th International Conference on Operator theory, Bucharest (Romania), August 26-September 5, 1985, pp. 251-263, Birkhauser-Verlag, Basel, 1987. MR0903077
  21. Weak Compactness in Banach Lattices. In vol.: Order Structures in Functional Analysis, vol. 1, (R. Cristescu editor), pp. 97-158, Ed. Academiei, Bucharest, 1986. (Romanian) MR0935013
  22. Operators of type A and local absolute continuity, J. Operator Theory 13 (1985), 49-61. MR 86b:47064
  23. Operators defined on Banach lattices. In vol.: Proceedings of the Second International Conference on Operator Algebras, Ideals and Their Applications in Theoretical Physiscs, Leipzig, 1983. Teubner-texte zur Mathematik, vol. 67 (1984), 178-184, Teubner, Leipzig, 1984. MR0763540
    Factoring Weakly Compact Operators AnaleUCV 1982
  24. Factoring Weakly Compact Operators. Analele Universitatii din Craiova, Seria Matematica, Fizica-Chimie X (1982), 1-5.
  25. Order sigma-continuous operators on Banach lattices. In vol.: Banach Space Theory and its Applications, Proceedings, Bucharest, 1981 (A. Pitsch, N. Popa and I. Singer editors). Lecture Notes in Math. 991 (1983), 188-201. MR0714186
  26. Operators of type A. Communication to ICM82, International Ongress of Mathematicians Warsaw, August 16-24, 1983. ICM Short Communications, Abstracts, vol. VI, Section 9, p. 40. 25 (1999), 22-28.
  27. Weak compactness in Banach lattices, J. Operator Theory 6 (1981), 217-231. MR0643692
  28. A note on C(S)-spaces, Bull. Soc. Sci. Math. Roum. 25 (1981), 47-48. MR0636685
  29. Elements of Banach Spaces Theory, 239 pp, Ed. Academiei, Bucharest, 1981. (In collab. with N. Popa) (Romanian) MR0616450
  30. A note on weakly compact operators defined on C*-algebras, Rev. Roum. Math. Pures Appl. 25 (1980), 631-634. MR0577053
  31. On the integral representation of linear operators on C(S). The significance of the Baire space, Rev. Roum. Math. Pures Appl. 25 (1980), 1407-1410. (In collab. with George Vraciu) MR0616588
  32. On the equality L(E,F)=N(E,F), Studii si cercetari matematice 31 (1979), No. 4, 427-432. (Romanian) MR0577053
  33. Absolute continuity in Banach space theory, Rev. Roum. Math. Pures Appl. 24 (1979), 413-422. MR0542855
  34. New progress on L(E,F)=N(E,F), Analele Universitatii din Craiova, seria mat., fiz.-ch. 6 (1978), 27-29. MR0601828
  35. Preduals of Banach lattices, weak order units and the Radon-Nikodym property, Rev. Roum. Math. Pures Appl. 23 (1978), 233-242. MR0482056
  36. Lebesgue-Radon-Nikodym type theorems for operators defined on ordered Banach spaces, Rev. Roum. Math. Pures Appl. 23 (1978), 85-93. MR0491430
  37. Simultaneous extensions of vector measures, Analele Universitatii din Craiova, seria mat., fiz.-ch. 5 (1977), 39-44. MR0632059
  38. Banach lattices with a weak order unit, Bull. Amer. Math. Soc. 82 (1976), 748-750. MR0410327
  39. Jordan decomposition and locally absolutely continuous operators, Rev. Roum. Math. Pures Appl. 21 (1976), 343-352. MR0420269
  40. Absolute continuity and weak compactness, Bull. Amer. Math. Soc. 81 (1975), 1064-1066. MR0385619
  41. Operateurs absolument continus, Rev. Roum. Math. Pures Appl. 19 (1974), 225-236. MR0344938
  42. Summability in Banach lattices, Rev. Roum. Math. Pures Appl. 19 (1974), 1111-1130.

Last update: October 1, 2016. Faculty of Sciences